Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Exploring the Bioactivity of Soil Streptomyces sp. BACSAS14: An In Vitro and In Silico Approach

Author(s): Sonal Agarwal, Swathika Vivekanandan, Hemalatha Mooventhan, Mohanasrinivasan Vaithilingam and Subathra Devi Chandrasekaran*

Volume 19, Issue 9, 2023

Published on: 26 May, 2023

Article ID: e020523216419 Pages: 12

DOI: 10.2174/1573407219666230502111736

Price: $65

Abstract

Background: Discovery of novel anti-cancer drugs from natural origin has increased tremendously due to the resistance of multiple chemotherapeutic drugs in breast cancer therapy and its high toxicity to undesirable side effects.

Objective: The aim of the study was to investigate the bioactivity of secondary metabolites derived from Actinobacteria sp. BACSAS14 isolated from a vegetable farm in Vellore, Tamil Nadu, and India.

Methods: Five actinomycetes strains were isolated and screened for antagonistic activity by the agar well diffusion method. Out of which, Actinobacteria sp. BACSAS14 exhibited potency, and its crude extract was tested for anti-inflammatory, anti-microbial, anti-cancer, and antioxidant potential. The Actinobacteria sp. BACSAS14 ethyl acetate extract was analyzed by Gas chromatography- mass spectrometry, Fourier-transform infrared spectroscopy, and Thin Layer Chromatography to determine the bioactive compounds. A drug interaction study with the anti-inflammatory protein COX-2, anti-oxidant protein lipoxygenase, and anti-cancer protein MT1-MMP was done by molecular docking analysis.

Results: Maximum activity was found against Pseudomonas aeruginosa (19 mm) at a concentration of 500 μL. Maximum inhibitory activity was 98.8 ± 0.98 % at a concentration of 5 mg/mL with an IC50 value of 417.58 μg/mL. Maximum antioxidant activity was 67.87 ± 0.59% at a concentration of 5 mg/mL. At an extract concentration of 500 μg/mL, cell viability was found to be 31.62 ± 0.79 with an IC50 value of 365.23 μg/mL. The compound with the lowest binding energy was observed to be sulfurous acid, cyclohexylmethyl isohexyl ester. In-silico studies of sulfurous acid, cyclohexylmethyl isohexyl ester revealed promising anti-inflammatory, anti-oxidant and anticancer potential.

Conclusion: The current study reported that the bioactive secondary metabolites of Actinobacteria sp. BACSAS14 retains anti-inflammatory, anti-cancer, and antioxidant properties. This is the first report stating the production of the metabolite sulfurous acid, cyclohexylmethyl isohexyl ester from Actinobacteria sp. BACSAS14.

Graphical Abstract

[1]
Mathew, A.; George, P.S. K M, J.K.; Vasudevan, D.; James, F.V. Transition of cancer in populations in India. Cancer Epidemiol., 2019, 58, 111-120.
[http://dx.doi.org/10.1016/j.canep.2018.12.003] [PMID: 30537646]
[2]
Bray, F.; Ferlay, J.; Laversanne, M.; Brewster, D.H.; Gombe Mbalawa, C.; Kohler, B.; Piñeros, M.; Steliarova-Foucher, E.; Swaminathan, R.; Antoni, S.; Soerjomataram, I.; Forman, D. Cancer incidence in five continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration. Int. J. Cancer, 2015, 137(9), 2060-2071.
[http://dx.doi.org/10.1002/ijc.29670] [PMID: 26135522]
[3]
Ferlay, J.; Soerjomataram, I.; Ervik, M. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11; International Agency for Research on Cancer: Lyon, France, 2013.
[4]
Egue, M.; Gnangnon, F.H.R.; Akele-Akpo, M.T.; Maxwell Parkin, D. Cancer incidence in Cotonou (Benin), 2014–2016. Cancer Epidemiol., 2019, 59, 46-50.
[http://dx.doi.org/10.1016/j.canep.2019.01.006] [PMID: 30685574]
[5]
Davies-Bolorunduro, O.F.; Adeleye, I.A.; Akinleye, M.O.; Wang, P.G. Anticancer potential of metabolic compounds from marine actinomycetes isolated from Lagos Lagoon sediment. J. Pharm. Anal., 2019, 9(3), 201-208.
[http://dx.doi.org/10.1016/j.jpha.2019.03.004] [PMID: 31297298]
[6]
Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol., 2011, 4(6), 687-699.
[http://dx.doi.org/10.1111/j.1751-7915.2010.00221.x] [PMID: 21375717]
[7]
Covington, R.T. Management of diarrhea. Fact Comp Drug News Lett., 1988, 13, 1-2.
[8]
Olano, C.; Méndez, C.; Salas, J. Antitumor compounds from marine actinomycetes. Mar. Drugs, 2009, 7(2), 210-248.
[http://dx.doi.org/10.3390/md7020210] [PMID: 19597582]
[9]
Azman, A.S.; Othman, I.; Fang, C.M.; Chan, K.G.; Goh, B.H.; Lee, L.H. Antibacterial, anticancer and neuroprotective activities of rare Actinobacteria from mangrove forest soils. Indian J. Microbiol., 2017, 57(2), 177-187.
[http://dx.doi.org/10.1007/s12088-016-0627-z] [PMID: 28611495]
[10]
Puttaswamygowda, G.H.; Olakkaran, S.; Antony, A.; Siva, A. Chapter 22 - Present status and future perspectives of marine actinobacterial metabolites. In: Recent Developments in Applied Microbiology and Biochemistry; 2019, pp. 307-319.
[http://dx.doi.org/10.1016/B978-0-12-816328-3.00022-2]
[11]
Abdelmohsen, U.R.; Grkovic, T.; Balasubramanian, S.; Kamel, M.S.; Quinn, R.J.; Hentschel, U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv., 2015, 33(6), 798-811.
[http://dx.doi.org/10.1016/j.biotechadv.2015.06.003] [PMID: 26087412]
[12]
Rajivgandhi, G.; Muneeswaran, T.; Maruthupandy, M.; Ramakritinan, C.M.; Saravanan, K.; Ravikumar, V.; Manoharan, N. Antibacterial and anticancer potential of marine endophytic actinomycetes Streptomyces coeruleorubidus GRG 4 (KY457708) compound against colistin resistant uropathogens and A549 lung cancer cells. Microb. Pathog., 2018, 125, 325-335.
[http://dx.doi.org/10.1016/j.micpath.2018.09.025] [PMID: 30243551]
[13]
Janaki, T.; Nayak, B.K.; Ganesan, T. Antibacterial activity of soil actinomycetes from the mangrove Avicennia marina. J. Pharmacogn. Phytochem., 2016, 5(1), 267.
[14]
Pandey, A.; Ali, I.; Butola, K.S.; Chatterji, T.; Singh, V. Isolation and characterization of Actinomycetes from soil and evaluation of antibacterial activities of Actinomycetes against pathogens. Int. J. Pharm. Appl., 2011, 2(4), 384-392.
[15]
Jemimah Naine, S.; Subathra Devi, C.; Mohanasrinivasan, V.; Vaishnavi, B. Antibacterial, antioxidant and cytotoxic potential of marine derived strain Streptomyces brasiliensis VITJS9 isolated from South East coast of Tamil Nadu, India. Natl. Acad. Sci. Lett., 2015, 38(3), 221-224.
[http://dx.doi.org/10.1007/s40009-014-0334-4]
[16]
Golding, C.G.; Lamboo, L.L.; Beniac, D.R.; Booth, T.F. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci. Rep., 2016, 6(1), 26516.
[http://dx.doi.org/10.1038/srep26516] [PMID: 27212232]
[17]
Naine, J.S.; Nasimunislam, N.; Vaishnavi, B.; Mohanasrinivasan, V.; Devi, S.C. Isolation of soil Actinomycetes inhabiting Amrithi forest for the potential source of bioactive compounds. Asian J. Pharm. Clin. Res., 2012, 5(3), 189-192.
[18]
Naine, S.J.; Devi, C.S.; Mohanasrinivasan, V. Antimicrobial, antioxidant and cytotoxic activity of marine Streptomyces parvulus VITJS11 crude extract. Braz. Arch. Biol. Technol., 2015, 58(2), 198-207.
[19]
Naine, S.J.; Devi, C.S.; Mohanasrinivasan, V.; Doss, C.G.P.; Kumar, D.T. Binding and molecular dynamic studies of sesquiterpenes (2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol) derived from marine Streptomyces sp. VITJS8 as potential anticancer agent. Appl. Microbiol. Biotechnol., 2016, 100(6), 2869-2882.
[http://dx.doi.org/10.1007/s00253-015-7156-2] [PMID: 26590587]
[20]
Williams, L.A.D.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J., 2008, 57(4), 327-331.
[PMID: 19566010]
[21]
Ahmad, M.S.; El-Gendy, A.O.; Ahmed, R.R.; Hassan, H.M.; El-Kabbany, H.M.; Merdash, A.G. Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12-1 isolated from Egyptian soil. Front. Microbiol., 2017, 8, 438.
[http://dx.doi.org/10.3389/fmicb.2017.00438] [PMID: 28348553]
[22]
Agarwal, H.; Shanmugam, V.K. Anti-inflammatory activity screening of Kalanchoe pinnata methanol extract and its validation using a computational simulation approach. Informat. Med. Unlocked, 2019, 14, 6-14.
[http://dx.doi.org/10.1016/j.imu.2019.01.002]
[23]
Dulara, B.K.; Godara, P.; Barwer, N. In vivo and in vitro phytochemical GC-MS analysis of volatile constituents of Andrographis paniculata (Burm. f.). Nees. J. Pharm. Innov., 2019, 8, 255-261.
[24]
Kumari, N.; Pandey, S.; Menghani, E. Evaluation of actinomycetes isolated antimicrobial metabolites as potent inhibitor of multidrug resistant organisms. Indian J. Geo-Mar. Sci., 2022, 50(1), 29-36.
[25]
Divya, R.; Supraja, N.; David, E. GC-MS analysis of phytochemical constituents in aqueous, methanol and ethyl acetate extracts of Vitis vinifera peel and its characterization studies by using AGNPs. Int. J. Pharm. Biol. Sci., 2021, 11(1), 110-123.
[http://dx.doi.org/10.21276/ijpbs.2021.11.1.15]
[26]
Sujatha, S.; Sara, S.C.; Gayathiri, M.; Roselin, I.R.; Ruby, R.G.D. Analysis of bioactive compounds present in methanolic extract of Phymatosorus scolopendria (Burm. F.) Pic. Serm. through gas chromatography and mass spectroscopy. Int. J. Pharm. Sci. Res., 2020, 11(7), 3294-3299.
[27]
Pihlström, T.; Blomkvist, G.; Friman, P.; Pagard, U.; Österdahl, B.G. Analysis of pesticide residues in fruit and vegetables with ethyl acetate extraction using gas and liquid chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem., 2007, 389(6), 1773-1789.
[http://dx.doi.org/10.1007/s00216-007-1425-6] [PMID: 17609934]
[28]
Ferreira, E.G.; Torres, M.C.M.; da Silva, A.B.; Colares, L.L.F.; Pires, K.; Lotufo, T.M.C.; Silveira, E.R.; Pessoa, O.D.L.; Costa-Lotufo, L.V.; Jimenez, P.C. Prospecting anticancer compounds in actinomycetes recovered from the sediments of Saint Peter and Saint Paul’s Archipelago. Chem. Biodivers., 2016, 13(9), 1149-1157.
[http://dx.doi.org/10.1002/cbdv.201500514] [PMID: 27454443]
[29]
Jemimah Naine, S.; Subathra Devi, C.; Mohanasrinivasan, V.; George Priya Doss, C. Bioactivity of Marine Streptomyces sp. VITJS4: Interactions of cytotoxic phthalate derivatives with human topoisomerase II α: An In silico molecular docking analysis. Interdiscip. Sci., 2018, 10(2), 261-270.
[http://dx.doi.org/10.1007/s12539-016-0187-2] [PMID: 27696207]
[30]
Devi, N.A.; Jeyarani, M.; Balakrishnan, K. Isolation and identification of marine actinomycetes and their potential in antimicrobial activity. Pak. J. Biol. Sci., 2006, 9(3), 470-472.
[http://dx.doi.org/10.3923/pjbs.2006.470.472]
[31]
Nagajyothi, P.C.; Cha, S.J.; Yang, I.J.; Sreekanth, T.V.M.; Kim, K.J.; Shin, H.M. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B, 2015, 146, 10-17.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.02.008] [PMID: 25777265]
[32]
Zotchev, S.B. Marine actinomycetes as an emerging resource for the drug development pipelines. J. Biotechnol., 2012, 158(4), 168-175.
[http://dx.doi.org/10.1016/j.jbiotec.2011.06.002] [PMID: 21683100]
[33]
Sangdee, K.; Buranrat, B.; Seephonkai, P.; Surapong, N.; Sangdee, A. Investigation of antibacterial and anti-cancer activities of Streptomyces sp. SRF1 culture filtrate. Trop. J. Pharm. Res., 2018, 16(11), 2727-2734.
[http://dx.doi.org/10.4314/tjpr.v16i11.21]
[34]
Zhang, J.; Wang, J.D.; Liu, C.X.; Yuan, J.H.; Wang, X.J.; Xiang, W.S. A new prenylated indole derivative from endophytic actinobacteria Streptomyces sp. neau-D50. Nat. Prod. Res., 2014, 28(7), 431-437.
[http://dx.doi.org/10.1080/14786419.2013.871546] [PMID: 24443904]
[35]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[36]
Costa, J.; Ramos, R.; Costa, K.; Brasil, D.; Silva, C.; Ferreira, E.; Borges, R.; Campos, J.; Macêdo, W.; Santos, C. An in silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods. Molecules, 2018, 23(11), 2801.
[http://dx.doi.org/10.3390/molecules23112801] [PMID: 30380600]
[37]
Zou, K.; Li, Z.; Zhang, Y.; Zhang, H.; Li, B.; Zhu, W.; Shi, J.; Jia, Q.; Li, Y. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin., 2017, 38(2), 157-167.
[http://dx.doi.org/10.1038/aps.2016.125] [PMID: 27917872]
[38]
Messenger, S.W.; Woo, S.S.; Sun, Z.; Martin, T.F.J.A. Ca2+-stimulated exosome release pathway in cancer cells is regulated by Munc13-4. J. Cell Biol., 2018, 217(8), 2877-2890.
[http://dx.doi.org/10.1083/jcb.201710132] [PMID: 29930202]
[39]
Dandekar, R.; Fegade, B.; Bhaskar, V.H. GC-MS analysis of phytoconstituents in alcohol extract of Epiphyllum oxypetalum leaves. J. Pharmacogn. Phytochem., 2015, 4(1), 149-154.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy