Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Analysis of Various Phytoconstituents Derived from Tinospora cordifolia (Willd.) Miers as Potential α-amylase and α-glucosidase Inhibitors for the Treatment of Type 2 Diabetes Mellitus using Computational Approaches

Author(s): Gurpreet Singh*

Volume 19, Issue 9, 2023

Published on: 26 May, 2023

Article ID: e260423216177 Pages: 10

DOI: 10.2174/1573407219666230426093216

Price: $65

Abstract

Background: Because of their biological properties, phytochemicals have been essential to nutraceutical treatment for diabetes mellitus. Various phytoconstituents derived from Tinospora are reported to have immunomodulatory, anti-arthritis, antioxidant, anti-allergic cardio, and oxidatively- induced stress protection.

Objectives: This study aimed to identify and characterize the key phytoconstituents of Tinospora cordifolia for their anti-inhibitory effects against α-amylase and α-glucosidase enzymes in controlling carbohydrate metabolism and potential drug molecule against Type II Diabetes Mellitus.

Methods: Based upon the literature survey, various compounds of T. cardiofolia were deduced from Pubchem and protein structure from the protein data bank. Virtual screening used Pyrx with α- amylase and α- glucosidase. Compounds with the highest binding affinity score and 3-d interaction analysis were used to identify the potential inhibitors among various compounds. Pharmacokinetic studies for drug likeliness and toxicity properties were characterized using SWISS ADME and ADMETSAR webservers.

Results: Based on their docking scores and binding affinities,, the biologically active compounds from T. cardifolia viz were observed. Isocolumbin, cordifoliside B, β-sitosterol, ecdysone, palmitoside E, Columbin and cordifoliside C interact with the active site amino acids of both the enzymes. Drug-likeness and pharmacophore studies showed that potential anti α- amylase and α- glucosidase inhibitors.

Conclusion: The compounds' efficacy of the screened phytoconstituents from T.cardifolia as prospective therapeutic candidates can be due to their great affinity for the enzymes' catalytic region, which can cause a conformation change and result in a reduction in enzyme activity. This study's findings might indicate a way to create a new class of drugs.

Graphical Abstract

[1]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 21(5), 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[2]
Fierascu, R.C.; Fierascu, I.; Ortan, A.; Georgiev, M.I.; Sieniawska, E. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules, 2020, 25(2), 309.
[http://dx.doi.org/10.3390/molecules25020309] [PMID: 31940923]
[3]
Rasouli, H.; Hosseini-Ghazvini, S.M.B.; Adibi, H.; Khodarahmi, R. Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: A virtual screening perspective for the treatment of obesity and diabetes. Food Funct., 2017, 8(5), 1942-1954.
[http://dx.doi.org/10.1039/C7FO00220C] [PMID: 28470323]
[4]
Habtemariam, S. Antidiabetic potential of monoterpenes: A case of small molecules punching above their weight. Int. J. Mol. Sci., 2017, 19(1), 4. [Available From http://www.mdpi.com/1422-0067/19/1/4
[http://dx.doi.org/10.3390/ijms19010004] [PMID: 29267214]
[5]
American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care, 2021, 44(Suppl. 1), S15-S33. [Available From: http://www.ncbi.nlm.nih.gov/pubmed/33298413
[http://dx.doi.org/10.2337/dc21-S002] [PMID: 33298413]
[6]
Redondo, M.J.; Fain, P.R.; Eisenbarth, G.S. Genetics of type 1A diabetes. Recent Prog. Horm. Res., 2001, 56(1), 69-90. [Available From: http://www.nejm.org/doi/abs/10.1056/NEJMra0808284
[http://dx.doi.org/10.1210/rp.56.1.69] [PMID: 11237226]
[7]
Alam, S. Hasan, Kamrul; Neaz, S; Hussain, N; Hossain, F; Rahman, T. Diabetes mellitus: Insights from epidemiology, biochemistry, risk factors, diagnosis, complications and comprehensive management. Diabetology, 2021, 2(2), 36-50. [Available From: https://www.mdpi.com/2673-4540/2/2/4
[8]
Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med., 2016, 48(3), e219. [Available From: http://www.nature.com/articles/emm20166
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[9]
Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. Phytochem. Rev., 2022, 21(4), 1049-1079. [Available From: https://link.springer.com/10.1007/s11101-021-09773-1
[http://dx.doi.org/10.1007/s11101-021-09773-1] [PMID: 34421444]
[10]
Li, X.; Bai, Y.; Jin, Z.; Svensson, B. Food-derived non-phenolic α-amylase and α-glucosidase inhibitors for controlling starch digestion rate and guiding diabetes-friendly recipes. Lebensm. Wiss. Technol., 2022, 153, 112455. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S002364382101608X
[http://dx.doi.org/10.1016/j.lwt.2021.112455]
[11]
Singh, B.; Nathawat, S.; Sharma, R.A. Ethnopharmacological and phytochemical attributes of Indian Tinospora species: A comprehensive review. Arab. J. Chem., 2021, 14(10), 103381. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S1878535221003968
[http://dx.doi.org/10.1016/j.arabjc.2021.103381]
[12]
Sharma, H.; Rao, P.S.; Singh, A.K. Fifty years of research on Tinospora cordifolia: From botanical plant to functional ingredient in foods. Trends Food Sci. Technol, 2021, 18(Part A), 189-206.
[http://dx.doi.org/10.1016/j.tifs.2021.10.003]
[13]
Yates, C.R.; Bruno, E.J.; Yates, M.E.D. Tinospora cordifolia: A review of its immunomodulatory properties. J. Diet. Suppl., 2022, 19(2), 271-285. [Available From: https://www.tandfonline.com/doi/full/10.1080/19390211.2021.187
[http://dx.doi.org/10.1080/19390211.2021.1873214] [PMID: 33480818]
[14]
Tiwari, M.; Dwivedi, U.N.; Kakkar, P. Tinospora cordifolia extract modulates COX-2, iNOS, ICAM-1, pro-inflammatory cytokines and redox status in murine model of asthma. J. Ethnopharmacol., 2014, 153(2), 326-337. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S0378874114000786
[http://dx.doi.org/10.1016/j.jep.2014.01.031] [PMID: 24556222]
[15]
Sharma, A.K.; Kishore, K.; Sharma, D.; Srinivasan, B.P.; Agarwal, S.S.; Sharma, A.; Singh, S.K.; Gaur, S.; Jatav, V.S. Cardioprotective activity of alcoholic extract of Tinospora cordifolia (Willd.) Miers in calcium chloride-induced cardiac arrhythmia in rats. J. Biomed. Res., 2011, 25(4), 280-286. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S1674830111600389
[http://dx.doi.org/10.1016/S1674-8301(11)60038-9] [PMID: 23554702]
[16]
Arunachalam, K.; Yang, X.; San, T.T. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases. J. Ethnopharmacol., 2022, 283(November), 114540.
[http://dx.doi.org/10.1016/j.jep.2021.114540] [PMID: 34509604]
[17]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109. [Available From: https://academic.oup.com/nar/article/47/D1/D1102/5146201
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[18]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455- 461. Available From: http://www.ncbi.nlm.nih.gov/pubmed/19499576
[PMID: 19499576]
[19]
Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res., 2018, 46(W1), W374-W379. [Available From: https://academic.oup.com/nar/article/46/W1/W374/4994680
[http://dx.doi.org/10.1093/nar/gky380] [PMID: 29750256]
[20]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250. [Available From: http://link.springer.com/10.1007/978-1-4939- 2269-7_19
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19]
[21]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26. [Available From: http://www.ncbi.nlm.nih.gov/pubmed/11259830
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[22]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. [Available From: https://www.nature.com/articles/srep42717
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[23]
Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; Chen, X.; Hou, T.; Cao, D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res., 2021, 49(W1), W5-W14. [Available From: https://academic.oup.com/nar/article/49/W1/W5/6249611
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[24]
Salehi, B.; Ata, A.; Sharopov, F.; Ramírez-Alarcón, K.; Ruiz-Ortega, A. Antidiabetic potential of medicinal plants and their active components. Biomolecules, 2019, 9(10), 551. [Available From: https://www.mdpi.com/2218-273X/9/10/551
[http://dx.doi.org/10.3390/biom9100551] [PMID: 31575072]
[25]
Afrisham, R.; Aberomand, M.; Ghaffari, M.A.; Siahpoosh, A.; Jamalan, M. Inhibitory effect of Heracleum persicum and Ziziphus jujuba on activity of alpha-amylase. J. Bot., 2015, 2015, 1-8. [Available From: https://www.hindawi.com/journals/jb/2015/824683/
[http://dx.doi.org/10.1155/2015/824683]
[26]
Mwakalukwa, R.; Amen, Y.; Nagata, M.; Shimizu, K. Postprandial hyperglycemia lowering effect of the isolated compounds from olive mill wastes - An inhibitory activity and kinetics studies on α-glucosidase and α-amylase enzymes. ACS Omega, 2020, 5(32), 20070-20079. [Available From: https://pubs.acs.org/doi/10.1021/acsomega.0c01622
[http://dx.doi.org/10.1021/acsomega.0c01622] [PMID: 32832761]
[27]
Zhang, B.; Xing, Y.; Wen, C.; Xia, Y.; Sun, W.; Xiu, Z. Pentacyclic triterpenes as α-glucosidase and α-amylase inhibitors: Structure-activity relationships and the synergism with acarbose. Bioorg. Med. Chem. Lett., 2017, 27(22), 5065-5070. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S0960894X17309241
[28]
Nahoum, V.; Roux, G.; Anton, V.; Rougé, P.; Puigserver, A.; Bischoff, H.; Henrissat, B.; Payan, F. Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem. J., 2000, 346(1), 201-208. [Available From: http://www.biochemj.org/bj/346/bj3460201.htm
[http://dx.doi.org/10.1042/bj3460201] [PMID: 10657258]
[29]
Shen, X.; Saburi, W.; Gai, Z.; Kato, K.; Ojima-Kato, T.; Yu, J.; Komoda, K.; Kido, Y.; Matsui, H.; Mori, H.; Yao, M. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. Acta Crystallogr. D Biol. Crystallogr., 2015, 71(6), 1382-1391.
[http://dx.doi.org/10.1107/S139900471500721X] [PMID: 26057678]
[30]
Su, Y.; Gao, B.; Qin, T.; Gao, Z.; Wang, W.; Zhang, J. Plant Secondary Metabolites with α-Glucosidase Inhibitory Activity. Structure and Health Effects of Natural Products on Diabetes Mellitus Singapore; Springer Singapore; , 2021, pp. 179-195. Available From: https://link.springer.com/chapter/10.1007/978-981-15-8791-7_10
[http://dx.doi.org/10.1007/978-981-15-8791-7_10]
[31]
Panigrahy, S.K.; Bhatt, R.; Kumar, A. Targeting type II diabetes with plant terpenes: The new and promising antidiabetic therapeutics. Biologia, 2021, 76(1), 241-254. [Available From: http://link.springer.com/10.2478/s11756-020-00575-y
[http://dx.doi.org/10.2478/s11756-020-00575-y]
[32]
Perera, W.P.R.T.; Liyanage, J.A.; Dissanayake, K.G.C.; Gunathilaka, H.; Weerakoon, W.M.T.D.N.; Wanigasekara, D.N. Antiviral potential of selected medicinal herbs and their isolated natural products. BioMed Res. Int., 2021, 2021, 7872406. [Available From: https://www.hindawi.com/journals/bmri/2021/7872406/
[http://dx.doi.org/10.1155/2021/7872406]
[33]
Khanal, P.; Patil, B.M. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L. J. Integr. Med., 2021, 19(1), 66-77.
[http://dx.doi.org/10.1016/j.joim.2020.10.003] [PMID: 33071211]
[34]
Khanal, P.; Patil, B.M. α-Glucosidase inhibitors from Duranta repens modulate p53 signaling pathway in diabetes mellitus. Advances in Traditional Medicine, 2020, 20(3), 427-438.
[http://dx.doi.org/10.1007/s13596-020-00426-w]
[35]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216. [Available From: http://www.nature.com/articles/s41573-020-00114-z
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[36]
Ganesan, A. The impact of natural products upon modern drug discovery. Curr. Opin. Chem. Biol., 2008, 12(3), 306-317. [Available From: https://linkinghub.elsevier.com/retrieve/pii/S1367593108000574
[http://dx.doi.org/10.1016/j.cbpa.2008.03.016] [PMID: 18423384]
[37]
Martiz, R.M.; Patil, S.M.; Abdulaziz, M.; Babalghith, A.; Al-Areefi, M.; Al-Ghorbani, M.; Mallappa Kumar, J.; Prasad, A.; Mysore Nagalingaswamy, N.P.; Ramu, R. Defining the role of isoeugenol from Ocimum tenuiflorum against diabetes mellitus-linked alzheimer’s disease through network pharmacology and computational methods. Molecules, 2022, 27(8), 2398. [Available From: https://www.mdpi.com/1420-3049/27/8/2398
[http://dx.doi.org/10.3390/molecules27082398] [PMID: 35458596]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy