Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Mini-Review Article

Anesthesia and Cancer: Something More than Avoiding Stress Response

Author(s): Aida Raigon Ponferrada, Salvador Romero Molina, Juan Carlos Molina Ruiz*, Gomez Maldonado Josefa and Jose Luis Guerrero Orriach*

Volume 23, Issue 4, 2023

Published on: 18 May, 2023

Page: [261 - 275] Pages: 15

DOI: 10.2174/1566523223666230328165109

Price: $65

Abstract

Currently, an increasing prevalence has been reported in incidences of tumor pathologies. The influence of anesthetics drugs has been the subject of numerous studies. It has been reported that the use of certain drugs may have an impact on prognosis and survival. By investigating the action of these drugs on different metabolic pathways and their mechanisms of action, we can better understand how they influence various hallmarks of carcinogenesis and determine their potential impact on cancer progression. Some of the action pathways are widely known within oncology, being targets of specific treatments, such as PI3k/AKT/mTOR, EGFR, and Wnt/ β-catenin.

This review performs a thorough dissection of the interaction between anesthetic drugs and oncological cell lines through cell signaling pathways and genetic, immune, and transcriptomic pathways. Through these underlying mechanisms, it aims to clarify the effect of the choice of anesthetic drug and its potential influence on the prognosis of oncological surgery.

Graphical Abstract

[1]
Ponferrada AR, Orriach JLG, Ruiz JCM, Molina SR, Luque AG, Mañas JC. Breast cancer and anaesthesia: Genetic influence. Int J Mol Sci 2021; 22(14): 22.
[http://dx.doi.org/10.3390/ijms22147653] [PMID: 34299272]
[2]
Braicu C, Tomuleasa C, Monroig P, Cucuianu A, Berindan-Neagoe I, Calin GA. Exosomes as divine messengers: Are they the Hermes of modern molecular oncology? Cell Death Differ 2015; 22(1): 34-45.
[http://dx.doi.org/10.1038/cdd.2014.130] [PMID: 25236394]
[3]
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Anti-tumor activity of propofol: A focus on microRNAs. Curr Cancer Drug Targets 2020; 20(2): 104-14.
[http://dx.doi.org/10.2174/1568009619666191023100046] [PMID: 31657687]
[4]
Chen Q, Zhu C, Jin Y. The oncogenic and tumor suppressive functions of the long noncoding RNA MALAT1: An emerging controversy. Front Genet 2020; 11: 93.
[http://dx.doi.org/10.3389/fgene.2020.00093]
[5]
Wang J, Cheng C, Lu Y, et al. Novel findings of anti-cancer property of propofol. Anticancer Agents Med Chem 2018; 18(2): 156-65.
[http://dx.doi.org/10.2174/1871520617666170912120327] [PMID: 28901262]
[6]
Wang P, Chen J, Mu L-H, Du Q-H, Niu X-H, Zhang M-Y. Propofol inhibits invasion and enhances paclitaxel- induced apoptosis in ovar-ian cancer cells through the suppression of the transcription factor slug. Eur Rev Med Pharmacol Sci 2013; 17(13): 1722-9.
[PMID: 23852894]
[7]
Qian J, Shen S, Chen W, Chen N. Propofol reversed hypoxia-induced docetaxel resistance in prostate cancer cells by preventing epithelial-mesenchymal transition by inhibiting hypoxia-inducible factor 1 α. Biomed Res Int 2018; 2018: 4174232.
[http://dx.doi.org/10.1155/2018/4174232]
[8]
Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J. Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 2017; 86: 324-33.
[http://dx.doi.org/10.1016/j.biopha.2016.12.036] [PMID: 28011380]
[9]
Tan Z, Peng A, Xu J, Ouyang M. Propofol enhances BCR-ABL TKIs’ inhibitory effects in chronic myeloid leukemia through Akt/mTOR suppression. BMC Anesthesiol 2017; 17(1): 132.
[http://dx.doi.org/10.1186/s12871-017-0423-2] [PMID: 28962554]
[10]
Sun Y, Peng YB, Ye LL, Ma LX, Zou MY, Cheng ZG. Propofol inhibits proliferation and cisplatin resistance in ovarian cancer cells through regulating the microRNA 374a/forkhead box O1 signaling axis. Mol Med Rep 2020; 21(3): 1471-80.
[http://dx.doi.org/10.3892/mmr.2020.10943] [PMID: 32016462]
[11]
Zhang J, Wu G, Zhang Y, Feng Z, Zhu S. Propofol induces apoptosis of hepatocellular carcinoma cells by upregulation of microRNA-199a expression. Cell Biol Int 2013; 37(3): 227-32.
[http://dx.doi.org/10.1002/cbin.10034] [PMID: 23319430]
[12]
Wang ZT, Gong HY, Zheng F, Liu DJ, Dong TL. Propofol suppresses proliferation and invasion of pancreatic cancer cells by upregulat-ing microRNA-133a expression. Genet Mol Res 2015; 14(3): 7529-37.
[http://dx.doi.org/10.4238/2015.July.3.28] [PMID: 26214431]
[13]
Zhang YF, Li CS, Zhou Y, Lu XH. Propofol facilitates cisplatin sensitivity via lncRNA MALAT1/miR-30e/ATG5 axis through suppress-ing autophagy in gastric cancer. Life Sci 2020; 244: 117280.
[http://dx.doi.org/10.1016/j.lfs.2020.117280] [PMID: 31926239]
[14]
Tian D, Tian M, Ma Z, Zhang L, Cui Y, Li J. Anesthetic propofol epigenetically regulates breast cancer trastuzumab resistance through IL-6/miR-149-5p axis. Sci Rep 2020; 10(1): 8858.
[http://dx.doi.org/10.1038/s41598-020-65649-y] [PMID: 32483313]
[15]
Yu H, Ma M, Wang X, Zhou Z, Li R, Guo Q. Propofol suppresses proliferation, invasion, and migration of human melanoma cells via regulating microRNA‐137 and fibroblast growth factor 9. J Cell Physiol 2019; 234(12): 23279-88.
[http://dx.doi.org/10.1002/jcp.28896] [PMID: 31134615]
[16]
Zeng J, Li YK, Quan FF, et al. Propofol induced miR 125a 5p inhibits the proliferation and metastasis of ovarian cancer by suppressing LIN28B. Mol Med Rep 2020; 22(2): 1507-17.
[http://dx.doi.org/10.3892/mmr.2020.11223] [PMID: 32627014]
[17]
Li F, Li F, Chen W. Propofol inhibits cell proliferation, migration, and invasion via miR-410-3p/transforming growth factor-b receptor type 2 (TGFBR2) axis in glioma. Med Sci Monit 2020; 26: 26.
[http://dx.doi.org/10.12659/MSM.919523]
[18]
Wu X, Li X, Xu G. Propofol suppresses the progression of non small cell lung cancer via downregulation of the miR 21 5p/MAPK10 axis. Oncol Rep 2020; 44(2): 487-98.
[http://dx.doi.org/10.3892/or.2020.7619] [PMID: 32468043]
[19]
Du Y, Zhang X, Zhang H, et al. Propofol modulates the proliferation, invasion and migration of bladder cancer cells through the miR 145 5p/TOP2A axis. Mol Med Rep 2021; 23(6): 439.
[http://dx.doi.org/10.3892/mmr.2021.12078] [PMID: 33846791]
[20]
Sun H, Gao D. Propofol suppresses growth, migration and invasion of A549 cells by down-regulation of miR-372. BMC Cancer 2018; 18(1): 1252.
[http://dx.doi.org/10.1186/s12885-018-5175-y] [PMID: 30547768]
[21]
Bai ZM, Li XF, Yang Y, Yang YF, Lv DR, Tang LL. Propofol inhibited gastric cancer proliferation via the hsa-miR-328-3p/STAT3 path-way. Clin Transl Oncol 2021; 23(9): 1866-73.
[http://dx.doi.org/10.1007/s12094-021-02595-9] [PMID: 33772723]
[22]
Huang X, Teng Y, Yang H, Ma J. Propofol inhibits invasion and growth of ovarian cancer cells via regulating miR-9/NF-κB signal. Braz J Med Biol Res 2016; 49(12): e5717.
[http://dx.doi.org/10.1590/1414-431x20165717] [PMID: 27982283]
[23]
Li Y, Zeng QG, Qiu JL, Pang T, Wang H, Zhang XX. Propofol suppresses migration, invasion, and epithelial-mesenchymal transition in papillary thyroid carcinoma cells by regulating miR-122 expression. Eur Rev Med Pharmacol Sci 2020; 24(9): 5101-10.
[PMID: 32432774]
[24]
Peng Z, Zhang Y. Propofol inhibits proliferation and accelerates apoptosis of human gastric cancer cells by regulation of microRNA-451 and MMP-2 expression. Genet Mol Res 2016; 15(2)
[http://dx.doi.org/10.4238/gmr.15027078] [PMID: 27173190]
[25]
Sui H, Zhu C, Li Z, Yang J. Propofol suppresses gastric cancer tumorigenesis by modulating the circular RNA PVT1/miR 195 5p/E26 oncogene homolog 1 axis. Oncol Rep 2020; 44(4): 1736-46.
[http://dx.doi.org/10.3892/or.2020.7725] [PMID: 32945521]
[26]
Xu J, Xu W, Zhu J. Propofol suppresses proliferation and invasion of glioma cells by upregulating microRNA-218 expression. Mol Med Rep 2015; 12(4): 4815-20.
[http://dx.doi.org/10.3892/mmr.2015.4014] [PMID: 26133092]
[27]
Ye Z, Jingzhong L, Yangbo L, Lei C, Jiandong Y. Propofol inhibits proliferation and invasion of osteosarcoma cells by regulation of microRNA-143 expression. Oncol Res 2014; 21(4): 201-7.
[http://dx.doi.org/10.3727/096504014X13890370410203] [PMID: 24762226]
[28]
Zhang J, Zhang D, Wu GQ, Feng ZY, Zhu SM. Propofol inhibits the adhesion of hepatocellular carcinoma cells by upregulating mi-croRNA-199a and downregulating MMP-9 expression. Hepatobiliary Pancreat Dis Int 2013; 12(3): 305-9.
[http://dx.doi.org/10.1016/S1499-3872(13)60048-X] [PMID: 23742776]
[29]
Zhang W, Wang Y, Zhu Z, Zheng Y, Song B. RETRACTED: Propofol inhibits proliferation, migration and invasion of gastric cancer cells by up-regulating microRNA-195. Int J Biol Macromol 2018 120(Pt A): 975-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.173] [PMID: 30171944]
[30]
Leopold PL, Vincent J, Wang H. A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol 2012; 22(5-6): 471-83.
[http://dx.doi.org/10.1016/j.semcancer.2012.07.003] [PMID: 22863788]
[31]
Benedetti I, Reyes N. Epithelial-mesenchymal transition in the progression of prostatic adenocarcinoma. Clinic Shadowy 2015; 420-33.
[32]
Wang Y, Shang Y. Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp Cell Res 2013; 319(2): 160-9.
[http://dx.doi.org/10.1016/j.yexcr.2012.07.019] [PMID: 22935683]
[33]
Moes M, Le Béchec A, Crespo I, et al. A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transition. PLoS One 2012; 7(4): e35440.
[http://dx.doi.org/10.1371/journal.pone.0035440] [PMID: 22514743]
[34]
Wu CY, Tsai YP, Wu MZ, Teng SC, Wu KJ. Epigenetic reprogramming and post-transcriptional regulation during the epithelial–mesenchymal transition. Trends Genet 2012; 28(9): 454-63.
[http://dx.doi.org/10.1016/j.tig.2012.05.005] [PMID: 22717049]
[35]
Liu F, Qiu F, Fu M, Chen H, Wang H. Propofol reduces epithelial to mesenchymal transition, invasion and migration of gastric cancer cells through the microrna-195-5p/snail axis. Med Sci Monit 2020; 26: e920981.
[http://dx.doi.org/10.12659/MSM.920981] [PMID: 32115570]
[36]
Gong T, Ning X, Deng Z, et al. Propofol‐induced miR‐219‐5p inhibits growth and invasion of hepatocellular carcinoma through sup-pression of GPC3‐mediated Wnt/β‐catenin signalling activation. J Cell Biochem 2019; 120(10): 16934-45.
[http://dx.doi.org/10.1002/jcb.28952] [PMID: 31104336]
[37]
Shi H, Yan C, Chen Y, Wang Z, Guo J, Pei H. Propofol inhibits the proliferation, migration, invasion and epithelial to mesenchymal tran-sition of renal cell carcinoma cells by regulating microRNA-363/Snail1. Am J Transl Res 2021; 13(4): 2256-69.
[PMID: 34017387]
[38]
Du Q, Zhang X, Zhang X, Wei M, Xu H, Wang S. Propofol inhibits proliferation and epithelial-mesenchymal transition of MCF-7 cells by suppressing miR-21 expression. Artif Cells Nanomed Biotechnol 2019; 47(1): 1265-71.
[http://dx.doi.org/10.1080/21691401.2019.1594000] [PMID: 30942630]
[39]
Liu WZ, Liu N. Propofol inhibits lung cancer a549 cell growth and epithelial-mesenchymal transition process by upregulation of mi-crorna-1284. Oncol Res 2018; 27(1): 1-8.
[http://dx.doi.org/10.3727/096504018X15172738893959] [PMID: 29402342]
[40]
Xu K, Tao W, Su Z. Propofol prevents IL-13-induced epithelial-mesenchymal transition in human colorectal cancer cells. Cell Biol Int 2018; 42(8): 985-93.
[http://dx.doi.org/10.1002/cbin.10964] [PMID: 29569786]
[41]
Park S, Chapuis N, Tamburini J, et al. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 2010; 95(5): 819-28.
[http://dx.doi.org/10.3324/haematol.2009.013797] [PMID: 19951971]
[42]
Morgensztern D, McLeod HL. PI3K/Akt/mTOR pathway as a target for cancer therapy. Anticancer Drugs 2005; 16(8): 797-803.
[http://dx.doi.org/10.1097/01.cad.0000173476.67239.3b] [PMID: 16096426]
[43]
Ye LL, Cheng ZG, Cheng XE, Huang YL. Propofol regulates miR-1-3p/IGF1 axis to inhibit the proliferation and accelerates apoptosis of colorectal cancer cells. Toxicol Res 2021; 10(4): 696-705.
[http://dx.doi.org/10.1093/toxres/tfab047] [PMID: 34745557]
[44]
Zheng X, Dong L, Zhao S, et al. Propofol affects non–small-cell lung cancer cell biology by regulating the miR-21/PTEN/AKT pathway in vitro and in vivo. Anesth Analg 2020; 131(4): 1270-80.
[http://dx.doi.org/10.1213/ANE.0000000000004778] [PMID: 32925348]
[45]
Li Y, Dong W, Yang H, Xiao G. Propofol suppresses proliferation and metastasis of colorectal cancer cells by regulating miR-124-3p.1/AKT3. Biotechnol Lett 2020; 42(3): 493-504.
[http://dx.doi.org/10.1007/s10529-019-02787-y] [PMID: 31894425]
[46]
Chen L, Wan Y, Liu Y, Li T. Propofol inhibits biological functions of leukaemia stem and differentiated cells through suppressing Wnt/β‐catenin and Akt/mTOR. Clin Exp Pharmacol Physiol 2020; 47(1): 127-34.
[http://dx.doi.org/10.1111/1440-1681.13167] [PMID: 31429973]
[47]
Zhang D, Zhou X, Zhang J, et al. Propofol promotes cell apoptosis via inhibiting HOTAIR mediated mTOR pathway in cervical cancer. Biochem Biophys Res Commun 2015; 468(4): 561-7.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.129] [PMID: 26523512]
[48]
Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002; 298(5600): 1911-2.
[http://dx.doi.org/10.1126/science.1072682] [PMID: 12471242]
[49]
Kang FC, Wang SC, So E, et al. Propofol may increase caspase and MAPK pathways, and suppress the Akt pathway to induce apoptosis in MA 10 mouse Leydig tumor cells. Oncol Rep 2019; 41(6): 3565-74.
[http://dx.doi.org/10.3892/or.2019.7129] [PMID: 31002349]
[50]
Xu Y-B, Du Q-H, Zhang M-Y, Yun P, He C-Y. Propofol suppresses proliferation, invasion and angiogenesis by down-regulating ERK-VEGF/MMP-9 signaling in Eca-109 esophageal squamous cell carcinoma cells. Eur Rev Med Pharmacol Sci 2013; 17(18): 2486-94.
[PMID: 24089228]
[51]
Miao Y, Zhang Y, Wan H, Chen L, Wang F. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed Pharmacother 2010; 64(9): 583-8.
[http://dx.doi.org/10.1016/j.biopha.2010.03.006] [PMID: 20888181]
[52]
Wu K-C, Yang S-T, Hsia T-C, et al. Suppression of cell invasion and migration by propofol are involved in down-regulating matrix met-alloproteinase-2 and p38 MAPK signaling in A549 human lung adenocarcinoma epithelial cells. Anticancer Res 2012; 32(11): 4833-42.
[PMID: 23155249]
[53]
Yarden Y. The EGFR family and its ligands in human cancer. Eur J Cancer 2001; 37(S4): 3-8.
[http://dx.doi.org/10.1016/S0959-8049(01)00230-1] [PMID: 11597398]
[54]
Li M, Qu L, Chen F, Zhu X. Propofol upregulates miR-320a and reduces HMGB1 by downregulating ANRIL to inhibit PTC cell malig-nant behaviors. Pathol Res Pract 2020; 216(4): 152856.
[http://dx.doi.org/10.1016/j.prp.2020.152856] [PMID: 32098696]
[55]
Du QH, Xu YB, Zhang MY, Yun P, He CY. Propofol induces apoptosis and increases gemcitabine sensitivity in pancreatic cancer cells in vitro by inhibition of nuclear factor-κB activity. World J Gastroenterol 2013; 19(33): 5485-92.
[http://dx.doi.org/10.3748/wjg.v19.i33.5485] [PMID: 24023491]
[56]
Ring A, Kim YM, Kahn M. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev 2014; 10(4): 512-25.
[http://dx.doi.org/10.1007/s12015-014-9515-2] [PMID: 24825509]
[57]
Ou W, Lv J, Zou X, Yao Y, Wu J, Yang J. Propofol inhibits hepatocellular carcinoma growth and invasion through the HMGA2-mediated Wnt/β-catenin pathway. Exp Ther Med 2017; 13(5): 2501.
[http://dx.doi.org/10.3892/etm.2017.4253] [PMID: 28565871]
[58]
Du Q, Liu J, Zhang X, et al. Propofol inhibits proliferation, migration, and invasion but promotes apoptosis by regulation of Sox4 in endometrial cancer cells. Braz J Med Biol Res 2018; 51(4): e6803.
[http://dx.doi.org/10.1590/1414-431x20176803] [PMID: 29490000]
[59]
Yu B, Gao W, Zhou H, et al. Propofol induces apoptosis of breast cancer cells by downregulation of miR-24 signal pathway. Cancer Biomark 2018; 21(3): 513-9.
[http://dx.doi.org/10.3233/CBM-170234] [PMID: 29103019]
[60]
Yang N, Liang Y, Yang P, Yang T, Jiang L. Propofol inhibits lung cancer cell viability and induces cell apoptosis by upregulating mi-croRNA-486 expression. Braz J Med Biol Res 2017; 50(1): e5794.
[http://dx.doi.org/10.1590/1414-431x20165794] [PMID: 28076456]
[61]
Gao M, Guo R, Lu X, Xu G, Luo S. Propofol suppresses hypoxia‐induced esophageal cancer cell migration, invasion, and EMT through regulating lncRNA TMPO‐AS1 /miR ‐498 axis. Thorac Cancer 2020; 11(9): 2398-405.
[http://dx.doi.org/10.1111/1759-7714.13534] [PMID: 32643321]
[62]
Zhao A, Liu Y. Propofol suppresses colorectal cancer development by the circ-PABPN1/miR-638/SRSF1 axis. Anal Biochem 2021; 631(317): 114354.
[http://dx.doi.org/10.1016/j.ab.2021.114354] [PMID: 34453920]
[63]
Ren YL, Zhang W. Propofol promotes apoptosis of colorectal cancer cells via alleviating the suppression of lncRNA HOXA11-AS on miRNA let-7i. Biochem Cell Biol 2020; 98(2): 90-8.
[http://dx.doi.org/10.1139/bcb-2018-0235] [PMID: 31013434]
[64]
Song F, Liu J, Feng Y, Jin Y. Propofol induced HOXA11 AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR 4458. Int J Mol Med 2020; 46(3): 1135-45.
[http://dx.doi.org/10.3892/ijmm.2020.4667] [PMID: 32705160]
[65]
Wang D, Xing N, Yang T, et al. Exosomal lncRNA H19 promotes the progression of hepatocellular carcinoma treated with Propofol via miR‐520a‐3p/LIMK1 axis. Cancer Med 2020; 9(19): 7218-30.
[http://dx.doi.org/10.1002/cam4.3313] [PMID: 32767662]
[66]
Zhang L, Chen H, Tian C, Zheng D. Propofol represses cell growth and metastasis by modulating the circular rna non-smc condensin i complex subunit g/microrna-200a-3p/rab5a axis in glioma. World Neurosurg 2021; 153: e46-58.
[http://dx.doi.org/10.1016/j.wneu.2021.06.036] [PMID: 34129971]
[67]
Zhao H, Wei H, He J, et al. Propofol disrupts cell carcinogenesis and aerobic glycolysis by regulating circTADA2A/miR-455-3p/FOXM1 axis in lung cancer. Cell Cycle 2020; 19(19): 2538-52.
[http://dx.doi.org/10.1080/15384101.2020.1810393] [PMID: 32857667]
[68]
Lu H, Zheng G, Gao X, Chen C, Zhou M, Zhang L. Propofol suppresses cell viability, cell cycle progression and motility and induces cell apoptosis of ovarian cancer cells through suppressing MEK/ERK signaling via targeting circVPS13C/miR-145 axis. J Ovarian Res 2021; 14(1): 30.
[http://dx.doi.org/10.1186/s13048-021-00775-3] [PMID: 33563314]
[69]
Wang H, Jiao H, Jiang Z, Chen R. Propofol inhibits migration and induces apoptosis of pancreatic cancer PANC-1 cells through miR-34a-mediated E-cadherin and LOC285194 signals. Bioengineered 2020; 11(1): 510-21.
[http://dx.doi.org/10.1080/21655979.2020.1754038] [PMID: 32303144]
[70]
Liu YP, Heng JY, Zhao XY, Li EY. The inhibition of circular RNA circNOLC1 by propofol/STAT3 attenuates breast cancer stem cells function via miR-365a-3p/STAT3 signaling. J Transl Med 2021; 19(1): 467.
[http://dx.doi.org/10.1186/s12967-021-03133-5] [PMID: 34789263]
[71]
Melo SA, Sugimoto H, O’Connell JT, Kato N, Villanueva A, Vidal A. Cancer exosomes perform cell-independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell 2014; 26(5): 707.
[http://dx.doi.org/10.1016/j.ccell.2014.09.005]
[72]
Zhang J, Shan W, Jin T, et al. Propofol exerts anti-hepatocellular carcinoma by microvesicle-mediated transfer of miR-142-3p from mac-rophage to cancer cells. J Transl Med 2014; 12(1): 279.
[http://dx.doi.org/10.1186/s12967-014-0279-x] [PMID: 25292173]
[73]
Buschmann D, Brandes F, Lindemann A, et al. Propofol and sevoflurane differentially impact micrornas in circulating extracellular vesi-cles during colorectal cancer resection. Anesthesiology 2020; 132(1): 107-20.
[http://dx.doi.org/10.1097/ALN.0000000000002986] [PMID: 31596735]
[74]
Perry NJS, Buggy D, Ma D. Can anesthesia influence cancer outcomes after surgery? JAMA Surg 2019; 154(4): 279-80.
[http://dx.doi.org/10.1001/jamasurg.2018.4619] [PMID: 30649136]
[75]
Sakamoto A, Imai J, Nishikawa A, et al. Influence of inhalation anesthesia assessed by comprehensive gene expression profiling. Gene 2005; 356: 39-48.
[http://dx.doi.org/10.1016/j.gene.2005.03.022] [PMID: 15967596]
[76]
Kobayashi K, Takemori K, Sakamoto A. Circadian gene expression is suppressed during sevoflurane anesthesia and the suppression persists after awakening. Brain Res 2007; 1185: 1-7.
[http://dx.doi.org/10.1016/j.brainres.2007.09.011] [PMID: 17942082]
[77]
Nakazato K, Yoshida Y, Takemori K, Kobayashi K, Sakamoto A. Expressions of genes encoding drug-metabolizing enzymes are altered after sevoflurane, isoflurane, propofol or dexmedetomidine anesthesia. Biomed Res 2009; 30(1): 17-24.
[http://dx.doi.org/10.2220/biomedres.30.17] [PMID: 19265259]
[78]
Guo NL. zhang JX, Wu JP, Xu YH. Isoflurane promotes glucose metabolism through up-regulation of miR-21 and suppresses mitochon-drial oxidative phosphorylation in ovarian cancer cells. Biosci Rep 2017; 37(6): BSR20170818.
[http://dx.doi.org/10.1042/BSR20170818] [PMID: 28951521]
[79]
He J, Zhao H, Liu X, et al. Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome mediated circ HMGCS1 via the miR 34a 5p/SGPP1 axis. Oncol Rep 2020; 44(6): 2429-42.
[http://dx.doi.org/10.3892/or.2020.7783] [PMID: 33125091]
[80]
Zhao H, Xing F, Yuan J, Li Z, Zhang W. Sevoflurane inhibits migration and invasion of glioma cells via regulating miR-34a-5p/MMP-2 axis. Life Sci 2020; 256: 117897.
[http://dx.doi.org/10.1016/j.lfs.2020.117897] [PMID: 32502543]
[81]
Ishikawa M, Iwasaki M, Zhao H, et al. Sevoflurane and desflurane exposure enhanced cell proliferation and migration in ovarian cancer cells via mir-210 and mir-138 downregulation. Int J Mol Sci 2021; 22(4): 1826.
[http://dx.doi.org/10.3390/ijms22041826] [PMID: 33673181]
[82]
Ren J, Wang X, Wei G, Meng Y. Exposure to desflurane anesthesia confers colorectal cancer cells metastatic capacity through deregulation of miR-34a/LOXL3. Eur J cancer Prev Off J Eur Cancer Prev Organ 2021; 30(2): 143-53.
[http://dx.doi.org/10.1097/CEJ.0000000000000608] [PMID: 32658033]
[83]
Ishikawa M, Iwasaki M, Zhao H, et al. Inhalational anesthetics inhibit neuroglioma cell proliferation and migration via miR-138, -210 and -335. Int J Mol Sci 2021; 22(9): 4355.
[http://dx.doi.org/10.3390/ijms22094355] [PMID: 33919449]
[84]
Wang J, Cheng C, Lu Y, Sun S, Huang S. Volatile anesthetics regulate anti-cancer relevant signaling. Front Oncol 2021; 11: 610514.
[http://dx.doi.org/10.3389/fonc.2021.610514] [PMID: 33718164]
[85]
Yang Z, Li K, Liang Q, Zheng G, Zhang S, Lao X. Elevated hydrostatic pressure promotes ameloblastoma cell invasion through upregulation of MMP-2 and MMP-9 expression via Wnt/β-catenin signalling. J oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol 2018; 47(9): 836-46.
[http://dx.doi.org/10.1111/jop.12761] [PMID: 29964338]
[86]
Zhang L, Wang J, Fu Z, et al. RETRACTED ARTICLE: Sevoflurane suppresses migration and invasion of glioma cells by regulating miR-146b-5p and MMP16. Artif Cells Nanomed Biotechnol 2019; 47(1): 3306-14.
[http://dx.doi.org/10.1080/21691401.2019.1648282] [PMID: 31385537]
[87]
Zhan X, Lei C, Yang L. Sevoflurane inhibits cell proliferation and migration of glioma by targeting the miR 27b/VEGF axis. Mol Med Rep 2021; 23(6): 408.
[http://dx.doi.org/10.3892/mmr.2021.12047] [PMID: 33786635]
[88]
Gao C, Shen J, Meng ZX, He XF. Sevoflurane inhibits glioma cells proliferation and metastasis through miRNA-124-3p/ROCK1 axis. Pathol Oncol Res 2020; 26(2): 947-54.
[http://dx.doi.org/10.1007/s12253-019-00597-1] [PMID: 30915607]
[89]
Fan L, Wu Y, Wang J, He J, Han X. Sevoflurane inhibits the migration and invasion of colorectal cancer cells through regulating ERK/MMP-9 pathway by up-regulating miR-203. Eur J Pharmacol 2019; 850: 43-52.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.025] [PMID: 30685432]
[90]
Li Y, Zeng Q-G, Qiu J-L, Pang T, Wang H, Zhang X-X. Sevoflurane inhibits the progression of PTC by downregulating miR-155. Eur Rev Med Pharmacol Sci 2019; 23(15): 6579-87.
[PMID: 31378899]
[91]
Tiron CE, Patrașcanu E, Postu PA, Vacarean Trandafir IC, Tiron A, Grigoras I. Sevoflurane modulates AKT isoforms in triple negative breast cancer cells. an experimental study. Curr Issues Mol Biol 2021; 43(1): 264-75.
[http://dx.doi.org/10.3390/cimb43010022] [PMID: 34199634]
[92]
Wu Q, Shang Y, Shen T, Liu F, Xu Y, Wang H. Neuroprotection of miR-214 against isoflurane-induced neurotoxicity involves the PTEN/PI3K/Akt pathway in human neuroblastoma cell line SH-SY5Y. Arch Biochem Biophys 2019; 678: 108181.
[http://dx.doi.org/10.1016/j.abb.2019.108181] [PMID: 31704096]
[93]
Cao Y, Lv W, Ding W, Li J. Sevoflurane inhibits the proliferation and invasion of hepatocellular carcinoma cells through regulating the PTEN/Akt/GSK 3β/β catenin signaling pathway by downregulating miR 25 3p. Int J Mol Med 2020; 46(1): 97-106.
[http://dx.doi.org/10.3892/ijmm.2020.4577] [PMID: 32319540]
[94]
Song G, Tian L, Cheng Y, et al. Antitumor activity of sevoflurane in HCC cell line is mediated by miR‐29a‐induced suppression of Dnmt3a. J Cell Biochem 2019; 120(10): 18152-61.
[http://dx.doi.org/10.1002/jcb.29121] [PMID: 31190353]
[95]
Zhao Z, Wu Q, Cheng J, Qiu X, Zhang J, Fan H. Depletion of DNMT3A suppressed cell proliferation and restored PTEN in hepatocellu-lar carcinoma cell. J Biomed Biotechnol 2010; 2010: 1-10.
[http://dx.doi.org/10.1155/2010/737535] [PMID: 20467490]
[96]
Starlard-Davenport A, Kutanzi K, Tryndyak V, Word B, Lyn-Cook B. Restoration of the methylation status of hypermethylated gene promoters by microRNA-29b in human breast cancer: A novel epigenetic therapeutic approach. J Carcinog 2013; 12(1): 15.
[http://dx.doi.org/10.4103/1477-3163.115720] [PMID: 23961262]
[97]
Wang L, Yao J, Sun H, et al. MicroRNA-101 suppresses progression of lung cancer through the PTEN/AKT signaling pathway by target-ing DNA methyltransferase 3A. Oncol Lett 2017; 13(1): 329-38.
[http://dx.doi.org/10.3892/ol.2016.5423] [PMID: 28123563]
[98]
Liu J, Yang L, Guo X, et al. Sevoflurane suppresses proliferation by upregulating microRNA-203 in breast cancer cells. Mol Med Rep 2018; 18(1): 455-60.
[http://dx.doi.org/10.3892/mmr.2018.8949] [PMID: 29750301]
[99]
Yi W, Li D, Guo Y, Zhang Y, Huang B, Li X. Sevoflurane inhibits the migration and invasion of glioma cells by upregulating microRNA-637. Int J Mol Med 2016; 38(6): 1857-63.
[http://dx.doi.org/10.3892/ijmm.2016.2797] [PMID: 27840895]
[100]
Liang H, Gu M, Yang C, Wang H, Wen X, Zhou Q. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth 2012; 26(3): 381-92.
[http://dx.doi.org/10.1007/s00540-011-1317-y] [PMID: 22349744]
[101]
Kang K, Wang Y. Sevoflurane inhibits proliferation and invasion of human ovarian cancer cells by regulating JNK and p38 MAPK sig-naling pathway. Drug Des Devel Ther 2019; 13: 4451-60.
[http://dx.doi.org/10.2147/DDDT.S223581] [PMID: 32021086]
[102]
Qiu H, Chen F, Chen M. MicroRNA-138 negatively regulates the hypoxia-inducible factor 1α to suppress melanoma growth and metasta-sis. Biol Open 2019; 8(8): bio042937.
[http://dx.doi.org/10.1242/bio.042937] [PMID: 31371307]
[103]
Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat Immunol 2014; 15(4): 393-401.
[http://dx.doi.org/10.1038/ni.2846] [PMID: 24608041]
[104]
Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010; 141(1): 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[105]
Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1α (HIF-1α) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol 2006; 78(3): 233-47.
[http://dx.doi.org/10.1007/s11060-005-9103-z] [PMID: 16612574]
[106]
Li R, Huang Y, Lin J. Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat Commun 2020; 11(1): 642.
[http://dx.doi.org/10.1038/s41467-019-14065-6] [PMID: 32005799]
[107]
Gao Y, Ma H, Hou D. Sevoflurane represses proliferation and migration of glioma cells by regulating the ANRIL/let-7b-5p axis. Cancer Biother Radiopharm 2020; cbr.2020.3596
[http://dx.doi.org/10.1089/cbr.2020.3596] [PMID: 32822241]
[108]
Yang B, Qian F, Li W, Li Y, Han Y. Effects of general anesthesia with or without epidural block on tumor metastasis and mechanisms. Oncol Lett 2018; 15(4): 4662-8.
[http://dx.doi.org/10.3892/ol.2018.7870] [PMID: 29541238]
[109]
Fan X, Wang D, Chen X, Wang R. Effects of anesthesia on postoperative recurrence and metastasis of malignant tumors. Cancer Manag Res 2020; 12: 7619-33.
[http://dx.doi.org/10.2147/CMAR.S265529] [PMID: 32922072]
[110]
Hua FZ, Ying J, Zhang J, et al. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int J Mol Med 2016; 38(4): 1271-80.
[http://dx.doi.org/10.3892/ijmm.2016.2715] [PMID: 27572468]
[111]
Ruan X, Jiang W, Cheng P, et al. Volatile anesthetics sevoflurane targets leukemia stem/progenitor cells via Wnt/β-catenin inhibition. Biomed Pharmacother 2018; 107: 1294-301.
[http://dx.doi.org/10.1016/j.biopha.2018.08.063] [PMID: 30257344]
[112]
Hu N, Duan JA, Yu Y, Li D, Chen J, Yan H. Sevoflurane inhibits the migration, invasion and induces apoptosis by regulating the expres-sion of WNT1 via miR-637 in colorectal cancer. Anticancer Drugs 2021; 32(5): 537-47.
[http://dx.doi.org/10.1097/CAD.0000000000001061] [PMID: 33735116]
[113]
Chen M, Zhou L, Liao Z, et al. Sevoflurane inhibited osteosarcoma cell proliferation and invasion via targeting miR-203/WNT2B/Wnt/β-catenin axis. Cancer Manag Res 2019; 11: 9505-15.
[http://dx.doi.org/10.2147/CMAR.S225911] [PMID: 31814757]
[114]
Su G, Yan Z, Deng M. Sevoflurane inhibits proliferation, invasion, but enhances apoptosis of lung cancer cells by Wnt/β-catenin signal-ing via regulating lncRNA PCAT6/miR-326 axis. Open Life Sci 2020; 15(1): 159-72.
[http://dx.doi.org/10.1515/biol-2020-0017] [PMID: 33987473]
[115]
Privette VLM, McClaine R, Wagh PK, Wikenheiser-Brokamp KA, Waltz SE, Wells SI. The human DEK oncogene stimulates β-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene 2011; 30(24): 2741-52.
[http://dx.doi.org/10.1038/onc.2011.2] [PMID: 21317931]
[116]
Qi Y, Guo L, Liu Y, Zhao T, Liu X, Zhang Y. Sevoflurane limits glioma progression by regulating cell proliferation, apoptosis, migra-tion, and invasion via miR-218-5p/DEK/β-catenin axis in glioma. Cancer Manag Res 2021; 13: 2057-69.
[http://dx.doi.org/10.2147/CMAR.S265356] [PMID: 33664593]
[117]
Chen H, Zhu X-M, Luo Z-L, Hu Y-J, Cai X-C, Gu Q-H. Sevoflurane induction alleviates the progression of gastric cancer by upregulat-ing the miR-34a/TGIF2 axis. Eur Rev Med Pharmacol Sci 2020; 24(22): 11883-90.
[PMID: 33275259]
[118]
Xu W, Xue R, Xia R, et al. Sevoflurane impedes the progression of glioma through modulating the circular RNA has_circ_0012129/miR-761/TGIF2 axis. Eur Rev Med Pharmacol Sci 2020; 24(10): 5534-48.
[PMID: 32495888]
[119]
Imoto I, Pimkhaokham A, Watanabe T, Saito-Ohara F, Soeda E, Inazawa J. Amplification and overexpression of TGIF2, a novel homeo-box gene of the TALE superclass, in ovarian cancer cell lines. Biochem Biophys Res Commun 2000; 276(1): 264-70.
[http://dx.doi.org/10.1006/bbrc.2000.3449] [PMID: 11006116]
[120]
Diao Y, Jin B, Huang L, Zhou W. MiR‐129‐5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2. J Cell Mol Med 2018; 22(4): 2357-67.
[http://dx.doi.org/10.1111/jcmm.13529] [PMID: 29431269]
[121]
Zhiping C, Shijun T, Linhui W, Yapei W, Lianxi Q, Qiang D. MiR-181a promotes epithelial to mesenchymal transition of prostate cancer cells by targeting TGIF2. Eur Rev Med Pharmacol Sci 2017; 21(21): 4835-43.
[PMID: 29164579]
[122]
Gao C, Xu Y-J, Qi L, Bao Y-F, Zhang L, Zheng L. CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and mul-tiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol 2022; 38(5): 825-45.
[PMID: 34018092]
[123]
Iwasaki M, Zhao H, Jaffer T, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget 2016; 7(18): 26042-56.
[http://dx.doi.org/10.18632/oncotarget.8304] [PMID: 27028996]
[124]
Paterson HM. Continuous intravenous lidocaine infusion for postoperative pain and recovery in adults. Tech Coloproctol 2019; 23: 69-71.
[http://dx.doi.org/10.1007/s10151-018-1890-2]
[125]
Dunn LK, Durieux ME. Perioperative use of intravenous lidocaine. Anesthesiology 2017; 126(4): 729-37.
[http://dx.doi.org/10.1097/ALN.0000000000001527] [PMID: 28114177]
[126]
Malo-Manso A, Raigon-Ponferrada A, Diaz-Crespo J, Escalona-Belmonte JJ, Cruz-Mañas J, Guerrero-Orriach JL. Opioid free anaesthesia and cancer. Curr Pharm Des 2019; 25(28): 3011-9.
[http://dx.doi.org/10.2174/1381612825666190705183754] [PMID: 31298153]
[127]
Weibel S, Jelting Y, Pace NL, Helf A, Eberhart LHJ, Hahnenkamp K. Continuous intravenous perioperative lidocaine infusion for post-operative pain and recovery in adults. Cochrane Database Syst Rev 2018; 2018(6)
[http://dx.doi.org/10.1002/14651858.CD009642.pub3]
[128]
Wall TP, Buggy DJ. Perioperative intravenous lidocaine and metastatic cancer recurrence - A narrative review. Front Oncol 2021; 11: 688896.
[http://dx.doi.org/10.3389/fonc.2021.688896] [PMID: 34408981]
[129]
Müller SD, Ziegler JSH, Piegeler T. Local anesthetics and recurrence after cancer surgery-what’s new? a narrative review. J Clin Med 2021; 10(4): 719.
[http://dx.doi.org/10.3390/jcm10040719] [PMID: 33670434]
[130]
Grandhi RK, Perona B. Mechanisms of action by which local anesthetics reduce cancer recurrence: A systematic review. Pain Med 2020; 21(2): 401-14.
[PMID: 31282958]
[131]
Kuo L, Chang HC, Leu TH, Maa MC, Hung WC. Src oncogene activates MMP-2 expression via the ERK/Sp1 pathway. J Cell Physiol 2006; 207(3): 729-34.
[http://dx.doi.org/10.1002/jcp.20616] [PMID: 16453304]
[132]
Hu G, Minshall RD. Regulation of transendothelial permeability by Src Kinase. Microvasc Res 2009; 77(1): 21-5.
[http://dx.doi.org/10.1016/j.mvr.2008.10.002] [PMID: 19027754]
[133]
Liu G, Vogel SM, Gao X, et al. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arterioscler Thromb Vasc Biol 2011; 31(6): 1342-50.
[http://dx.doi.org/10.1161/ATVBAHA.110.222208] [PMID: 21474822]
[134]
Piegeler T, Schläpfer M, Dull RO, et al. Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase. Br J Anaesth 2015; 115(5): 784-91.
[http://dx.doi.org/10.1093/bja/aev341] [PMID: 26475807]
[135]
Piegeler T, Votta-Velis EG, Bakhshi FR, et al. Endothelial barrier protection by local anesthetics: ropivacaine and lidocaine block tumor necrosis factor-α-induced endothelial cell Src activation. Anesthesiology 2014; 120(6): 1414-28.
[http://dx.doi.org/10.1097/ALN.0000000000000174] [PMID: 24525631]
[136]
Piegeler T, Votta-Velis EG, Liu G, et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade. Anesthesiology 2012; 117(3): 548-59.
[http://dx.doi.org/10.1097/ALN.0b013e3182661977] [PMID: 22846676]
[137]
Blumenthal S, Borgeat A, Pasch T, et al. Ropivacaine decreases inflammation in experimental endotoxin-induced lung injury. Anesthesiology 2006; 104(5): 961-9.
[http://dx.doi.org/10.1097/00000542-200605000-00012] [PMID: 16645448]
[138]
Wall TP, Crowley PD, Sherwin A, Foley AG, Buggy DJ. Effects of lidocaine and Src inhibition on metastasis in a murine model of breast cancer surgery. Cancers 2019; 11(10): 1414.
[http://dx.doi.org/10.3390/cancers11101414] [PMID: 31546727]
[139]
Ediriweera MK, Tennekoon KH, Samarakoon SR. Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer: Biological and therapeutic significance. Semin Cancer Biol 2019; 59: 147-60.
[http://dx.doi.org/10.1016/j.semcancer.2019.05.012] [PMID: 31128298]
[140]
Zhang X, Pang W, Liu H, Wang J. Lidocine potentiates the cytotoxicity of 5‐fluorouracil to choriocarcinoma cells by downregulating ABC transport proteins expression. J Cell Biochem 2019; 120(10): 16533-42.
[http://dx.doi.org/10.1002/jcb.28913] [PMID: 31081972]
[141]
Yang Q, Zhang Z, Xu H, Ma C. Lidocaine alleviates cytotoxicity-resistance in lung cancer A549/DDP cells via down-regulation of miR-21. Mol Cell Biochem 2019; 456(1-2): 63-72.
[http://dx.doi.org/10.1007/s11010-018-3490-x] [PMID: 30644017]
[142]
Zhang N, Xing X, Gu F, Zhou G, Liu X, Li B. Ropivacaine inhibits the growth, migration and invasion of gastric cancer through attenua-tion of WEE1 and PI3K/AKT Signaling via miR-520a-3p. OncoTargets Ther 2020; 13: 5309-21.
[http://dx.doi.org/10.2147/OTT.S244550] [PMID: 32606749]
[143]
Wang Z, Liu Q, Lu J, Cao J, Wang XY, Chen Y. Lidocaine promotes autophagy of SH-SY5Y cells through inhibiting PI3K/AKT/mTOR pathway by upregulating miR-145. Toxicol Res 2020; 9(4): 467-73.
[http://dx.doi.org/10.1093/toxres/tfaa049] [PMID: 32905277]
[144]
Zhang X, Gu G, Li X, Zhang C. Lidocaine alleviates cisplatin resistance and inhibits migration of MGC-803/DDP cells through decreas-ing miR-10b. Cell Cycle 2020; 19(19): 2530-7.
[http://dx.doi.org/10.1080/15384101.2020.1809914] [PMID: 32892697]
[145]
Wang L-Y, Li X, Han Y-Z. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modula-tion of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells. Int J Clin Exp Med 2015; 8(9): 15065-75.
[PMID: 26628990]
[146]
Ma R, Wang X, Lu C, et al. Dexamethasone attenuated bupivacaine-induced neuron injury in vitro through a threonine–serine protein kinase B-dependent mechanism. Neuroscience 2010; 167(2): 329-42.
[http://dx.doi.org/10.1016/j.neuroscience.2009.12.049] [PMID: 20038443]
[147]
Beigh MA, Showkat M, Bashir B, Bashir A. Growth inhibition by bupivacaine is associated with inactivation of ribosomal protein S6 kinase 1. Biomed Res Int 2014; 2014: 831845.
[http://dx.doi.org/10.1155/2014/831845] [PMID: 24605337]
[148]
Maurice JM, Gan Y, Ma F, Chang Y, Hibner M, Huang Y. Bupivacaine causes cytotoxicity in mouse C2C12 myoblast cells: involvement of ERK and Akt signaling pathways. Acta Pharmacol Sin 2010; 31(4): 493-500.
[http://dx.doi.org/10.1038/aps.2010.20] [PMID: 20228829]
[149]
Guo J, Gong G, Zhang B. miR-539 acts as a tumor suppressor by targeting epidermal growth factor receptor in breast cancer. Sci Rep 2018; 8(1): 2073.
[http://dx.doi.org/10.1038/s41598-018-20431-z] [PMID: 29391441]
[150]
Sun H, Sun Y. Lidocaine inhibits proliferation and metastasis of lung cancer cell via regulation of miR-539/EGFR axis 2019; 47(1): 2866-74.
[http://dx.doi.org/10.1080/21691401.2019.1636807]
[151]
Qu X, Yang L, Shi Q, Wang X, Wang D, Wu G. Lidocaine inhibits proliferation and induces apoptosis in colorectal cancer cells by up-regulating mir-520a-3p and targeting EGFR. Pathol Res Pract 2018; 214(12): 1974-9.
[http://dx.doi.org/10.1016/j.prp.2018.09.012] [PMID: 30262429]
[152]
Ye L, Zhang Y, Chen YJ, Liu Q. Anti-tumor effects of lidocaine on human gastric cancer cells in vitro. Bratisl Med J 2019; 120(3): 212-7.
[http://dx.doi.org/10.4149/BLL_2019_036] [PMID: 31023040]
[153]
Xing W, Chen DT, Pan JH, et al. Lidocaine induces apoptosis and suppresses tumor growth in human hepatocellular carcinoma cells in vitro and in a xenograft model in vivo. Anesthesiology 2017; 126(5): 868-81.
[http://dx.doi.org/10.1097/ALN.0000000000001528] [PMID: 28121635]
[154]
Chang YC, Hsu YC, Liu CL, Huang SY, Hu MC, Cheng SP. Local anesthetics induce apoptosis in human thyroid cancer cells through the mitogen-activated protein kinase pathway. PLoS One 2014; 9(2): e89563.
[http://dx.doi.org/10.1371/journal.pone.0089563] [PMID: 24586874]
[155]
Yang W, Cai J, Zhang H, Wang G, Jiang W. Effects of lidocaine and ropivacaine on gastric cancer cells through down-regulation of ERK1/2 phosphorylation in vitro. Anticancer Res 2018; 38(12): 6729-35.
[http://dx.doi.org/10.21873/anticanres.13042] [PMID: 30504383]
[156]
Chen J, Jiao Z, Wang A, Zhong W. Lidocaine inhibits melanoma cell proliferation by regulating ERK phosphorylation. J Cell Biochem 2019; 120(4): 6402-8.
[http://dx.doi.org/10.1002/jcb.27927] [PMID: 30430626]
[157]
Lu J, Xu S, Zhang Q, Xu R, Lei H. Bupivacaine induces apoptosis via mitochondria and p38 MAPK dependent pathways. Eur J Pharmacol 2011; 657(1-3): 51-8.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.055] [PMID: 21315711]
[158]
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer 2013; 12(1): 86.
[http://dx.doi.org/10.1186/1476-4598-12-86] [PMID: 23915189]
[159]
Sui H, Lou A, Li Z, Yang J. Lidocaine inhibits growth, migration and invasion of gastric carcinoma cells by up-regulation of miR-145. BMC Cancer 2019; 19(1): 233.
[http://dx.doi.org/10.1186/s12885-019-5431-9] [PMID: 30876463]
[160]
Wang HL, Xing YQ, Xu YX, Rong F, Lei WF, Zhang WH. The protective effect of lidocaine on septic rats via the inhibition of high mo-bility group box 1 expression and NF-κB activation. Mediators Inflamm 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/570370] [PMID: 24371375]
[161]
Hatta M, Sirait RH, Ramli M, Islam A, Arief S. Systemic lidocaine inhibits high-mobility group box 1 messenger ribonucleic acid expres-sion and protein in BALB/c mice after closed fracture musculoskeletal injury. Saudi J Anaesth 2018; 12(3): 395-8.
[http://dx.doi.org/10.4103/sja.SJA_685_17] [PMID: 30100837]
[162]
Wang H-L, Liu Y-Y, Yan H-D, Wang X-S, Huang R, Lei W-F. Intraoperative systemic lidocaine inhibits the expression of HMGB1 in patients undergoing radical hysterectomy. Int J Clin Exp Med 2014; 7(10): 3398-403.
[PMID: 25419374]
[163]
Lahat A, Horin SB, Lang A, Fudim E, Picard O, Chowers Y. Lidocaine down-regulates nuclear factor-κB signalling and inhibits cytokine production and T cell proliferation. Clin Exp Immunol 2008; 152(2): 320-7.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03636.x] [PMID: 18355353]
[164]
Le Gac G, Angenard G, Clément B, Laviolle B, Coulouarn C, Beloeil H. Local anesthetics inhibit the growth of human hepatocellular carcinoma cells. Anesth Analg 2017; 125(5): 1600-9.
[http://dx.doi.org/10.1213/ANE.0000000000002429] [PMID: 28857796]
[165]
Ni J, Xie T, Xiao M, Xiang W, Wang L. Amide-linked local anesthetics preferentially target leukemia stem cell through inhibition of Wnt/β-catenin. Biochem Biophys Res Commun 2018; 503(2): 956-62.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.102] [PMID: 29932919]
[166]
Sun M, Huang S, Gao Y. Lidocaine inhibits the proliferation and metastasis of epithelial ovarian cancer through the Wnt/β-catenin path-way. Transl Cancer Res 2021; 10(7): 3479-90.
[http://dx.doi.org/10.21037/tcr-21-1047]
[167]
Fels B, Bulk E, Pethő Z, Schwab A. The role of TRP Channels in the metastatic cascade. Pharmaceuticals 2018; 11(2): 48.
[http://dx.doi.org/10.3390/ph11020048] [PMID: 29772843]
[168]
Lu J, Ju YT, Li C, Hua FZ, Xu GH, Hu YH. Effect of TRPV1 combined with lidocaine on cell state and apoptosis of U87-MG glioma cell lines. Asian Pac J Trop Med 2016; 9(3): 288-92.
[http://dx.doi.org/10.1016/j.apjtm.2016.01.030] [PMID: 26972404]
[169]
Jiang Y, Gou H, Zhu J, Tian S, Yu L. Lidocaine inhibits the invasion and migration of TRPV6-expressing cancer cells by TRPV6 down-regulation. Oncol Lett 2016; 12(2): 1164-70.
[http://dx.doi.org/10.3892/ol.2016.4709] [PMID: 27446413]
[170]
Leng TD, Li MH, Shen JF, et al. Suppression of TRPM7 inhibits proliferation, migration, and invasion of malignant human glioma cells. CNS Neurosci Ther 2015; 21(3): 252-61.
[http://dx.doi.org/10.1111/cns.12354] [PMID: 25438992]
[171]
Liu H, Dilger JP, Lin J. Lidocaine suppresses viability and migration of human breast cancer cells: TRPM7 as a target for some breast cancer cell lines. Cancers 2021; 13(2): 234.
[http://dx.doi.org/10.3390/cancers13020234]
[172]
Leng TD, Lin J, Sun HW, et al. Local anesthetic lidocaine inhibits TRPM7 current and TRPM7-mediated zinc toxicity. CNS Neurosci Ther 2015; 21(1): 32-9.
[http://dx.doi.org/10.1111/cns.12318] [PMID: 25169754]
[173]
Leng T, Lin S, Xiong Z, Lin J. Lidocaine suppresses glioma cell proliferation by inhibiting TRPM7 channels. Int J Physiol Pathophysiol Pharmacol 2017; 9(2): 8-15.
[PMID: 28533887]
[174]
Zhao L, Han S, Hou J, Shi W, Zhao Y, Chen Y. The local anesthetic ropivacaine suppresses progression of breast cancer by regulating miR-27b-3p/YAP axis. Aging 2021; 13(12): 16341-52.
[http://dx.doi.org/10.18632/aging.203160] [PMID: 34126594]
[175]
Chen X, Liu W, Guo X, Huang S, Song X. Ropivacaine inhibits cervical cancer cell growth via suppression of the miR 96/MEG2/pSTAT3 axis. Oncol Rep 2020; 43(5): 1659-68.
[http://dx.doi.org/10.3892/or.2020.7521] [PMID: 32323811]
[176]
Zhu J, Han S. Lidocaine inhibits cervical cancer cell proliferation and induces cell apoptosis by modulating the lncRNA-MEG3/miR-421/BTG1 pathway. Am J Transl Res 2019; 11(9): 5404-16.
[PMID: 31632519]
[177]
Zhao L, Ma N, Liu G, Mao N, Chen F, Li J. Lidocaine inhibits hepatocellular carcinoma development by modulating circ_ITCH/miR-421/CPEB3 axis. Dig Dis Sci 2021; 66(12): 4384-97.
[http://dx.doi.org/10.1007/s10620-020-06787-1] [PMID: 33433806]
[178]
Liu H, Cheng J, Xu H, Wan Z. Lidocaine has antitumor effect on hepatocellular carcinoma via the circ_DYNC1H1/miR-520a-3p/USP14 axis. Open Life Sci 2021; 16(1): 766-80.
[http://dx.doi.org/10.1515/biol-2021-0072] [PMID: 34435133]
[179]
Ju C, Zhou J, Miao H, Chen X, Zhang Q. Bupivacaine suppresses the progression of gastric cancer through regulating circ_0000376/miR-145-5p axis. BMC Anesthesiol 2020; 20(1): 275.
[http://dx.doi.org/10.1186/s12871-020-01179-4] [PMID: 33126850]
[180]
Li R, Xiao C, Liu H, Huang Y, Dilger JP, Lin J. Effects of local anesthetics on breast cancer cell viability and migration. BMC Cancer 2018; 18(1): 666.
[http://dx.doi.org/10.1186/s12885-018-4576-2] [PMID: 29914426]
[181]
Kim R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med 2018; 16(1): 8.
[http://dx.doi.org/10.1186/s12967-018-1389-7] [PMID: 29347949]
[182]
Wang N, Zhang Z, Lv J. Fentanyl inhibits proliferation and invasion via enhancing miR 302b expression in esophageal squamous cell carcinoma. Oncol Lett 2018; 16(1): 459-66.
[http://dx.doi.org/10.3892/ol.2018.8616] [PMID: 29928433]
[183]
Gong S, Ying L, Fan Y, Sun Z. Fentanyl inhibits lung cancer viability and invasion via upregulation of miR-331-3p and repression of HDAC5. OncoTargets Ther 2020; 13: 13131-41.
[http://dx.doi.org/10.2147/OTT.S281095] [PMID: 33380803]
[184]
Zhang X-L, Chen M-L, Zhou S-L. Fentanyl inhibits proliferation and invasion of colorectal cancer via β-catenin. Int J Clin Exp Pathol 2015; 8(1): 227-35.
[PMID: 25755709]
[185]
Luo J, Chen Y, Xu Y, Tang M, Zhang X. Morphine contributed to the deterioration of cancer via miR-543/MARCKS/FcγR-mediated phagocytosis pathway. J Pharm Pharmacol 2019; 71(10): 1584-98.
[http://dx.doi.org/10.1111/jphp.13146] [PMID: 31373006]
[186]
Gonzalez-Nunez V, Noriega-Prieto JA, Rodríguez RE. Morphine modulates cell proliferation through mir133b & mir128 in the neuro-blastoma SH-SY5Y cell line. Biochim Biophys Acta Mol Basis Dis 2014; 1842(4): 566-72.
[http://dx.doi.org/10.1016/j.bbadis.2014.01.003] [PMID: 24440526]
[187]
Zhang Y, Wei Y, Li X, et al. microRNA-874 suppresses tumor proliferation and metastasis in hepatocellular carcinoma by targeting the DOR/EGFR/ERK pathway. Cell Death Dis 2018; 9(2): 130.
[http://dx.doi.org/10.1038/s41419-017-0131-3] [PMID: 29374140]
[188]
Fang X, Dong Y, Yang R, Wei L. LINC00619 restricts gastric cancer progression by preventing microRNA-224-5p-mediated inhibition of OPCML. Arch Biochem Biophys 2020; 689: 108390.
[http://dx.doi.org/10.1016/j.abb.2020.108390] [PMID: 32359894]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy