Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Mini-Review Article

microRNA-based Genetic Therapy in Leukemia: Properties, Delivery, and Experimental Models

Author(s): Nayra Oliveira Prado, Denise Kusma Wosniaki, Anelis Maria Marin, Carolina Mathias, Heloisa Bruna Soligo Sanchuki, Dalila Luciola Zanette* and Mateus Nóbrega Aoki*

Volume 23, Issue 4, 2023

Published on: 26 May, 2023

Page: [245 - 260] Pages: 16

DOI: 10.2174/1566523223666230426153622

Price: $65

Abstract

Leukemia is a type of cancer that affects white blood cells. In this disease, immature blood cells undergo genetic mutations, leading to excessive replication and reduced cell death compared to healthy cells. In cancer, there may be the activation of oncogenes and the deactivation of tumor suppressor genes that control certain cellular functions. Despite the undeniable contribution to the patient's recovery, conventional cancer treatments may have some not-so-beneficial effects. In this case, gene therapy appears as an alternative to classical treatments. Gene therapy delivers genetic material to cells to replace or modify dysfunctional genes, a safe method for neoplasms. One of the types of nucleic acids explored in gene therapy is microRNA (miRNA), a group of endogenous, non-proteincoding, small single-stranded RNA molecules involved in the regulation of gene expression, cell division, differentiation, angiogenesis, migration, apoptosis, and carcinogenesis. This review aims to bring together the most recent advances found in the literature on cancer gene therapy based on microRNAs in the oncological context, focusing on leukemia.

Next »
Graphical Abstract

[1]
Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol 2022; 23(1): 74-88.
[http://dx.doi.org/10.1038/s41580-021-00404-3] [PMID: 34508254]
[2]
Sarkar S, Horn G, Moulton K, et al. Cancer development, progression, and therapy: An epigenetic overview. Int J Mol Sci 2013; 14(10): 21087-113.
[http://dx.doi.org/10.3390/ijms141021087] [PMID: 24152442]
[3]
International Agency for Research on Cancer. The Global Cancer Observatory. 2021. Available from: https://gco.iarc.fr/
[4]
Shah A, Naqvi SS, Naveed K, Salem N, Khan MAU, Alimgeer KS. Automated diagnosis of leukemia: A comprehensive review. IEEE Access 2021; 9: 132097-124.
[http://dx.doi.org/10.1109/ACCESS.2021.3114059]
[5]
Pui CH, Relling MV, Downing JR. Acute lymphoblastic leukemia. N Engl J Med 2004; 350(15): 1535-48.
[http://dx.doi.org/10.1056/NEJMra023001] [PMID: 15071128]
[6]
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med 2015; 373(12): 1136-52.
[http://dx.doi.org/10.1056/NEJMra1406184] [PMID: 26376137]
[7]
Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med 1999; 341(14): 1051-62.
[http://dx.doi.org/10.1056/NEJM199909303411407] [PMID: 10502596]
[8]
Mao JJ, Pillai GG, Andrade CJ, Ligibel JA, Basu P, Cohen L. Integrative oncology: Addressing the global challenges of cancer prevention and treatment. A Cancer J Clin 2022; 72: 144-64.
[9]
Ramasamy T, Munusamy S, Ruttala HB, Kim JO. Smart nanocarriers for the delivery of nucleic acid‐based therapeutics: A comprehen-sive review. Biotechnol J 2021; 16(2)1900408
[http://dx.doi.org/10.1002/biot.201900408] [PMID: 32702191]
[10]
Zhang X, Lin ZI, Yang J, et al. Carbon dioxide-derived biodegradable and cationic polycarbonates as a new sirna carrier for gene therapy in pancreatic cancer. Nanomaterials 2021; 11(9): 2312.
[http://dx.doi.org/10.3390/nano11092312] [PMID: 34578632]
[11]
Zhang Y, Liu Q, Zhang X, et al. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnol 2022; 20(1): 279.
[http://dx.doi.org/10.1186/s12951-022-01472-z] [PMID: 35701788]
[12]
Lee LW, Zhang S, Etheridge A, et al. Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 2010; 16(11): 2170-80.
[http://dx.doi.org/10.1261/rna.2225110] [PMID: 20876832]
[13]
Smolarz B, Durczyński A, Romanowicz H, Szyłło K, Hogendorf P. miRNAs in Cancer. Int J Mol Sci 2022; 23(5): 2805.
[http://dx.doi.org/10.3390/ijms23052805] [PMID: 35269947]
[14]
Zhang B, Pan X, Cobb GP, Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302(1): 1-12.
[http://dx.doi.org/10.1016/j.ydbio.2006.08.028] [PMID: 16989803]
[15]
Cowland JB, Hother C, Grønbaek K. MicroRNAs and cancer. Acta Pathol Microbiol Scand Suppl 2007; 115(10): 1090-106.
[http://dx.doi.org/10.1111/j.1600-0463.2007.apm_775.xml.x] [PMID: 18042145]
[16]
Sassen S, Miska EA, Caldas C. MicroRNA - Implications for cancer. Virchows Arch 2008; 452(1): 1-10.
[http://dx.doi.org/10.1007/s00428-007-0532-2] [PMID: 18040713]
[17]
Gartel AL, Kandel ES. miRNAs: Little known mediators of oncogenesis. Semin Cancer Biol 2008; 18(2): 103-10.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.008] [PMID: 18295504]
[18]
Ye F. MicroRNA expression and activity in T-cell acute lymphoblastic leukemia. Oncotarget 2018; 9(4): 5445-58.
[http://dx.doi.org/10.18632/oncotarget.23539] [PMID: 29435192]
[19]
Anelli L, Zagaria A, Specchia G, Musto P, Albano F. Dysregulation of mirna in leukemia: Exploiting mirna expression profiles as bi-omarkers. Int J Mol Sci 2021; 22(13): 7156.
[http://dx.doi.org/10.3390/ijms22137156] [PMID: 34281210]
[20]
Gabra MM, Salmena L. MicroRNAs and acute myeloid leukemia chemoresistance: A mechanistic overview. Front Oncol 2017; 7: 255.
[http://dx.doi.org/10.3389/fonc.2017.00255] [PMID: 29164055]
[21]
Setijono SR, Kwon HY, Song SJ. MicroRNA, an antisense RNA, in sensing myeloid malignancies. Front Oncol 2018; 7: 331.
[http://dx.doi.org/10.3389/fonc.2017.00331] [PMID: 29441324]
[22]
Marima R, Francies FZ, Hull R, et al. Microrna and alternative mrna splicing events in cancer drug response/resistance: Potent therapeu-tic targets. Biomedicines 2021; 9(12): 1818.
[http://dx.doi.org/10.3390/biomedicines9121818] [PMID: 34944633]
[23]
Wallace JA, O’Connell RM. MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood 2017; 130(11): 1290-301.
[http://dx.doi.org/10.1182/blood-2016-10-697698] [PMID: 28751524]
[24]
Gębarowska K, Mroczek A, Kowalczyk JR, Lejman M. Microrna as a prognostic and diagnostic marker in T‐cell acute lymphoblastic leukemia. Int J Mol Sci 2021; 22(10): 5317.
[http://dx.doi.org/10.3390/ijms22105317] [PMID: 34070107]
[25]
Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. mRNA degradation by miRNAs and GW182 requires both CCR4: NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 2006; 20(14): 1885-98.
[http://dx.doi.org/10.1101/gad.1424106] [PMID: 16815998]
[26]
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136(4): 642-55.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[27]
Nottrott S, Simard MJ, Richter JD. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 2006; 13(12): 1108-14.
[http://dx.doi.org/10.1038/nsmb1173] [PMID: 17128272]
[28]
Singh SK, Pal Bhadra M, Girschick HJ, Bhadra U. MicroRNAs - micro in size but macro in function. FEBS J 2008; 275(20): 4929-44.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06624.x] [PMID: 18754771]
[29]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[30]
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065.
[31]
Akao Y, Nakagawa Y, Naoe T. MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 2006; 16(4): 845-50.
[http://dx.doi.org/10.3892/or.16.4.845] [PMID: 16969504]
[32]
Eis PS, Tam W, Sun L, et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci 2005; 102(10): 3627-32.
[http://dx.doi.org/10.1073/pnas.0500613102] [PMID: 15738415]
[33]
Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101(9): 2999-3004.
[http://dx.doi.org/10.1073/pnas.0307323101] [PMID: 14973191]
[34]
Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004; 64(11): 3753-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0637] [PMID: 15172979]
[35]
Iorio M v, Piovan C, Croce CM. Interplay between microRNAs and the epigenetic machinery: An intricate network. Biochim Biophys Acta 2010; 1799(10-12): 694-701.
[36]
Sandoval J, Esteller M. Cancer epigenomics: Beyond genomics. Curr Opin Genet Dev 2012; 22(1): 50-5.
[http://dx.doi.org/10.1016/j.gde.2012.02.008] [PMID: 22402447]
[37]
Lv M, Zhu S, Peng H, Cheng Z, Zhang G, Wang Z. B-cell acute lymphoblastic leukemia-related microRNAs: Uncovering their diverse and special roles. Am J Cancer Res 2021; 11(4): 1104-20.
[PMID: 33948348]
[38]
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med 2021; 19(3): 1.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2021.0294] [PMID: 34846108]
[39]
Holjencin C, Jakymiw A. MicroRNAs and their big therapeutic impacts: Delivery strategies for cancer intervention. Cells 2022; 11(15): 2332.
[http://dx.doi.org/10.3390/cells11152332] [PMID: 35954176]
[40]
Kasar S, Salerno E, Yuan Y, et al. Systemic in vivo lentiviral delivery of miR-15a/16 reduces malignancy in the NZB de novo mouse model of chronic lymphocytic leukemia. Genes Immun 2012; 13(2): 109-19.
[http://dx.doi.org/10.1038/gene.2011.58] [PMID: 21881595]
[41]
Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol 2018; 233(8): 5574-88.
[http://dx.doi.org/10.1002/jcp.26514] [PMID: 29521426]
[42]
Ang L, Guo L, Wang J, Huang J, Lou X, Zhao M. Oncolytic virotherapy armed with an engineered interfering lncRNA exhibits antitumor activity by blocking the epithelial mesenchymal transition in triple-negative breast cancer. Cancer Lett 2020; 479: 42-53.
[http://dx.doi.org/10.1016/j.canlet.2020.03.012] [PMID: 32200038]
[43]
Luo Q, Basnet S, Dai Z, Li S, Zhang Z, Ge H. A novel E1B55kDa-deleted oncolytic adenovirus carrying microRNA-143 exerts specific antitumor efficacy on colorectal cancer cells. Am J Transl Res 2016; 8(9): 3822-30.
[PMID: 27725862]
[44]
Callegari E, Elamin BK, D’Abundo L, et al. Anti-tumor activity of a miR-199-dependent oncolytic adenovirus. PLoS One 2013; 8(9)e73964
[http://dx.doi.org/10.1371/journal.pone.0073964] [PMID: 24069256]
[45]
Lou W, Chen Q, Ma L, et al. Oncolytic adenovirus co-expressing miRNA-34a and IL-24 induces superior antitumor activity in experi-mental tumor model. J Mol Med 2013; 91(6): 715-25.
[http://dx.doi.org/10.1007/s00109-012-0985-x] [PMID: 23292172]
[46]
Komoll RM, Hu Q, Olarewaju O, et al. MicroRNA-342-3p is a potent tumour suppressor in hepatocellular carcinoma. J Hepatol 2021; 74(1): 122-34.
[http://dx.doi.org/10.1016/j.jhep.2020.07.039] [PMID: 32738449]
[47]
Kota J, Chivukula RR, O’Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137(6): 1005-17.
[http://dx.doi.org/10.1016/j.cell.2009.04.021] [PMID: 19524505]
[48]
Bhere D, Arghiani N, Lechtich ER, et al. Simultaneous downregulation of miR-21 and upregulation of miR-7 has anti-tumor efficacy. Sci Rep 2020; 10(1): 1779.
[http://dx.doi.org/10.1038/s41598-020-58072-w] [PMID: 32019988]
[49]
Fernandez CA, Rice KG. Engineered nanoscaled polyplex gene delivery systems. Mol Pharm 2009; 6(5): 1277-89.
[http://dx.doi.org/10.1021/mp900033j] [PMID: 19385668]
[50]
van den Berg AIS, Yun CO, Schiffelers RM, Hennink WE. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J Control Release 2021; 331: 121-41.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.014] [PMID: 33453339]
[51]
Höbel S, Aigner A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(5): 484-501.
[http://dx.doi.org/10.1002/wnan.1228] [PMID: 23720168]
[52]
Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv Drug Deliv Rev 2005; 57(15): 2215-37.
[http://dx.doi.org/10.1016/j.addr.2005.09.019] [PMID: 16297497]
[53]
Forterre A, Komuro H, Aminova S, Harada M. A comprehensive review of cancer microRNA therapeutic delivery strategies. Cancers 2020; 12(7): 1852.
[http://dx.doi.org/10.3390/cancers12071852] [PMID: 32660045]
[54]
Kaban K, Salva E, Akbuga J. The effects of chitosan/miR-200c nanoplexes on different stages of cancers in breast cancer cell lines. Eur J Pharm Sci 2016; 95: 103-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.030] [PMID: 27260087]
[55]
Gaur S, Wen Y, Song JH, et al. Chitosan nanoparticle-mediated delivery of miRNA-34a decreases prostate tumor growth in the bone and its expression induces non-canonical autophagy. Oncotarget 2015; 6(30): 29161-77.
[http://dx.doi.org/10.18632/oncotarget.4971] [PMID: 26313360]
[56]
Cheng CJ, Saltzman WM. Polymer nanoparticle-mediated delivery of microRNA inhibition and alternative splicing. Mol Pharm 2012; 9(5): 1481-8.
[http://dx.doi.org/10.1021/mp300081s] [PMID: 22482958]
[57]
Cosco D, Cilurzo F, Maiuolo J, et al. Delivery of miR-34a by chitosan/PLGA nanoplexes for the anticancer treatment of multiple myelo-ma. Sci Rep 2015; 5(1): 17579.
[http://dx.doi.org/10.1038/srep17579] [PMID: 26620594]
[58]
Liang G, Zhu Y, Jing A, et al. Cationic microRNA-delivering nanocarriers for efficient treatment of colon carcinoma in xenograft model. Gene Ther 2016; 23(12): 829-38.
[http://dx.doi.org/10.1038/gt.2016.60] [PMID: 27482839]
[59]
Devulapally R, Foygel K, Sekar TV, Willmann JK, Paulmurugan R. Gemcitabine and antisense-microRNA co-encapsulated PLGA–PEG polymer nanoparticles for hepatocellular carcinoma therapy. ACS Appl Mater Interfaces 2016; 8(49): 33412-22.
[http://dx.doi.org/10.1021/acsami.6b08153] [PMID: 27960411]
[60]
Wang TY, Choe JW, Pu K, et al. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer. J Control Release 2015; 203: 99-108.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.018] [PMID: 25687306]
[61]
Ewert KK, Scodeller P, Simón-Gracia L, et al. Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics 2021; 13(9): 1365.
[http://dx.doi.org/10.3390/pharmaceutics13091365] [PMID: 34575441]
[62]
Malone RW, Felgner PL, Verma IM. Cationic liposome-mediated RNA transfection. Proc Natl Acad Sci USA 1989; 86(16): 6077-81.
[http://dx.doi.org/10.1073/pnas.86.16.6077] [PMID: 2762315]
[63]
Mislick KA, Baldeschwieler JD. Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 1996; 93(22): 12349-54.
[http://dx.doi.org/10.1073/pnas.93.22.12349] [PMID: 8901584]
[64]
Semple SC, Chonn A, Cullis PR. Influence of cholesterol on the association of plasma proteins with liposomes. Biochemistry 1996; 35(8): 2521-5.
[http://dx.doi.org/10.1021/bi950414i] [PMID: 8611555]
[65]
Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016; 99(Pt A): 129-37.
[http://dx.doi.org/10.1016/j.addr.2016.01.022] [PMID: 26900977]
[66]
Sun X, Yan X, Jacobson O, et al. Improved tumor uptake by optimizing liposome based res blockade strategy. Theranostics 2017; 7(2): 319-28.
[http://dx.doi.org/10.7150/thno.18078] [PMID: 28042337]
[67]
Labatut AE, Mattheolabakis G. Non-viral based miR delivery and recent developments. Eur J Pharm Biopharm 2018; 128: 82-90.
[http://dx.doi.org/10.1016/j.ejpb.2018.04.018] [PMID: 29679644]
[68]
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv Drug Deliv Rev 2015; 81: 128-41.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[69]
Slowing I, Viveroescoto J, Wu C, Lin V. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carri-ers. Adv Drug Deliv Rev 2008; 60(11): 1278-88.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[70]
Zhu M, Perrett S, Nie G. Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. Small 2013; 9(9-10): 1619-34.
[http://dx.doi.org/10.1002/smll.201201630] [PMID: 23225644]
[71]
Daniel MC, Astruc D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications to-ward biology, catalysis, and nanotechnology. Chem Rev 2004; 104(1): 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[72]
Xue HY, Liu Y, Liao JZ, et al. Gold nanoparticles delivered miR-375 for treatment of hepatocellular carcinoma. Oncotarget 2016; 7(52): 86675-86.
[http://dx.doi.org/10.18632/oncotarget.13431] [PMID: 27880727]
[73]
Ghosh R, Singh LC, Shohet JM, Gunaratne PH. A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells. Biomaterials 2013; 34(3): 807-16.
[http://dx.doi.org/10.1016/j.biomaterials.2012.10.023] [PMID: 23111335]
[74]
Gilam A, Conde J, Weissglas-Volkov D, et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat Commun 2016; 7(1): 12868.
[http://dx.doi.org/10.1038/ncomms12868] [PMID: 27641360]
[75]
Cummings JC, Zhang H, Jakymiw A. Peptide carriers to the rescue: Overcoming the barriers to siRNA delivery for cancer treatment. Transl Res 2019; 214: 92-104.
[http://dx.doi.org/10.1016/j.trsl.2019.07.010] [PMID: 31404520]
[76]
Roberts TC, Langer R, Wood MJA. Advances in oligonucleotide drug delivery. Nat Rev Drug Discov 2020; 19(10): 673-94.
[http://dx.doi.org/10.1038/s41573-020-0075-7] [PMID: 32782413]
[77]
Guidotti G, Brambilla L, Rossi D. Cell-penetrating peptides: From basic research to clinics. Trends Pharmacol Sci 2017; 38(4): 406-24.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[78]
Xiao X, Wang X, Wang Y, et al. Multi-functional Peptide-MicroRNA nanocomplex for targeted MicroRNA delivery and function imag-ing. Chemistry 2018; 24(9): 2277-85.
[http://dx.doi.org/10.1002/chem.201705695] [PMID: 29226432]
[79]
Janas T, Janas MM, Sapoń K, Janas T. Mechanisms of RNA loading into exosomes. FEBS Lett 2015; 589(13): 1391-8.
[http://dx.doi.org/10.1016/j.febslet.2015.04.036] [PMID: 25937124]
[80]
Balaphas A, Meyer J, Sadoul R, Morel P, Gonelle-Gispert C, Bühler LH. Extracellular vesicles: Future diagnostic and therapeutic tools for liver disease and regeneration. Liver Int 2019; 39(10): 1801-17.
[http://dx.doi.org/10.1111/liv.14189] [PMID: 31286675]
[81]
Bunggulawa EJ, Wang W, Yin T, et al. Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 2018; 16(1): 81.
[http://dx.doi.org/10.1186/s12951-018-0403-9] [PMID: 30326899]
[82]
Kim H, Jang H, Cho H, et al. Recent advances in exosome‐based drug delivery for cancer therapy. Cancers 2021; 13(17): 4435.
[http://dx.doi.org/10.3390/cancers13174435] [PMID: 34503245]
[83]
Kim H, Kim EH, Kwak G, Chi SG, Kim SH, Yang Y. Exosomes: Cell-derived nanoplatforms for the delivery of cancer therapeutics. Int J Mol Sci 2020; 22(1): 14.
[http://dx.doi.org/10.3390/ijms22010014] [PMID: 33374978]
[84]
Pan S, Zhang Y, Huang M, Deng Z, Zhang A, Pei L. Urinary exosomes-based engineered nanovectors for homologously targeted chemo-chemodynamic prostate cancer therapy via abrogating IGFR/AKT/NF-kB/IkB signaling. Biomaterials 2021; 275120946
[85]
Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood–brain barrier. J Drug Target 2017; 25(1): 17-28.
[http://dx.doi.org/10.1080/1061186X.2016.1184272] [PMID: 27126681]
[86]
Amiri A, Bagherifar R, Ansari Dezfouli E, Kiaie SH, Jafari R, Ramezani R. Exosomes as bio-inspired nanocarriers for RNA delivery: Preparation and applications. J Transl Med 2022; 20(1): 125.
[http://dx.doi.org/10.1186/s12967-022-03325-7] [PMID: 35287692]
[87]
Das CK, Jena BC, Banerjee I, et al. Exosome as a novel shuttle for delivery of therapeutics across biological barriers. Mol Pharm 2019; 16(1): 24-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00901] [PMID: 30513203]
[88]
Shtam TA, Kovalev RA, Varfolomeeva EY. Kil Yv, Filatov M. Exosomesare natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013. Cell Commun Signal 2013; Nov 18; 11: 88.
[89]
Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 2013; 21(1): 185-91.
[http://dx.doi.org/10.1038/mt.2012.180] [PMID: 23032975]
[90]
Sutaria DS, Jiang J, Elgamal OA, et al. Low active loading of cargo into engineered extracellular vesicles results in inefficient miRNA mimic delivery. J Extracell Vesicles 2017; 6(1)1333882
[http://dx.doi.org/10.1080/20013078.2017.1333882] [PMID: 28717424]
[91]
Zhou W, Xu M, Wang Z, Yang M. Engineered exosomes loaded with miR-449a selectively inhibit the growth of homologous non-small cell lung cancer. Cancer Cell Int 2021; 21(1): 485.
[http://dx.doi.org/10.1186/s12935-021-02157-7] [PMID: 34521413]
[92]
Rezaei R, Baghaei K, Amani D, et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate Epithelial Mesen-chymal Transition (EMT) of colon cancer cells. Life Sci 2021; 269119035
[http://dx.doi.org/10.1016/j.lfs.2021.119035] [PMID: 33450254]
[93]
Zhang D, Lee H, Zhu Z, Minhas JK, Jin Y. Enrichment of selective miRNAs in exosomes and delivery of exosomal miRNAs in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 2017; 312(1): L110-21.
[http://dx.doi.org/10.1152/ajplung.00423.2016] [PMID: 27881406]
[94]
Sayyed AA, Gondaliya P, Mali M, et al. MiR-155 inhibitor-laden exosomes reverse resistance to cisplatin in a 3d tumor spheroid and xenograft model of oral cancer. Mol Pharm 2021; 18(8): 3010-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00213] [PMID: 34176265]
[95]
Katakowski M, Buller B, Zheng X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett 2013; 335(1): 201-4.
[http://dx.doi.org/10.1016/j.canlet.2013.02.019] [PMID: 23419525]
[96]
Yao S, Yin Y, Jin G, et al. Exosome‐mediated delivery of miR‐204‐5p inhibits tumor growth and chemoresistance. Cancer Med 2020; 9(16): 5989-98.
[http://dx.doi.org/10.1002/cam4.3248] [PMID: 32618144]
[97]
Yu X, Odenthal M, Fries J. Exosomes as miRNA carriers: Formation–Function–Future. Int J Mol Sci 2016; 17(12): 2028.
[http://dx.doi.org/10.3390/ijms17122028] [PMID: 27918449]
[98]
Mostafavi E, Zarepour A, Barabadi H, Zarrabi A, Truong LB, Medina-Cruz D. Antineoplastic activity of biogenic silver and gold nano-particles to combat leukemia: Beginning a new era in cancer theragnostic. Biotechnol Rep 2022; 34e00714
[http://dx.doi.org/10.1016/j.btre.2022.e00714] [PMID: 35686001]
[99]
Biray Avcı Ç, Özcan İ, Balcı T, Özer Ö, Gündüz C. Design of polyethylene glycol-polyethylenimine nanocomplexes as non-viral carriers: mir-150 delivery to chronic myeloid leukemia cells. Cell Biol Int 2013; 37(11): n/a.
[http://dx.doi.org/10.1002/cbin.10157] [PMID: 23881828]
[100]
Dorrance AM, Neviani P, Ferenchak GJ, et al. Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia. Leukemia 2015; 29(11): 2143-53.
[http://dx.doi.org/10.1038/leu.2015.139] [PMID: 26055302]
[101]
Jiang X, Bugno J, Hu C, et al. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles. Cancer Res 2016; 76(15): 4470-80.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2949] [PMID: 27280396]
[102]
Huang X, Schwind S, Yu B, et al. Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: A novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 2013; 19(9): 2355-67.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3191] [PMID: 23493348]
[103]
Deng R, Shen N, Yang Y, et al. Targeting epigenetic pathway with gold nanoparticles for acute myeloid leukemia therapy. Biomaterials 2018; 167: 80-90.
[http://dx.doi.org/10.1016/j.biomaterials.2018.03.013] [PMID: 29554483]
[104]
Hourigan CS, Gale RP, Gormley NJ, Ossenkoppele GJ, Walter RB. Measurable residual disease testing in acute myeloid leukaemia. Leukemia 2017; 31(7): 1482-90.
[http://dx.doi.org/10.1038/leu.2017.113] [PMID: 28386105]
[105]
Jiang D, Wu X, Sun X, et al. Bone mesenchymal stem cell-derived exosomal microRNA-7-5p inhibits progression of acute myeloid leu-kemia by targeting OSBPL11. J Nanobiotechnology 2022; 20(1): 29.
[http://dx.doi.org/10.1186/s12951-021-01206-7] [PMID: 35012554]
[106]
Turk A, Calin GA, Kunej T. MicroRNAs in Leukemias: A Clinically Annotated Compendium. Int J Mol Sci 2022; 23(7): 3469.
[http://dx.doi.org/10.3390/ijms23073469] [PMID: 35408829]
[107]
Razmkhah F, Soleimani M, Ghasemi S, Kafi-abad SA. MicroRNA-21 over expression in umbilical cord blood hematopoietic stem pro-genitor cells by leukemia microvesicles. Genet Mol Biol 2019; 42(2): 465-71.
[http://dx.doi.org/10.1590/1678-4685-gmb-2018-0073] [PMID: 31429853]
[108]
Chen H, Wang J, Wang H, et al. Advances in the application of Let 7 microRNAs in the diagnosis, treatment and prognosis of leukemia. Oncol Lett 2021; 23(1): 1.
[http://dx.doi.org/10.3892/ol.2021.13119] [PMID: 34820000]
[109]
Wang Y, Zeng G, Jiang Y. The emerging roles of miR-125b in cancers. Cancer Manag Res 2020; 12: 1079-88.
[http://dx.doi.org/10.2147/CMAR.S232388] [PMID: 32104088]
[110]
Wang H, Zhan H, Jiang X, et al. A Novel miRNA Restores the Chemosensitivity of AML Cells Through Targeting FosB. Front Med 2020; 7582923
[http://dx.doi.org/10.3389/fmed.2020.582923] [PMID: 33123543]
[111]
Schwind S, Maharry K, Radmacher MD, et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B study. J Clin Oncol 2010; 28(36): 5257-64.
[http://dx.doi.org/10.1200/JCO.2010.29.2953] [PMID: 21079133]
[112]
Tian H, Qiang T, Wang J, Ji L, Li B. Simvastatin regulates the proliferation, apoptosis, migration and invasion of human acute myeloid leukemia cells via miR-19a-3p/HIF-1α axis. Bioengineered 2021; 12(2): 11898-908.
[http://dx.doi.org/10.1080/21655979.2021.1999552] [PMID: 34895042]
[113]
Zhu B, Xi X, Liu Q, Cheng Y, Yang H. MiR-9 functions as a tumor suppressor in acute myeloid leukemia by targeting CX chemokine receptor 4. Am J Transl Res 2019; 11(6): 3384-97.
[PMID: 31312352]
[114]
Dell’Aversana C, Giorgio C, D’Amato L, et al. miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 2017; 31(11): 2315-25.
[http://dx.doi.org/10.1038/leu.2017.64] [PMID: 28216661]
[115]
Zhi Y, Xie X, Wang R, et al. Serum level of miR-10-5p as a prognostic biomarker for acute myeloid leukemia. Int J Hematol 2015; 102(3): 296-303.
[http://dx.doi.org/10.1007/s12185-015-1829-6] [PMID: 26134365]
[116]
Zhao J, Lu Q, Zhu J, Fu J. Prognostic value of miR-96 in patients with acute myeloid leukemia. Diagn Pathol 2014; 299: 76.
[117]
Bao F, Zhang L, Pei X, et al. MiR-20a-5p functions as a potent tumor suppressor by targeting PPP6C in acute myeloid leukemia. PLoS One 2021; 16(9)e0256995
[http://dx.doi.org/10.1371/journal.pone.0256995] [PMID: 34587164]
[118]
Cao L, Wang N, Pan J, et al. Clinical significance of microRNA-34b expression in pediatric acute leukemia. Mol Med Rep 2016; 13(3): 2777-84.
[http://dx.doi.org/10.3892/mmr.2016.4876] [PMID: 26861642]
[119]
Zhang XT, Dong SH, Zhang JY, Shan B. MicroRNA-577 promotes the sensitivity of chronic myeloid leukemia cells to imatinib by target-ing NUP160. Eur Rev Med Pharmacol Sci 2019; 23(16): 7008-15.
[PMID: 31486501]
[120]
Liu Z, He C, Qu Y, Chen X, Zhu H, Xiang B. MiR-659-3p regulates the progression of chronic myeloid leukemia by targeting SPHK1. Int J Clin Exp Pathol 2018; 11(5): 2470-8.
[PMID: 31938359]
[121]
Wen F, Cao YX, Luo ZY, Liao P, Lu ZW. LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 2018; 507(1-4): 1-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.034] [PMID: 30366670]
[122]
Jin J, Yao J, Yue F, Jin Z, Li D, Wang S. Decreased expression of microRNA 214 contributes to imatinib mesylate resistance of chronic myeloid leukemia patients by upregulating ABCB1 gene expression. Exp Ther Med 2018; 16(3): 1693-700.
[http://dx.doi.org/10.3892/etm.2018.6404] [PMID: 30186389]
[123]
Wang L, Wang Y, Lin J. MiR-152-3p promotes the development of chronic myeloid leukemia by inhibiting p27. Eur Rev Med Pharmacol Sci 2018; 22(24): 8789-96.
[PMID: 30575920]
[124]
Martins JRB, Moraes LN, Cury SS, et al. Comparison of microRNA expression profile in chronic myeloid leukemia patients newly diag-nosed and treated by allogeneic hematopoietic stem cell transplantation. Front Oncol 2020; 10: 1544.
[http://dx.doi.org/10.3389/fonc.2020.01544] [PMID: 33014798]
[125]
Ma J, Wu D, Yi J, et al. MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic mye-loid leukemia K562 cells. Biomed Pharmacother 2019; 112108623
[http://dx.doi.org/10.1016/j.biopha.2019.108623] [PMID: 30797151]
[126]
Nie ZY, Liu XJ, Zhan Y, et al. miR-140-5p induces cell apoptosis and decreases Warburg effect in chronic myeloid leukemia by target-ing SIX1. Biosci Rep 2019; 39(4)BSR20190150
[http://dx.doi.org/10.1042/BSR20190150] [PMID: 30962263]
[127]
Huang T, Fu Y, Wang S, et al. miR-96 acts as a tumor suppressor via targeting the BCR-ABL1 oncogene in chronic myeloid leukemia blastic transformation. Biomed Pharmacother 2019; 119109413
[http://dx.doi.org/10.1016/j.biopha.2019.109413] [PMID: 31518872]
[128]
Pulikkan JA, Dengler V, Peramangalam PS, et al. Cell-cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid leukemia. Blood 2010; 115(9): 1768-78.
[http://dx.doi.org/10.1182/blood-2009-08-240101] [PMID: 20029046]
[129]
Liu X, Liao W, Peng H, et al. miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol 2016; 142(1): 77-87.
[http://dx.doi.org/10.1007/s00432-015-1995-1] [PMID: 26113450]
[130]
Xu L, Leng H, Shi X, Ji J, Fu J, Leng H. MiR-155 promotes cell proliferation and inhibits apoptosis by PTEN signaling pathway in the psoriasis. Biomed Pharmacother 2017; 90: 524-30.
[http://dx.doi.org/10.1016/j.biopha.2017.03.105] [PMID: 28402921]
[131]
Papageorgiou SG, Kontos CK, Diamantopoulos MA, et al. MicroRNA-155-5p overexpression in peripheral blood mononuclear cells of chronic lymphocytic leukemia patients is a novel, independent molecular biomarker of poor prognosis. Dis Markers 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/2046545] [PMID: 29463948]
[132]
Assmann JLJC, Leon LG, Stavast CJ, et al. miR-181a is a novel player in the STAT3-mediated survival network of TCRαβ+ CD8+ T large granular lymphocyte leukemia. Leukemia 2022; 36(4): 983-93.
[http://dx.doi.org/10.1038/s41375-021-01480-2] [PMID: 34873301]
[133]
Huang X, Schwind S, Santhanam R, et al. Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget 2016; 7(37): 59273-86.
[http://dx.doi.org/10.18632/oncotarget.11150] [PMID: 27517749]
[134]
Zoine JT, Moore SE, Velasquez MP. Leukemia’s next top model? Syngeneic models to advance adoptive cellular therapy. Front Immunol 2022; 13867103
[http://dx.doi.org/10.3389/fimmu.2022.867103] [PMID: 35401520]
[135]
Tian Y, Jiang Y, Dong X, Chang Y, Chi J, Chen X. miR-149-3p suppressed epithelial–mesenchymal transition and tumor development in acute myeloid leukemia. Hematology 2021; 26(1): 840-7.
[http://dx.doi.org/10.1080/16078454.2021.1990502] [PMID: 34674612]
[136]
Bi L, Zhou B, Li H, et al. A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute mye-loid leukemia. BMC Cancer 2018; 18(1): 182.
[http://dx.doi.org/10.1186/s12885-018-4097-z] [PMID: 29439669]
[137]
Emmrich S, Engeland F, El-Khatib M, et al. miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene 2016; 35(14): 1822-31.
[http://dx.doi.org/10.1038/onc.2015.247] [PMID: 26165837]
[138]
Gonzales-Aloy E, Connerty P, Salik B, et al. miR-101 suppresses the development of MLL-rearranged acute myeloid leukemia. Haematologica 2019; 104(7): e296-9.
[http://dx.doi.org/10.3324/haematol.2018.209437] [PMID: 30792205]
[139]
Velu CS, Chaubey A, Phelan JD, et al. Therapeutic antagonists of microRNAs deplete leukemia-initiating cell activity. J Clin Invest 2014; 124(1): 222-36.
[http://dx.doi.org/10.1172/JCI66005] [PMID: 24334453]
[140]
Liu J, Zhang X, Liu A, et al. Berberine induces apoptosis in p53-null leukemia cells by down-regulating XIAP at the post-transcriptional level. Cell Physiol Biochem 2013; 32(5): 1213-24.
[http://dx.doi.org/10.1159/000354520] [PMID: 24335171]
[141]
Liu J, Chen Z, Cui Y, et al. Berberine promotes XIAP-mediated cells apoptosis by upregulation of miR-24-3p in acute lymphoblastic leukemia. Aging 2020; 12(4): 3298-311.
[http://dx.doi.org/10.18632/aging.102813] [PMID: 32062612]
[142]
Wang H, Guo Q, Zhu G, Zhu S, Yang P, Zhang M. microRNA-452 exerts growth-suppressive activity against T-cell acute lymphoblastic leukemia. J Investig Med 2018; 66(4): 773-9.
[http://dx.doi.org/10.1136/jim-2017-000591] [PMID: 29326345]
[143]
He Y, Jiang X, Chen J. The role of miR-150 in normal and malignant hematopoiesis. Oncogene 2014; 33(30): 3887-93.
[http://dx.doi.org/10.1038/onc.2013.346] [PMID: 23955084]
[144]
Fang ZH, Wang SL, Zhao JT, et al. miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple path-ways. Cell Death Dis 2016; 7(9)e2371
[http://dx.doi.org/10.1038/cddis.2016.256] [PMID: 27899822]
[145]
Yang P, Ni F, Deng RQ, Qiang G, Zhao H, Yang MZ. MiR-362-5p promotes the malignancy of chronic myelocytic leukaemia via down-regulation of GADD45aα. Mol Cancer 2015; 14: 190.
[146]
Pan B, Yang J, Wang X, Xu K, Ikezoe T. miR-217 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitors by target-ing pro-oncogenic anterior gradient 2. Exp Hematol 2018; 68: 80-8.
[http://dx.doi.org/10.1016/j.exphem.2018.09.001] [PMID: 30195077]
[147]
Dereani S, Macor P, D’Agaro T, et al. Potential therapeutic role of antagomiR17 for the treatment of chronic lymphocytic leukemia. J Hematol Oncol 2014; 7(1): 79.
[http://dx.doi.org/10.1186/s13045-014-0079-z] [PMID: 25339346]
[148]
Chiang CL, Goswami S, Frissora FW, et al. ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood 2019; 134(5): 432-44.
[http://dx.doi.org/10.1182/blood.2018882290] [PMID: 31151986]
[149]
Guo B, Qin R, Chen JJ, Pan W, Lu XC. MicroRNA-125b accelerates and promotes PML-RARa-driven murine acute promyelocytic leu-kemia. Biomed Environ Sci 2022; 35(6): 485-93.
[PMID: 35882408]
[150]
Zhang L, Nguyen LXT, Chen YC, et al. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leuke-mia stem cell maintenance. Nat Commun 2021; 12(1): 6154.
[http://dx.doi.org/10.1038/s41467-021-26420-7] [PMID: 34686664]
[151]
Zhang B, Nguyen LXT, Li L, et al. Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia. Nat Med 2018; 24(4): 450-62.
[http://dx.doi.org/10.1038/nm.4499] [PMID: 29505034]
[152]
Wang H, Sun J, Zhang B, et al. Targeting miR‐126 disrupts maintenance of myelodysplastic syndrome stem and progenitor cells. Clin Transl Med 2021; 11(10)e610
[http://dx.doi.org/10.1002/ctm2.610] [PMID: 34709739]
[153]
Su YL, Wang X, Mann M, et al. Myeloid cell-targeted miR-146a mimic inhibits NF-kB-driven inflammation and leukemia progression in vivo. Blood 2020; 135(3): 167-80.
[http://dx.doi.org/10.1182/blood.2019002045] [PMID: 31805184]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy