Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Studying the Adsorption Process of Cadmium Ions by Fe3O4/Lmethionine/ graphene Oxide and Graphene Aerogel Nanocomposites from Aqueous Environments

Author(s): Nooshin Abbasi, Parviz Aberoomand Azar*, Mohammad Saber Tehrani and Javad Mokhtari Aliabad

Volume 19, Issue 4, 2023

Published on: 01 June, 2023

Page: [309 - 319] Pages: 11

DOI: 10.2174/1573411019666230427093802

Price: $65

Abstract

Background: In recent years, graphene oxide (GO) and its nanocomposites have shown effective performance in wastewater treatment. Moreover, graphene aerogels (GAs) have excellent properties, such as high surface area, high porosity, low density, high electrical conductivity, and good mechanical properties, due to the combination of three-dimensional porous structures and excellent properties of graphene.

Methods: In this study, synthesis of Fe3O4/L-methionine and graphene oxide and graphene aerogel nanocomposites (Fe3O4/L-Met, Fe3O4/L-Met/GO, Fe3O4/L-Met/GA) was performed. Then, the synthesized nanocomposites were confirmed by FT-IR, SEM and BET analyses. The adsorption capacity of cadmium ion by methionine nanocomposites and the effect of various experimental parameters, such as contact time, initial metal ion concentration, and initial pH, on the adsorption process were investigated.

Results: The results showed that Fe3O4/L-Met at pH 7 was suitable for Cd (II) removal with 90% removal efficiency. In addition, adsorption capacity experiments at a constant concentration of 50 ppm Cd2+ showed that more than 50% of Cd2+ ions could be adsorbed by Fe3O4/L-Met and reach equilibrium within 2 hours.

Conclusion: Thus, Fe3O4/L-Met/GA showed high adsorption capacity towards Cd2+ (212.31 mg/g), which was significantly higher than Fe3O4/L-Met (201.23 mg/g). Finally, adsorption kinetics and isotherm studies were investigated. Adsorption data showed excellent fit with quasi-second order models (R2> 0.99) and Freundlich isotherm models.

[1]
Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water, 2021, 4(1), 36.
[http://dx.doi.org/10.1038/s41545-021-00127-0]
[2]
Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci., 2017, 7(3), 1043-1067.
[http://dx.doi.org/10.1007/s13201-016-0455-7]
[3]
Kumar, V.; Kim, K.H.; Park, J.W.; Hong, J.; Kumar, S. Graphene and its nanocomposites as a platform for environmental applications. Chem. Eng. J., 2017, 315, 210-232.
[http://dx.doi.org/10.1016/j.cej.2017.01.008]
[4]
Alothman, Z.A.; Habila, M.A.; Moshab, M.S.; Al-Qahtani, K.M.; AlMasoud, N.; Al-Senani, G.M.; Al-Kadhi, N.S. Fabrication of renewable palm-pruning leaves based nano-composite for remediation of heavy metals pollution. Arab. J. Chem., 2020, 13(4), 4936-4944.
[http://dx.doi.org/10.1016/j.arabjc.2020.01.015]
[5]
ALOthman Z.A.; Habila, M.A.; Al-Shalan, N.H.; Alfadul, S.M.; Ali, R.; Rashed, I.G.A.A.; Alfarhan, B. Adsorptive removal of Cu (II) and Pb (II) onto mixed-waste activated carbon: kinetic, thermodynamic, and competitive studies and application to real wastewater samples. Arab. J. Geosci., 2016, 9, 1-9.
[6]
Habila, M. ALOthman, Z.; El-Toni, A.M.; Labis, J.P.; Khan, A.; Al-Marghany, A.; Elafifi, H.E. One-step carbon coating and polyacrylamide functionalization of Fe3O4 nanoparticles for enhancing magnetic adsorptive-remediation of heavy metals. Molecules, 2017, 22(12), 2074.
[http://dx.doi.org/10.3390/molecules22122074] [PMID: 29186894]
[7]
Luliński, P.; Kalny, P.; Giebułtowicz, J.; Maciejewska, D.; Wroczyński, P. Synthesis and characterization of cadmium(II)-imprinted poly(1-allyl-2-thiourea-co-ethylene glycol dimethacrylate) particles for selective separation. Polym. Bull., 2014, 71(7), 1727-1741.
[http://dx.doi.org/10.1007/s00289-014-1151-0]
[8]
Zhang, Z.; Li, Y.; Zong, Y.; Yu, J.; Ding, H.; Kong, Y.; Ma, J.; Ding, L. Efficient removal of cadmium by salts modified-biochar: Performance assessment, theoretical calculation, and quantitative mechanism analysis. Bioresour. Technol., 2022, 361, 127717.
[http://dx.doi.org/10.1016/j.biortech.2022.127717] [PMID: 35926559]
[9]
Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int., 2019, 122, 52-66.
[http://dx.doi.org/10.1016/j.envint.2018.11.038] [PMID: 30503315]
[10]
Oluwole, A.O.; Omotola, E.O.; Olatunji, O.S. Pharmaceuticals and personal care products in water and wastewater: a review of treatment processes and use of photocatalyst immobilized on functionalized carbon in AOP degradation. BMC Chem., 2020, 14(1), 62.
[http://dx.doi.org/10.1186/s13065-020-00714-1] [PMID: 33106789]
[11]
Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. EXS, 2012, 101, 133-164.
[http://dx.doi.org/10.1007/978-3-7643-8340-4_6]
[12]
Karrari, P.; Mehrpour, O.; Abdollahi, M. A systematic review on status of lead pollution and toxicity in Iran; Guidance for preventive measures. Daru, 2012, 20(1), 2.
[http://dx.doi.org/10.1186/1560-8115-20-2] [PMID: 23226111]
[13]
Pirsaheb, M.; Khamutian, R.; Pourhaghighat, S.; Salumahaleh, A.E. Review of heavy metal concentrations in Iranian water resources. Int. J. Health Life Sci., 2015, 1(1)
[14]
Radfard, M.; Yunesian, M.; Nabizadeh, R.; Biglari, H.; Nazmara, S.; Hadi, M. Drinking water quality and arsenic health risk assessment in Sistan and Baluchestan, Southeastern Province, Iran. Hum. Ecol. Risk Assess., 2018, 25(4)
[http://dx.doi.org/10.1080/10807039.2018.1458210]
[15]
Einafshar, E.; Khodadadipoor, Z.; Nejabat, M.; Ramezani, M. Synthesis, characterization and application of α, β, and γ cyclodextrin-conjugated graphene oxide for removing cadmium ions from aqueous media. J. Polym. Environ., 2021, 29(10), 3161-3173.
[http://dx.doi.org/10.1007/s10924-021-02064-y]
[16]
Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J. Chem., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/6730305]
[17]
Liang, L.; Xi, F.; Tan, W.; Meng, X.; Hu, B.; Wang, X. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar, 2021, 3(3), 255-281.
[http://dx.doi.org/10.1007/s42773-021-00101-6]
[18]
Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem., 2011, 4(4), 361-377.
[http://dx.doi.org/10.1016/j.arabjc.2010.07.019]
[19]
Gunatilake, S.K. Methods of removing heavy metals from industrial wastewater. Methods, 2015, 1(1), 14.
[20]
Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf., 2018, 148, 702-712.
[http://dx.doi.org/10.1016/j.ecoenv.2017.11.034] [PMID: 29174989]
[21]
Palani, G.; Arputhalatha, A.; Kannan, K.; Lakkaboyana, S.K.; Hanafiah, M.M.; Kumar, V.; Marella, R.K. Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—a review. Molecules, 2021, 26(9), 2799.
[http://dx.doi.org/10.3390/molecules26092799] [PMID: 34068541]
[22]
Qdais, H.A.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination, 2004, 164(2), 105-110.
[http://dx.doi.org/10.1016/S0011-9164(04)00169-9]
[23]
Arbabi, M.; Golshani, N. Removal of copper ions Cu (II) from industrial wastewater: A review of removal methods. Int. J. Epidemiol. Res., 2016, 3(3), 283-293.
[24]
Ajala, O.J.; Tijani, J.O.; Bankole, M.T.; Abdulkareem, A.S. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag., 2022, 18, 100673.
[http://dx.doi.org/10.1016/j.enmm.2022.100673]
[25]
Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol., 2014, 89(2), 196-205.
[http://dx.doi.org/10.1002/jctb.4220]
[26]
Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Wei, Q.; Du, B. Removal of Hg(II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: Synthesis, adsorption mechanism and separation properties. J. Colloid Interface Sci., 2015, 456, 42-49.
[http://dx.doi.org/10.1016/j.jcis.2015.06.007] [PMID: 26092115]
[27]
Belachew, N.; Devi, D.R.; Basavaiah, K. Facile green synthesis of l-methionine capped magnetite nanoparticles for adsorption of pollutant Rhodamine B. J. Mol. Liq., 2016, 224, 713-720.
[http://dx.doi.org/10.1016/j.molliq.2016.10.089]
[28]
Kumar, A.; Khandelwal, M. Amino acid mediated functionalization and reduction of graphene oxide – synthesis and the formation mechanism of nitrogen-doped graphene. New J. Chem., 2014, 38(8), 3457-3467.
[http://dx.doi.org/10.1039/C4NJ00308J]
[29]
Goharshadi, E.K.; Moghaddam, M.B. Adsorption of hexavalent chromium ions from aqueous solution by graphene nanosheets: kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol., 2015, 12(7), 2153-2160.
[http://dx.doi.org/10.1007/s13762-014-0748-z]
[30]
Zhi, D.; Li, T.; Li, J.; Ren, H.; Meng, F. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption. Compos., Part B Eng., 2021, 211, 108642.
[http://dx.doi.org/10.1016/j.compositesb.2021.108642]
[31]
Hosseini, S.G.; Khodadadipoor, Z.; Mahyari, M.; Zinab, J.M. Copper chromite decorated on nitrogen-doped graphene aerogel as an efficient catalyst for thermal decomposition of ammonium perchlorate particles. J. Therm. Anal. Calorim., 2019, 138(2), 963-972.
[http://dx.doi.org/10.1007/s10973-019-08266-w]
[32]
Vladimirovich, G.M.; Melnikov, V.P. Graphene oxide/reduced graphene oxide aerogels. In: Graphene Oxide-Applications and Opportunities; Intechopen, 2018; pp. 39-55.
[http://dx.doi.org/10.5772/intechopen.78987]
[33]
Hosseini, S.G.; Khodadadipoor, Z.; Mahyari, M. CuO nanoparticles supported on three-dimensional nitrogen-doped graphene as a promising catalyst for thermal decomposition of ammonium perchlorate. Appl. Organomet. Chem., 2018, 32(1), e3959.
[http://dx.doi.org/10.1002/aoc.3959]
[34]
Hummers, W.S., Jr; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6), 1339-1339.
[http://dx.doi.org/10.1021/ja01539a017]
[35]
Sikder, M.; Hosokawa, T.; Saito, T.; Kurasaki, M. Application of α, β and γ cyclodextrin polyurethanes in the removal of size specific copper derivatives. Water Soc, 2012, 153, 243.
[http://dx.doi.org/10.2495/WS110221]
[36]
Tie, S.L.; Lin, Y.Q.; Lee, H.C.; Bae, Y.S.; Lee, C.H. Amino acid-coated nano-sized magnetite particles prepared by two-step transformation. Colloids Surf. A Physicochem. Eng. Asp., 2006, 273(1-3), 75-83.
[http://dx.doi.org/10.1016/j.colsurfa.2005.08.027]
[37]
Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol., 2000, 74(3-5), 141-173.
[http://dx.doi.org/10.1016/S0079-6107(00)00021-3] [PMID: 11226511]
[38]
Basavaiah, K.; Pavan Kumar, Y.; Prasada Rao, A.V. A facile one-pot synthesis of polyaniline/magnetite nanocomposites by micelles-assisted method. Appl. Nanosci., 2013, 3(5), 409-415.
[http://dx.doi.org/10.1007/s13204-012-0148-y]
[39]
Qiu, H.; Lv, L.; Pan, B.; Zhang, Q.; Zhang, W.; Zhang, Q. Critical review in adsorption kinetic models. J. Zhejiang Univ. Sci. A, 2009, 10(5), 716-724.
[http://dx.doi.org/10.1631/jzus.A0820524]
[40]
Wang, L.; Shi, C.; Wang, L.; Pan, L.; Zhang, X.; Zou, J.J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale, 2020, 12(8), 4790-4815.
[http://dx.doi.org/10.1039/C9NR09274A] [PMID: 32073021]
[41]
Kyzas, G.; Travlou, N.; Kalogirou, O.; Deliyanni, E. Magnetic graphene oxide: Effect of preparation route on reactive black 5 adsorption. Materials, 2013, 6(4), 1360-1376.
[http://dx.doi.org/10.3390/ma6041360] [PMID: 28809214]
[42]
Rosli, F. Statistical analysis for removal of cadmium from aqueous solution at high pH. Aust. J. Basic Appl. Sci., 2011, 5, 440-446.
[43]
Akl, M.A. Abou-Elanwar, Adsorption studies of Cd (II) from water by acid modified multiwalled carbon nanotubes. J. Nanomed. Nanotechnol., 2015, 6, 1.
[http://dx.doi.org/10.4172/2157-7439.1000327]
[44]
Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V.K. Cadmium (II) uptake from aqueous solution by adsorption onto carbon aerogel using a response surface methodological approach. Ind. Eng. Chem. Res., 2006, 45(19), 6531-6537.
[http://dx.doi.org/10.1021/ie060010u]
[45]
Deng, X.; Lü, L.; Li, H.; Luo, F. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater., 2010, 183(1-3), 923-930.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.117] [PMID: 20800353]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy