Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Flavonoids, Isoflavonoids and others Bioactives for Insulin Sensitizations

Author(s): Kushagra Goswami, Badruddeen*, Muhammad Arif, Juber Akhtar, Mohammad Irfan Khan and Mohammad Ahmad

Volume 20, Issue 2, 2024

Published on: 27 April, 2023

Article ID: e270423216247 Pages: 11

DOI: 10.2174/1573399819666230427095200

Price: $65

Abstract

Diabetes is a chronic condition that has an impact on a huge part of the world. Both animals and humans have been demonstrated to benefit from natural goods, and organisms (animals, or microbes). In 2021, approximately 537 million adults (20-79 years) are living with diabetes, making it the one of the biggest cause of death worldwide. Various phytoconstituent preserved β- cells activity helps to prevent the formation of diabetes problems. As a result, β-cells mass and function are key pharmaceutical targets. The purpose of this review is to provide an overview of flavonoids' effects on pancreatic β-cells. Flavonoids have been demonstrated to improve insulin release in cell lines of isolated pancreatic islets and diabetic animal models. Flavonoids are thought to protect β-cells by inhibiting nuclear factor-κB (NF-κB) signaling, activating the phosphatidylinositol 3-kinase (PI3K) pathway, inhibiting nitric oxide production, and lowering reactive oxygen species levels. Flavonoids boost β-cells secretory capacity by improving mitochondrial bioenergetic function and increasing insulin secretion pathways. Some of the bioactive phytoconstituents such as S-methyl cysteine sulfoxides stimulate insulin synthesis in the body and increase pancreatic output. The berberine increased insulin secretion in the HIT-T15 and Insulinoma 6 (MIN6) mouse cell line. Epigallocatechin-3-Gallate protects against toxicity accrued by cytokines, reactive oxygen species (ROS), and hyperglycemia. Quercetin has been proven to boost insulin production by Insulinoma 1 (INS-1) cells and also protect cell apoptosis. Overall flavonoids have beneficial effects on β-cells by prevented their malfunctioning or degradation and improving synthesis or release of insulin from β-cells.

[1]
Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020; 9(9): 252.
[http://dx.doi.org/10.3390/biology9090252] [PMID: 32872226]
[2]
Awuchi CG. Medicinal plants, bioactive compounds, and dietary therapies for treating type 1 and type 2 diabetes mellitus. In: Pharmacognosy-Medicinal Plants. IntechOpen 2021.
[3]
Etsassala NGER, Ndjoubi KO, Mbira TJ, et al. Glucose-uptake activity and cytotoxicity of Diterpenes and Triterpenes isolated from Lamiaceae plant species. Molecules 2020; 25(18): 4129.
[http://dx.doi.org/10.3390/molecules25184129] [PMID: 32927596]
[4]
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804-14.
[http://dx.doi.org/10.1038/nm.4350] [PMID: 28697184]
[5]
Atlas ID. IDF Atlas. (10th Edition 2021.). 2021; p. 4.
[6]
Meng X, Li Q, Shi R, Chang J, Chang H, Li M. Food supplements could be an effective improvement of diabetes mellitus: A review. Journal of Future Foods 2021; 1(1): 67-81.
[http://dx.doi.org/10.1016/j.jfutfo.2021.09.003]
[7]
Mohammed A, Tajuddeen N. Antidiabetic compounds from medicinal plants traditionally used for the treatment of diabetes in Africa: A review update (2015–2020). S Afr J Bot 2022; 146: 585-602.
[http://dx.doi.org/10.1016/j.sajb.2021.11.018]
[8]
Fernando IPS, Ryu B, Ahn G, Yeo IK, Jeon YJ. Therapeutic potential of algal natural products against metabolic syndrome: A review of recent developments. Trends Food Sci Technol 2020; 97: 286-99.
[http://dx.doi.org/10.1016/j.tifs.2020.01.020]
[9]
Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM, Biyani MK. Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol 2003; 88(1): 107-11.
[http://dx.doi.org/10.1016/S0378-8741(03)00184-3] [PMID: 12902059]
[10]
Atta-Ur-Rahman , Zaman K. Medicinal plants with hypoglycemic activity. J Ethnopharmacol 1989; 26(1): 1-55.
[http://dx.doi.org/10.1016/0378-8741(89)90112-8] [PMID: 2664356]
[11]
Baskaran K, Ahamath BK, Shanmugasundaram KR, Shanmugasundaram ERB. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol 1990; 30(3): 295-305.
[http://dx.doi.org/10.1016/0378-8741(90)90108-6] [PMID: 2259217]
[12]
Sharma VN, Sogani RK, Arora RB, Bhargava KP. Some observations on hypoglycaemic activity of Momordica charantia. Indian J Med Res 1960; 48: 471-7.
[13]
Pugazhenthi S, Murthy PS. Partial purification of a hypoglycemic fraction from the unripe fruits ofMomordica charantia Linn (bitter gourd). Indian J Clin Biochem 1995; 10(1): 19-22.
[http://dx.doi.org/10.1007/BF02873663]
[14]
Srivastava Y, Venkatakrishna-Bhatt H, Verma Y, Prem AS. Retardation of retinopathy by Momordica charantia L. (bitter gourd) fruit extract in alloxan diabetic rats. Indian J Exp Biol 1987; 25(8): 571-2.
[PMID: 3446597]
[15]
Gong X, Ji M, Xu J, Zhang C, Li M. Hypoglycemic effects of bioactive ingredients from medicine food homology and medicinal health food species used in China. Crit Rev Food Sci Nutr 2020; 60(14): 2303-26.
[http://dx.doi.org/10.1080/10408398.2019.1634517] [PMID: 31309854]
[16]
Alam S, Sarker MMR, Sultana TN, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Front Endocrinol 2022; 13: 800714.
[http://dx.doi.org/10.3389/fendo.2022.800714] [PMID: 35282429]
[17]
Ahmed QU, Ali AHM, Mukhtar S, et al. Medicinal potential of isoflavonoids: Polyphenols that may cure diabetes. Molecules 2020; 25(23): 5491.
[http://dx.doi.org/10.3390/molecules25235491] [PMID: 33255206]
[18]
Jin DL, Chen XB. Progress in research on hypoglycemic effect of traditional Chinese medicine. Zhejiang J Integr Tradit Chin West Med 2015; 25: 1-3.
[19]
Egbuna C, Awuchi CG, Kushwaha G, et al. Bioactive compounds effective against type 2 diabetes mellitus: A systematic review. Curr Top Med Chem 2021; 21(12): 1067-95.
[http://dx.doi.org/10.2174/18734294MTE1ENjAgx] [PMID: 33966619]
[20]
Chen F, Liu DB. Advances in anti-diabetes mechanism of active components in traditional chinese medicine. Acta Chin Med Pharmacol 2012; 40: 1-5.
[21]
Medjakovic S, Mueller M, Jungbauer A. Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR. Nutrients 2010; 2(3): 241-79.
[http://dx.doi.org/10.3390/nu2030241] [PMID: 22254019]
[22]
Wang Y, Han Y, Teng W, et al. Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed. BMC Genomics 2014; 15(1): 680.
[http://dx.doi.org/10.1186/1471-2164-15-680] [PMID: 25124843]
[23]
Na HK, Surh YJ. Peroxisome proliferator-activated receptor γ (PPARγ) ligands as bifunctional regulators of cell proliferation. Biochem Pharmacol 2003; 66(8): 1381-91.
[http://dx.doi.org/10.1016/S0006-2952(03)00488-X] [PMID: 14555212]
[24]
Heikkinen S, Auwerx J, Argmann C. PPARγ in human and mouse physiology. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771(8): 999-1013.
[http://dx.doi.org/10.1016/j.bbalip.2007.03.006]
[25]
Tontonoz P, Spiegelman BM. Fat and beyond: The diverse biology of PPARgamma. Annu Rev Biochem 2008; 77(1): 289-312.
[http://dx.doi.org/10.1146/annurev.biochem.77.061307.091829] [PMID: 18518822]
[26]
Khan MU. Lifestyle modification in the prevention of type II diabetes mellitus. Oman Med J 2012; 27(2): 170-1.
[http://dx.doi.org/10.5001/omj.2012.36] [PMID: 22496947]
[27]
Akhilesh KT, Pravin KB, Jagdish RB, et al. Herbal antidiabetics: A review.
[28]
Wang Z, Wang J, Chan P. Treating type 2 diabetes mellitus with traditional chinese and Indian medicinal herbs. Evid Based Complement Alternat Med 2013; 2013: 1-17.
[http://dx.doi.org/10.1155/2013/343594] [PMID: 23737828]
[29]
Thulé PM. Mechanisms of current therapies for diabetes mellitus type 2. Adv Physiol Educ 2012; 36(4): 275-83.
[http://dx.doi.org/10.1152/advan.00094.2012] [PMID: 23209008]
[30]
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016; 39(11): 2065-79.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[31]
Yakubu OE, Imo C, Shaibu C, Akighir J, Ameh DS. Effects of ethanolic leaf and stem-bark extracts of adansonia digitata in alloxan-induced diabetic Wistar Rats. J Pharmacol Toxicol 2019; 15(1): 1-7.
[http://dx.doi.org/10.3923/jpt.2020.1.7]
[32]
Chan CH, Yusoff R, Ngoh G-C. A brief review on anti diabetic plants: Global distribution, active ingredients, extraction techniques and acting mechanisms. Pharmacogn Rev 2012; 6(11): 22-8.
[http://dx.doi.org/10.4103/0973-7847.95854] [PMID: 22654401]
[33]
Harris MI. Health care and health status and outcomes for patients with type 2 diabetes. Diabetes Care 2000; 23(6): 754-8.
[http://dx.doi.org/10.2337/diacare.23.6.754] [PMID: 10840991]
[34]
Evans M. A guide to herbal remedies. Orient Paperbacks 1994.
[35]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[36]
Shishu AN. A review of recent investigations on medicinal herbs possessing anti-diabetic properties. J Nutr Disord Ther 2011; 1(102): 2.
[37]
Kayarohanam S, Kavimani S. Current trends of plants having antidiabetic activity: A review. J Bioanal Biomed 2015; 7(2): 55.
[http://dx.doi.org/10.4172/1948-593X.1000124]
[38]
Sidhu MC, Sharma T. Medicinal plants from twelve families having antidiabetic activity: A review. American J PharmTech Res 2013; 3(5): 37-52.
[39]
Lemos LIC, Medeiros MA, Lima JPMS, et al. S-methyl cysteine sulfoxide mitigates histopathological damage, alleviate oxidative stress and promotes immunomodulation in diabetic rats. J Complement Integr Med 2021; 18(4): 719-25.
[http://dx.doi.org/10.1515/jcim-2020-0220] [PMID: 34342948]
[40]
Wang S, Zhu F. Antidiabetic dietary materials and animal models. Food Res Int 2016; 85: 315-31.
[http://dx.doi.org/10.1016/j.foodres.2016.04.028] [PMID: 29544849]
[41]
Leng SH, Lu FE, Xu LJ. Therapeutic effects of berberine in impaired glucose tolerance rats and its influence on insulin secretion. Acta Pharmacol Sin 2004; 25(4): 496-502.
[PMID: 15066220]
[42]
Oh YS. Plant-derived compounds targeting pancreatic β-cells for the treatment of diabetes. Evid Based Complement Alternat Med 2015; 2015: 1-12.
[http://dx.doi.org/10.1155/2015/629863] [PMID: 26587047]
[43]
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008; 57(5): 712-7.
[http://dx.doi.org/10.1016/j.metabol.2008.01.013] [PMID: 18442638]
[44]
Pan GY, Wang GJ, Sun JG, et al. Inhibitory action of berberine on glucose absorption. Yao Xue Xue Bao 2003; 38(12): 911-4.
[PMID: 15040083]
[45]
Pan GY, Huang ZJ, Wang GJ, et al. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med 2003; 69(7): 632-6.
[http://dx.doi.org/10.1055/s-2003-41121] [PMID: 12898419]
[46]
Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004; 10(12): 1344-51.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[47]
Fu Y, Koo MWL. EGCG protects HT-22 cells against glutamate-induced oxidative stress. Neurotox Res 2006; 10(1): 23-9.
[http://dx.doi.org/10.1007/BF03033331] [PMID: 17000467]
[48]
Han MK. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage. Exp Mol Med 2003; 35(2): 136-9.
[http://dx.doi.org/10.1038/emm.2003.19] [PMID: 12754418]
[49]
Cai EP, Lin JK. Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic β cells. J Agric Food Chem 2009; 57(20): 9817-27.
[http://dx.doi.org/10.1021/jf902618v] [PMID: 19803520]
[50]
Gayathri P, Gayathri DS, Srinivasan S, Saroja S. Screening and quantitation of phytochemicals and nutritional components of the fruit and bark of helicteres isora. Hygeia JD Med 2010; 2(1): 57-62.
[51]
Patil P, Mandal S, Tomar SK, Anand S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur J Nutr 2015; 54(6): 863-80.
[http://dx.doi.org/10.1007/s00394-015-0974-2] [PMID: 26154777]
[52]
Kumar B, Gupta SK, Nag TC, et al. Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 2014; 125: 193-202.
[http://dx.doi.org/10.1016/j.exer.2014.06.009] [PMID: 24952278]
[53]
Singh AK, Patel PK, Choudhary K, Joshi J, Yadav D, Jin JO. Quercetin and coumarin inhibit dipeptidyl peptidase-IV and exhibits antioxidant properties: In silico, in vitro, ex vivo. Biomolecules 2020; 10(2): 207.
[http://dx.doi.org/10.3390/biom10020207] [PMID: 32023875]
[54]
Nongonierma AB, FitzGerald RJ. Inhibition of dipeptidyl peptidase IV (DPP-IV) by proline containing casein-derived peptides. J Funct Foods 2013; 5(4): 1909-17.
[http://dx.doi.org/10.1016/j.jff.2013.09.012]
[55]
Varona A, Blanco L, Perez I, et al. Expression and activity profiles of DPP IV/CD26 and NEP/CD10 glycoproteins in the human renal cancer are tumor-type dependent. BMC Cancer 2010; 10(1): 193.
[http://dx.doi.org/10.1186/1471-2407-10-193] [PMID: 20459800]
[56]
Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 2004; 53(9): 2181-9.
[http://dx.doi.org/10.2337/diabetes.53.9.2181] [PMID: 15331525]
[57]
Shin NR, Moon JS, Shin SY, et al. Isolation and characterization of human intestinal Enterococcus avium EFEL009 converting rutin to quercetin. Lett Appl Microbiol 2016; 62(1): 68-74.
[http://dx.doi.org/10.1111/lam.12512] [PMID: 26505733]
[58]
Shen SC, Lee WR, Lin HY, et al. In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin on lipopolysaccharide-induced nitric oxide and prostaglandin E2 production. Eur J Pharmacol 2002; 446(1-3): 187-94.
[http://dx.doi.org/10.1016/S0014-2999(02)01792-2] [PMID: 12098601]
[59]
La Casa C, Villegas I, Alarcón de la Lastra C, Motilva V, Martín Calero MJ. Evidence for protective and antioxidant properties of rutin, a natural flavone, against ethanol induced gastric lesions. J Ethnopharmacol 2000; 71(1-2): 45-53.
[http://dx.doi.org/10.1016/S0378-8741(99)00174-9] [PMID: 10904145]
[60]
Sanders RA, Rauscher FM, Watkins JB III. Effects of quercetin on antioxidant defense in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol 2001; 15(3): 143-9.
[http://dx.doi.org/10.1002/jbt.11] [PMID: 11424224]
[61]
Kamalakkannan N, Prince PSM. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic wistar rats. Basic Clin Pharmacol Toxicol 2006; 98(1): 97-103.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_241.x] [PMID: 16433898]
[62]
Potapovich AI, Kostyuk VA. Comparative study of antioxidant properties and cytoprotective activity of flavonoids. Biochemistry 2003; 68(5): 514-9.
[http://dx.doi.org/10.1023/A:1023947424341] [PMID: 12882632]
[63]
Guardia T, Rotelli AE, Juarez AO, Pelzer LE. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco 2001; 56(9): 683-7.
[http://dx.doi.org/10.1016/S0014-827X(01)01111-9] [PMID: 11680812]
[64]
Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamol- and CCl4-induced hepatotoxicity in rodents. Fitoterapia 2002; 73(7-8): 557-63.
[http://dx.doi.org/10.1016/S0367-326X(02)00217-4] [PMID: 12490212]
[65]
Yang K, Lamprecht SA, Liu Y, et al. Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon. Carcinogenesis 2000; 21(9): 1655-60.
[http://dx.doi.org/10.1093/carcin/21.9.1655] [PMID: 10964096]
[66]
Egert S, Bosy-Westphal A, Seiberl J, et al. Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: A double-blinded, placebo-controlled cross-over study. Br J Nutr 2009; 102(7): 1065-74.
[http://dx.doi.org/10.1017/S0007114509359127] [PMID: 19402938]
[67]
Kim EK, Kwon KB, Song MY, et al. Flavonoids protect against cytokine-induced pancreatic β-cell damage through suppression of nuclear factor kappaB activation. Pancreas 2007; 35(4): e1-9.
[http://dx.doi.org/10.1097/mpa.0b013e31811ed0d2] [PMID: 18090225]
[68]
Kittl M, Beyreis M, Tumurkhuu M, et al. Quercetin stimulates insulin secretion and reduces the viability of rat INS-1 beta-cells. Cell Physiol Biochem 2016; 39(1): 278-93.
[http://dx.doi.org/10.1159/000445623] [PMID: 27336168]
[69]
Kappel VD, Zanatta L, Postal BG, Silva FRMB. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys 2013; 532(2): 55-60.
[http://dx.doi.org/10.1016/j.abb.2013.01.008] [PMID: 23395857]
[70]
Hsu CY, Shih HY, Chia YC, et al. Rutin potentiates insulin receptor kinase to enhance insulin-dependent glucose transporter 4 translocation. Mol Nutr Food Res 2014; 58(6): 1168-76.
[http://dx.doi.org/10.1002/mnfr.201300691] [PMID: 24668568]
[71]
Koshy AS, Vijayalakshmi NR. Impact of certain flavonoids on lipid profiles potential action of Garcinia cambogia flavonoids. Phytother Res 2001; 15(5): 395-400.
[http://dx.doi.org/10.1002/ptr.725] [PMID: 11507730]
[72]
Larrosa M, González-Sarrías A, Yáñez-Gascón MJ, et al. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-a in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J Nutr Biochem 2010; 21(8): 717-25.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.012] [PMID: 19616930]
[73]
Voroneanu L, Nistor I, Dumea R, Apetrii M, Covic A. Silymarin in type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. J Diabetes Res 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/5147468] [PMID: 27340676]
[74]
Wellington K, Jarvis B. Silymarin: A review of its clinical properties in the management of hepatic disorders. BioDrugs 2001; 15(7): 465-89.
[http://dx.doi.org/10.2165/00063030-200115070-00005] [PMID: 11520257]
[75]
Bosisio E, Benelli C, Pirola O. Effect of the flavanolignans of Silybum marianum L. On lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol Res 1992; 25(2): 147-65.
[http://dx.doi.org/10.1016/1043-6618(92)91383-R] [PMID: 1635893]
[76]
Tasduq S, Peerzada K, Koul S, Bhat R, Johri R. Biochemical manifestations of anti-tuberculosis drugs induced hepatotoxicity and the effect of silymarin. Hepatol Res 2005; 31(3): 132-5.
[http://dx.doi.org/10.1016/j.hepres.2005.01.005] [PMID: 15777701]
[77]
Kiruthiga PV, Shafreen RB, Pandian SK, Devi KP. Silymarin protection against major reactive oxygen species released by environmental toxins: exogenous H2O2 exposure in erythrocytes. Basic Clin Pharmacol Toxicol 2007; 100(6): 414-9.
[http://dx.doi.org/10.1111/j.1742-7843.2007.00069.x] [PMID: 17516996]
[78]
Kiruthiga PV, Pandian SK, Devi KP. Silymarin protects PBMC against B(a)P induced toxicity by replenishing redox status and modulating glutathione metabolizing enzymes-an in vitro study. Toxicol Appl Pharmacol 2010; 247(2): 116-28.
[http://dx.doi.org/10.1016/j.taap.2010.06.004] [PMID: 20600218]
[79]
Khazim K, Gorin Y, Cavaglieri RC, Abboud HE, Fanti P. The antioxidant silybin prevents high glucose-induced oxidative stress and podocyte injury in vitro and in vivo. Am J Physiol Renal Physiol 2013; 305(5): F691-700.
[http://dx.doi.org/10.1152/ajprenal.00028.2013] [PMID: 23804455]
[80]
Calderón-Montaño JM, Burgos-Morón E, Pérez-Guerrero C, López-Lázaro M. A review on the dietary flavonoid kaempferol. Mini Rev Med Chem 2011; 11(4): 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[81]
Chen AY, Chen YC. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem 2013; 138(4): 2099-107.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.139] [PMID: 23497863]
[82]
Jorge AP, Horst H, Sousa E, Pizzolatti MG, Silva FRMB. Insulinomimetic effects of kaempferitrin on glycaemia and on 14C-glucose uptake in rat soleus muscle. Chem Biol Interact 2004; 149(2-3): 89-96.
[http://dx.doi.org/10.1016/j.cbi.2004.07.001] [PMID: 15501431]
[83]
An G, Gallegos J, Morris ME. The bioflavonoid kaempferol is an Abcg2 substrate and inhibits Abcg2-mediated quercetin efflux. Drug Metab Dispos 2011; 39(3): 426-32.
[http://dx.doi.org/10.1124/dmd.110.035212] [PMID: 21139040]
[84]
Zanatta L, Rosso Â, Folador P, et al. Insulinomimetic effect of kaempferol 3-neohesperidoside on the rat soleus muscle. J Nat Prod 2008; 71(4): 532-5.
[http://dx.doi.org/10.1021/np070358+] [PMID: 18303854]
[85]
Sharma D, Gondaliya P, Tiwari V, Kalia K. Kaempferol attenuates diabetic nephropathy by inhibiting RhoA/Rho-kinase mediated inflammatory signalling. Biomed Pharmacother 2019; 109: 1610-9.
[http://dx.doi.org/10.1016/j.biopha.2018.10.195] [PMID: 30551415]
[86]
Cirmi S, Ferlazzo N, Lombardo G, et al. Chemopreventive agents and inhibitors of cancer hallmarks: may citrus offer new perspectives? Nutrients 2016; 8(11): 698.
[http://dx.doi.org/10.3390/nu8110698] [PMID: 27827912]
[87]
Kim MS, Hur HJ, Kwon DY, Hwang JT. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol Cell Endocrinol 2012; 358(1): 127-34.
[http://dx.doi.org/10.1016/j.mce.2012.03.013] [PMID: 22476082]
[88]
Miyata Y, Tanaka H, Shimada A, et al. Regulation of adipocytokine secretion and adipocyte hypertrophy by polymethoxyflavonoids, nobiletin and tangeretin. Life Sci 2011; 88(13-14): 613-8.
[http://dx.doi.org/10.1016/j.lfs.2011.01.024] [PMID: 21295043]
[89]
Sundaram R, Shanthi P, Sachdanandam P. Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine 2014; 21(6): 793-9.
[http://dx.doi.org/10.1016/j.phymed.2014.01.007] [PMID: 24629597]
[90]
Guo J, Chen J, Ren W, et al. Citrus flavone tangeretin is a potential insulin sensitizer targeting hepatocytes through suppressing MEK-ERK1/2 pathway. Biochem Biophys Res Commun 2020; 529(2): 277-82.
[http://dx.doi.org/10.1016/j.bbrc.2020.05.212] [PMID: 32703423]
[91]
Akkarachiyasit S, Charoenlertkul P, Yibchok-anun S, Adisakwattana S. Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci 2010; 11(9): 3387-96.
[http://dx.doi.org/10.3390/ijms11093387] [PMID: 20957102]
[92]
Nasri S, Roghani M, Baluchnejadmojarad T, Rabani T, Balvardi M. Vascular mechanisms of cyanidin-3-glucoside response in streptozotocin-diabetic rats. Pathophysiology 2011; 18(4): 273-8.
[http://dx.doi.org/10.1016/j.pathophys.2011.03.001] [PMID: 21546226]
[93]
Nizamutdinova IT, Jin YC, Chung JI, et al. The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. Mol Nutr Food Res 2009; 53(11): 1419-29.
[http://dx.doi.org/10.1002/mnfr.200800526] [PMID: 19785000]
[94]
Crozier A, Borges G, Ryan D. The glass that cheers: Phenolic and polyphenolic constituents and the beneficial effects of moderate red wine consumption. Biochemist 2010; 32(6): 4-9.
[http://dx.doi.org/10.1042/BIO03206004]
[95]
Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr Metab 2015; 12(1): 60.
[http://dx.doi.org/10.1186/s12986-015-0057-7] [PMID: 26705405]
[96]
Babu PVA, Si H, Fu Z, Zhen W, Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr 2012; 142(4): 724-30.
[http://dx.doi.org/10.3945/jn.111.152322] [PMID: 22399524]
[97]
Choi MS, Jung UJ, Yeo J, Kim MJ, Lee MK. Genistein and daidzein prevent diabetes onset by elevating insulin level and altering hepatic gluconeogenic and lipogenic enzyme activities in non-obese diabetic (NOD) mice. Diabetes Metab Res Rev 2008; 24(1): 74-81.
[http://dx.doi.org/10.1002/dmrr.780] [PMID: 17932873]
[98]
Neilson AP, Ferruzzi MG. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annu Rev Food Sci Technol 2011; 2(1): 125-51.
[http://dx.doi.org/10.1146/annurev-food-022510-133725] [PMID: 22129378]
[99]
Josic J, Olsson AT, Wickeberg J, Lindstedt S, Hlebowicz J. Does green tea affect postprandial glucose, insulin and satiety in healthy subjects: A randomized controlled trial. Nutr J 2010; 9(1): 63.
[http://dx.doi.org/10.1186/1475-2891-9-63] [PMID: 21118565]
[100]
Abdulkhaleq LA, Assi MA, Noor MHM, Abdullah R, Saad MZ, Taufiq-Yap YH. Therapeutic uses of epicatechin in diabetes and cancer. Vet World 2017; 10(8): 869-72.
[http://dx.doi.org/10.14202/vetworld.2017.869-872] [PMID: 28919675]
[101]
Cremonini E, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)-Epicatechin improves insulin sensitivity in high fat diet-fed mice. Arch Biochem Biophys 2016; 599: 13-21.
[http://dx.doi.org/10.1016/j.abb.2016.03.006] [PMID: 26968772]
[102]
Sumathi R, Tamizharasi S, Sivakumar T. Bio-dynamic activity of naringenin–a review. Int J Curr Adv Res 2015; 4(8): 234-6.
[103]
Karuppagounder V, Arumugam S, Thandavarayan RA, et al. Naringenin ameliorates daunorubicin induced nephrotoxicity by mitigating AT1R, ERK1/2-NFκB p65 mediated inflammation. Int Immunopharmacol 2015; 28(1): 154-9.
[http://dx.doi.org/10.1016/j.intimp.2015.05.050] [PMID: 26072060]
[104]
Rajappa R, Sireesh D, Salai MB, Ramkumar KM, Sarvajayakesavulu S, Madhunapantula SV. Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Front Pharmacol 2019; 9: 1562.
[http://dx.doi.org/10.3389/fphar.2018.01562] [PMID: 30745874]
[105]
Hosseini A, Shafiee-Nick R, Ghorbani A. Pancreatic β cell protection/regeneration with phytotherapy. Braz J Pharm Sci 2015; 51(1): 1-16.
[http://dx.doi.org/10.1590/S1984-82502015000100001]
[106]
Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: a memoir. J Clin Biochem Nutr 2007; 41(2): 77-81.
[http://dx.doi.org/10.3164/jcbn.2007010] [PMID: 18193099]
[107]
Ghorbani A. Phytotherapy for diabetic dyslipidemia: Evidence from clinical trials. Clin Lipidol 2013; 8(3): 311-9.
[http://dx.doi.org/10.2217/clp.13.26]
[108]
Shanmugasundaram ERB, Rajeswari G, Baskaran K, Kumar BRR, Shanmugasundaram KR, Ahmath BK. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J Ethnopharmacol 1990; 30(3): 281-94.
[http://dx.doi.org/10.1016/0378-8741(90)90107-5] [PMID: 2259216]
[109]
Persaud SJ, Al-Majed H, Raman A, Jones PM. Gymnema sylvestre stimulates insulin release in vitro by increased membrane permeability. J Endocrinol 1999; 163(2): 207-12.
[http://dx.doi.org/10.1677/joe.0.1630207] [PMID: 10556769]
[110]
Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 2014; 94(5): 834-40.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[111]
Li Y, Liu Y, Liang J, Wang T, Sun M, Zhang Z. Gymnemic acid ameliorates hyperglycemia through PI3K/AKT-and AMPK-mediated signaling pathways in type 2 diabetes mellitus rats. J Agric Food Chem 2019; 67(47): 13051-60.
[http://dx.doi.org/10.1021/acs.jafc.9b04931] [PMID: 31609623]
[112]
Akhtar N, Khan BA, Majid A, et al. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits. Acta Pol Pharm 2011; 68(6): 919-25.
[PMID: 22125958]
[113]
Li WL, Zheng HC, Bukuru J, De Kimpe N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J Ethnopharmacol 2004; 92(1): 1-21.
[http://dx.doi.org/10.1016/j.jep.2003.12.031] [PMID: 15099842]
[114]
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front Pharmacol 2019; 10: 486.
[http://dx.doi.org/10.3389/fphar.2019.00486] [PMID: 31139079]
[115]
Cicero AFG, Derosa G, Gaddi A. What do herbalists suggest to diabetic patients in order to improve glycemic control? Evaluation of scientific evidence and potential risks. Acta Diabetol 2004; 41(3): 91-8.
[http://dx.doi.org/10.1007/s00592-004-0150-2] [PMID: 15666575]
[116]
Ahmed I, Adeghate E, Cummings E, Sharma AK, Singh J. Beneficial effects and mechanism of action of Momordica charantia juice in the treatment of streptozotocin-induced diabetes mellitus in rat. Mol Cell Biochem 2004; 261(1): 63-70.
[http://dx.doi.org/10.1023/B:MCBI.0000028738.95518.90] [PMID: 15362486]
[117]
Hafizur RM, Kabir N, Chishti S. Modulation of pancreatic β-cells in neonatally streptozotocin-induced type 2 diabetic rats by the ethanolic extract of Momordica charantia fruit pulp. Nat Prod Res 2011; 25(4): 353-67.
[http://dx.doi.org/10.1080/14786411003766904] [PMID: 21328131]
[118]
Erlund I. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutr Res 2004; 24(10): 851-74.
[http://dx.doi.org/10.1016/j.nutres.2004.07.005]
[119]
Kucekova Z, Mlcek J, Humpolicek P, Rop O, Valasek P, Saha P. Phenolic compounds from Allium schoenoprasum, Tragopogon pratensis and Rumex acetosa and their antiproliferative effects. Molecules 2011; 16(11): 9207-17.
[http://dx.doi.org/10.3390/molecules16119207] [PMID: 22051932]
[120]
González-Sarrías A, García-Villalba R, Núñez-Sánchez MÁ, et al. Identifying the limits for ellagic acid bioavailability: A crossover pharmacokinetic study in healthy volunteers after consumption of pomegranate extracts. J Funct Foods 2015; 19: 225-35.
[http://dx.doi.org/10.1016/j.jff.2015.09.019]
[121]
Malini P, Kanchana G, Rajadurai MU. Antibiabetic efficacy of ellagic acid in streptozotocin-induced diabetes mellitus in albino wistar rats. Asian J Pharm Clin Res 2011; 4(3): 124-8.
[122]
Harakeh S, Almuhayawi M, Jaouni SA, et al. Antidiabetic effects of novel ellagic acid nanoformulation: Insulin-secreting and anti-apoptosis effects. Saudi J Biol Sci 2020; 27(12): 3474-80.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.060] [PMID: 33304158]
[123]
Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N. Ellagic acid in Emblica officinalis exerts anti-diabetic activity through the action on β-cells of pancreas. Eur J Nutr 2017; 56(2): 591-601.
[http://dx.doi.org/10.1007/s00394-015-1103-y] [PMID: 26593435]
[124]
Derosa G, Maffioli P, Sahebkar A. Ellagic acid and its role in chronic diseases. Anti-inflammatory Nutraceuticals and Chronic Diseases 2016; pp. 473-9.
[http://dx.doi.org/10.1007/978-3-319-41334-1_20]
[125]
Ahmed T, Setzer WN, Nabavi SF, et al. Insights into effects of ellagic acid on the nervous system: A mini review. Curr Pharm Des 2016; 22(10): 1350-60.
[http://dx.doi.org/10.2174/1381612822666160125114503] [PMID: 26806345]
[126]
Goswami S, Vishwanath M, Gangadarappa S, Razdan R, Inamdar M. Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction. Pharmacogn Mag 2014; 10(39) (Suppl. 3): 581.
[http://dx.doi.org/10.4103/0973-1296.139790] [PMID: 25298678]
[127]
Altındağ F, Rağbetli MÇ, Özdek U, Koyun N, Ismael Alhalboosi JK, Elasan S. Combined treatment of sinapic acid and ellagic acid attenuates hyperglycemia in streptozotocin-induced diabetic rats. Food Chem Toxicol 2021; 156: 112443.
[http://dx.doi.org/10.1016/j.fct.2021.112443] [PMID: 34329744]
[128]
Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. BioMed Res Int 2014; 2014: 1-18.
[http://dx.doi.org/10.1155/2014/830285] [PMID: 24511547]
[129]
Ortsäter H, Grankvist N, Wolfram S, Kuehn N, Sjöholm Å. Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr Metab 2012; 9(1): 11.
[http://dx.doi.org/10.1186/1743-7075-9-11] [PMID: 22333133]
[130]
Ghorbani A, Rashidi R, Shafiee-Nick R. Flavonoids for preserving pancreatic β cell survival and function: A mechanistic review. Biomed Pharmacother 2019; 111: 947-57.
[http://dx.doi.org/10.1016/j.biopha.2018.12.127] [PMID: 30841474]
[131]
Annadurai T, Muralidharan AR, Joseph T, Hsu MJ, Thomas PA, Geraldine P. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats. J Physiol Biochem 2012; 68(3): 307-18.
[http://dx.doi.org/10.1007/s13105-011-0142-y] [PMID: 22234849]
[132]
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas. Pharmacol Res 2005; 51(2): 117-23.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[133]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules 2019; 10(1): 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[134]
Kim EJ, Kim J, Lee MY, Sudhanva MS, Devakumar S, Jeon YJ. Silymarin inhibits cytokine-stimulated pancreatic β-cells by blocking the ERK1/2 pathway. Biomol Ther 2014; 22(4): 282-7.
[http://dx.doi.org/10.4062/biomolther.2014.072] [PMID: 25143805]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy