Abstract
In this study, an electrochemical biosensor for the indirect detection of Adenosine triphosphate (ATP) was developed, which was based on the immobilization of the multiwalled carbon nanotubes (MWCNTs) decorated with pyrazole-capped selenium nanoparticles (TRPIDC-CH3 SeNPs) and dual enzyme reaction (hexokinase and glucose oxidase) onto the surface of a bare glassy carbon electrode (GCE) as a working electrode. As confirmed byUltraviolet–visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR) and High-resolution electron microscope (HRTEM), the TRPIDC-CH3 SeNPs successfully green synthesised using Allium sativum cloves and indole pyrazole ligand. The electrochemical study of ATP was performed using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques on a modified electrode for indirect detection of ATP where the required strong electroactive was [Fe(CN)6]3-/4-. The phosphate buffer solution (PBS; 0.1 M) was used as a supporting electrolyte at pH 7 containing 1 mM K4[Fe(CN)6]/K3[Fe(CN)6] as the redox probe operated at an average potential of 0.23 V. The electrochemical enzymic biosensor showed outstanding sensitivity, good stability, and satisfactory reproducibility with an average RSD of 2.30%. The ATP was quantifiable in spiked tablets with a limit of detection (LOD) of 0.015 mM and a limit of quantification (LOQ) of 0,050 mM.
Graphical Abstract
[http://dx.doi.org/10.1016/j.snb.2018.10.149]
[http://dx.doi.org/10.1016/j.snb.2017.10.024]
[http://dx.doi.org/10.1519/JSC.0000000000002198] [PMID: 29045315]
[http://dx.doi.org/10.1016/j.bios.2014.07.007] [PMID: 25048448]
[http://dx.doi.org/10.1016/j.lfs.2012.07.026] [PMID: 22884808]
[http://dx.doi.org/10.1016/j.jchromb.2020.122110] [PMID: 32315974]
[http://dx.doi.org/10.1039/C7AY02096A]
[http://dx.doi.org/10.1016/j.foodchem.2018.07.041] [PMID: 30174088]
[http://dx.doi.org/10.1016/j.saa.2019.03.081] [PMID: 30928837]
[http://dx.doi.org/10.1002/slct.202101809]
[http://dx.doi.org/10.1016/j.matchemphys.2021.125392]
[http://dx.doi.org/10.1016/j.microc.2021.106679]
[http://dx.doi.org/10.1016/j.microc.2022.107546]
[http://dx.doi.org/10.1149/2.1051906jes]
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[http://dx.doi.org/10.2147/IJN.S193886] [PMID: 32021168]
[http://dx.doi.org/10.1007/s10876-016-1123-7]
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[http://dx.doi.org/10.1016/j.ejmech.2011.09.016] [PMID: 21978837]
[http://dx.doi.org/10.1016/j.optlastec.2017.11.019]
[http://dx.doi.org/10.1016/j.colsurfb.2006.08.005] [PMID: 16997536]
[http://dx.doi.org/10.1016/j.foodcont.2017.11.015]
[http://dx.doi.org/10.1016/j.tips.2018.03.009] [PMID: 29706261]
[http://dx.doi.org/10.3390/foods8090358] [PMID: 31450776]
[http://dx.doi.org/10.1002/jms.4525] [PMID: 32368854]
[http://dx.doi.org/10.3390/molecules25122837] [PMID: 32575531]
[http://dx.doi.org/10.1515/gps-2019-0007]
[http://dx.doi.org/10.1007/s12668-018-0566-8]
[http://dx.doi.org/10.1049/iet-nbt.2018.5228] [PMID: 31053690]
[http://dx.doi.org/10.1016/j.msec.2017.02.003] [PMID: 28254334]
[http://dx.doi.org/10.1016/j.jphotobiol.2017.12.010] [PMID: 29253815]
[http://dx.doi.org/10.1016/j.microc.2019.104526]
[http://dx.doi.org/10.1016/j.ancr.2015.11.002]
[http://dx.doi.org/10.1021/acs.est.5b00006] [PMID: 25856208]
[http://dx.doi.org/10.1007/s00604-018-3211-x] [PMID: 30631940]
[http://dx.doi.org/10.1016/j.bios.2019.111839] [PMID: 31706177]
[http://dx.doi.org/10.1039/D1TC01204E]
[http://dx.doi.org/10.1039/D0AY00311E]
[http://dx.doi.org/10.1556/1326.2017.00344]
[http://dx.doi.org/10.1149/1945-7111/abef48]
[http://dx.doi.org/10.1016/j.snb.2021.130581]
[http://dx.doi.org/10.1155/2021/7030158]
[http://dx.doi.org/10.1080/00032719.2014.924010]
[http://dx.doi.org/10.1016/j.econlet.2010.07.012]