Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Hybrids Diazine: Recent Advancements in Modern Antimicrobial Therapy

Author(s): Violeta Mangalagiu, Ramona Danac, Dumitrela Diaconu*, Gheorghita Zbancioc and Ionel I. Mangalagiu*

Volume 31, Issue 19, 2024

Published on: 19 June, 2023

Page: [2687 - 2705] Pages: 19

DOI: 10.2174/0929867330666230418104409

Price: $65

Abstract

Nowadays, antimicrobial therapies have become a very challenging issue because of a large diversity of reasons such as antimicrobial resistance, over consumption and misuse of antimicrobial agents, etc. A modern, actual and very useful approach in antimicrobial therapy is represented by the use of hybrid drugs, especially combined five and six-membered ring azaheterocycles. In this review, we present an overview of the recent advanced data from the last five years in the field of hybrid diazine compounds with antimicrobial activity. In this respect, we highlight here essential data concerning the synthesis and antimicrobial activity of the main classes of diazine hybrids: pyridazine, pyrimidine, pyrazine, and their fused derivatives.

[1]
Brunton, L.; Knollmann, B.; Hilal-Dandan, R. Goodman & Gilman’s the pharnacological bassis of therapeutics, 13th ed; McGraw-Hill: New York, 2013.
[2]
Zbancioc, G.; Ciobanu, C.I.; Mangalagiu, I.I.; Moldoveanu, C. Ultrasound assisted synthesis of fluorescent azatetracyclic derivatives: An energy efficient approach. Molecules, 2022, 27(10), 1-10.
[http://dx.doi.org/10.3390/molecules27103180]
[3]
Amariucai‐Mantu, D.; Mangalagiu, V.; Mangalagiu, I.I. [3 + n] cycloaddition reactions: A milestone approach for elaborating pyridazine of potential interest in medicinal chemistry and optoelectronics. Molecules, 2021, 26(11), 1-17.
[http://dx.doi.org/10.3390/molecules26113359]
[4]
Mangalagiu, I.; Baban, C.; Mardare, D.; Rusu, G.I.; Rusu, M. On the electrical properties of some new stable disubstituted ylides in thin films. Appl. Surf. Sci., 1997, 108(2), 205-210.
[http://dx.doi.org/10.1016/S0169-4332(97)80017-7]
[5]
Butnariu, R.; Risca, I.M.; Caprosu, M.; Drochioiu, G.; Mangalagiu, I.I. Biological activity of some new pyridazine derivatives in wheat germination experiments. Rom. Biotechnol. Lett., 2008, 13, 3837-3842.
[6]
Mangalagiu, I.I. Recent achievements in the chemistry of 1,2-diazines. Curr. Org. Chem., 2011, 15, 730-752.
[http://dx.doi.org/10.2174/138527211794519050]
[7]
Bansal, Y.; Silakari, O. Multifunctional compounds: Smart molecules for multifactorial diseases. Eur. J. Med. Chem., 2014, 76, 31-42.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.060] [PMID: 24565571]
[8]
Chourasiya, S.S.; Kathuria, D.; Wani, A.A.; Bharatam, P.V. Azines: Synthesis, structure, electronic structure and their applications. Org. Biomol. Chem., 2019, 17(37), 8486-8521.
[http://dx.doi.org/10.1039/C9OB01272A] [PMID: 31503270]
[9]
Amariucai-Mantu, D.; Mangalagiu, V.; Danac, R.; Mangalagiu, I.I. Microwave assisted reactions of azaheterocycles for medicinal chemistry applications. Molecules, 2020, 25(3), 1-20.
[http://dx.doi.org/10.3390/molecules25030716]
[10]
Malik, A.; Mishra, R.; Mazumder, R.; Mazumder, A.; Mishra, P.S. A comprehensive study on synthesis and biological activities of pyridazine derivatives. Res. J. Pharm. Technol., 2021, 14, 3423-3429.
[http://dx.doi.org/10.52711/0974-360X.2021.00595]
[11]
Sangshetti, J.; Pathan, S.K.; Patil, R.; Akber Ansari, S.; Chhajed, S.; Arote, R.; Shinde, D.B. Synthesis and biological activity of structurally diverse phthalazine derivatives: A systematic review. Bioorg. Med. Chem., 2019, 27(18), 3979-3997.
[http://dx.doi.org/10.1016/j.bmc.2019.07.050] [PMID: 31401008]
[12]
Kumar, S.; Narasimhan, B. Therapeutic potential of heterocyclic pyrimidine scaffolds. Chem. Cent. J., 2018, 12, 1-29.
[http://dx.doi.org/10.1186/s13065-018-0406-5]
[13]
Elattar, K.M.; El-Khateeb, A.Y.; Hamed, S.E. Insights into the recent progress in the medicinal chemistry of pyranopyrimidine analogs. RSC Med. Chem., 2022, 13(5), 522-567.
[http://dx.doi.org/10.1039/D2MD00076H] [PMID: 35694689]
[14]
Dehnavi, F.; Alizadeh, S.R.; Ebrahimzadeh, M.A. Pyrrolopyrazine derivatives: Synthetic approaches and biological activities. Med. Chem. Res., 2021, 30, 1981-2006.
[http://dx.doi.org/10.1007/s00044-021-02792-9]
[15]
Carmona-Martínez, V.; Ruiz-Alcaraz, A.J.; Vera, M.; Guirado, A.; Martínez-Esparza, M.; García-Peñarrubia, P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med. Res. Rev., 2019, 39(2), 461-516.
[http://dx.doi.org/10.1002/med.21529] [PMID: 30341778]
[16]
Ahmed, B.; Joseph, A.; Das, S.; Akbar, S.; Dewangan, R.P.; Iqubal, A.; Pottoo, F.H. Structural activity relationship based medicinal perspectives of pyrimidine derivatives as anti-Alzheimer’s agents: A comprehensive review. CNS Neurol. Disord. Drug Targets, 2022, 21(10), 926-939.
[http://dx.doi.org/10.2174/1871527320666210804161400] [PMID: 34348636]
[17]
Varano, F.; Catarzi, D.; Vincenzi, F.; Pasquini, S.; Varani, K.; Colotta, V. Piperazine- and piperidine-containing thiazolo[5,4-d]pyrimidine derivatives as new potent and selective adenosine A(2A) receptor inverse agonists. Pharmaceutical, 2020, 13(8), 161.
[http://dx.doi.org/10.3390/ph13080161]
[18]
Jiang, X.; Wu, K.; Bai, R.; Zhang, P.; Zhang, Y. Functionalized quinoxalinones as privileged structures with broad-ranging pharmacological activities. Eur. J. Med. Chem., 2022, 229, 1-52.
[http://dx.doi.org/10.1016/j.ejmech.2021.114085]
[19]
Quintela, J.M.; Peinador, C.; Veiga, C.; González, L.; Botana, L.M.; Alfonso, A.; Riguera, R. Synthesis and antiallergic activity of pyridothienopyrimidines. Bioorg. Med. Chem., 1998, 6(10), 1911-1925.
[http://dx.doi.org/10.1016/S0968-0896(98)00150-3] [PMID: 9839021]
[20]
Diaconu, D.; Antoci, V.; Mangalagiu, V.; Amariucai-Mantu, D.; Mangalagiu, I.I. Quinoline - imidazole/benzimidazole derivatives as dual- / multi- targeting hybrids inhibitors with anticancer and antimicrobial activity. Sci. Rep., 2022, 12, 1-15.
[http://dx.doi.org/10.1038/s41598-022-21435-6]
[21]
Radwan, H.A.; Ahmad, I.; Othman, I.; Gad-Elkareem, M.A.; Patel, H.; Aouadid, K.; Snoussif, M.; Kadri, A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J. Mol. Struct., 2022, 1264, 1-13.
[http://dx.doi.org/10.1016/j.molstruc.2022.133312]
[22]
Deshpande, S.R.; Chavan, P.S.; Nagarale, S.N.; Patil, M.V. Synthesis, spectral characterization and antimicrobial studies of new hybrid heterocyclic compounds bearing 1H-benzimidazol-2-yl thiomethyl motif. Indian J. Pharm. Sci., 2017, 79(3), 385-394.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000241]
[23]
Aricu, A.; Ciocarlan, A.; Lungu, L.; Barba, A.; Shova, S.; Zbancioc, G.; Mangalagiu, I.I.; D’Ambrosio, M.; Vornicu, N. Synthesis, antibacterial, and antifungal activities of new drimane sesquiterpenoids with azaheterocyclic units. Med. Chem. Res., 2016, 25(10), 2316-2323.
[http://dx.doi.org/10.1007/s00044-016-1665-0]
[24]
Mourad, A.K.; Makhlouf, A.A.; Soliman, A.Y.; Mohamed, S.A. Phthalazines and phthalazine hybrids as antimicrobial agents: Synthesis and biological evaluation. J. Chem. Res., 2020, 44(1-2), 31-41.
[http://dx.doi.org/10.1177/1747519819883840]
[25]
Zaheer, Z.; Khan, F.A.K.; Sangshetti, J.N.; Patil, R.H.; Lohar, K.S. Novel amalgamation of phthalazine–quinolines as biofilm inhibitors: One-pot synthesis, biological evaluation and in silico ADME prediction with favorable metabolic fate. Bioorg. Med. Chem. Lett., 2016, 26(7), 1696-1703.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.057] [PMID: 26923699]
[26]
Vlasov, S.V.; Severina, H.I.; Borysov, O.V.; Krolenko, K.Y.; Shynkarenko, P.E.; Saidov, N.B.; Vlasov, V.S.; Georgiyants, V.A. Synthesis and antimicrobial evaluation of 2-(6-emidazo[1,2-a]pyridin-2-yl-5-methyl-2,4-dioxo-3-phenyl-3, 4-dihydrothieno[2,3-d]pyrimidin-1(2H)-yl)-N-arylacetamide derivatives. Molbank, 2022, M1331, 1-9.
[27]
Vlasov, S.V.; Vlasova, O.D.; Severina, H.I.; Krolenko, K.Y.; Borysov, O.V.; Abu Sharkh, A.I.M.; Vlasov, V.S.; Georgiyants, V.A. Design, synthesis and in vitro antimicrobial activity of 6-(1H-Benzimidazol-2-yl)- 3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines. Sci. Pharm., 2021, 89, 1-15.
[28]
Tolba, M.S.; Sayed, M.; Kamal El-dean, A.M.; Hassanien, R.; Ahmed, M.; Abdel-Raheem, S.A.A. Design, synthesis and antimicrobial screening of some new thienopyrimidines. Org. Commun., 2021, 14(4), 365-376.
[http://dx.doi.org/10.25135/acg.oc.114.2109.2214]
[29]
El-Dash, Y.; Elzayat, E.; Abdou, A.M.; Hassan, R.A. Novel thienopyrimidine-aminothiazole hybrids: Design, synthesis, antimicrobial screening, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and VEGFR-2 inhibition. Bioorg. Chem., 2021, 114, 1-19.
[http://dx.doi.org/10.1016/j.bioorg.2021.105137]
[30]
Othman, I.M.M.; Gad-Elkareem, M.A.M.; Anouar, E.H.; Snoussi, M.; Aouadi, K.; Kadri, A. Novel fused pyridine derivatives containing pyrimidine moiety as prospective tyrosyl-tRNA synthetase inhibitors: Design, synthesis, pharmacokinetics and molecular docking studies. J. Mol. Struct., 2020, 1219, 128651.
[http://dx.doi.org/10.1016/j.molstruc.2020.128651]
[31]
Sanad, S.M.H.; Ahmed, A.A.M.; Mekky, A.E.M. Efficient synthesis and molecular docking of novel antibacterial pyrimidines and their related fused heterocyclic derivatives. J. Heterocycl. Chem., 2020, 57(2), 590-605.
[http://dx.doi.org/10.1002/jhet.3789]
[32]
El-Naggar, M.; Sallam, H.A.; Shaban, S.S.; Abdel-Wahab, S.S.; Amr, A.; Azab, M.E.; Nossier, E.S.; Al-Omar, M. Design, synthesis, and molecular docking study of novel heterocycles incorporating 1,3,4-thiadiazole moiety as potential antimicrobial and anticancer agents. Molecules, 2019, 24(6), 1066.
[http://dx.doi.org/10.3390/molecules24061066]
[33]
Šlachtová, V.; Janovská, L.; Brulíková, L. Solid phase synthesis of new thiazolidinedione-pyrimidine conjugates and their antibacterial properties. J. Mol. Struct., 2019, 1183, 182-189.
[http://dx.doi.org/10.1016/j.molstruc.2019.01.073]
[34]
Shiva Raju, K.; AnkiReddy, S.; Sabitha, G.; Siva Krishna, V.; Sriram, D.; Bharathi Reddy, K.; Rao Sagurthi, S. Synthesis and biological evaluation of 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-triazole derivatives as novel anti-tubercular agents. Bioorg. Med. Chem. Lett., 2019, 29(2), 284-290.
[http://dx.doi.org/10.1016/j.bmcl.2018.11.036] [PMID: 30497913]
[35]
Vekariya, M.K.; Patel, D.B.; Pandya, P.A.; Vekariya, R.H.; Shah, P.U.; Rajani, D.P.; Shah, N.K. Novel N-thioamide analogues of pyrazolylpyrimidine based piperazine: Design, synthesis, characterization, in-silico molecular docking study and biological evaluation. J. Mol. Struct., 2019, 1175, 551-565.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.018]
[36]
Bhatia, S.K.; Samdhian, V.; Kaur, B. Bis-dihydropyrimidines: Catalyst-free, microwave-assisted organic synthesis, characterization and in vitro biological screenings. J. Heterocycl. Chem., 2018, 55(4), 935-942.
[http://dx.doi.org/10.1002/jhet.3121]
[37]
Bhatia, S.K.; Samdhian, V.; Kaur, B. Eco-friendly synthesis of solid-support bis-dihydropyrimidines and their antimicrobial studies. Asian J. Chem., 2019, 31(7), 1489-1494.
[http://dx.doi.org/10.14233/ajchem.2019.21923]
[38]
Naik, S.D.; Hosamani, K.M.; Vootla, S.K. Microwave synthesis, biological screening and computational studies of pyrimidine based novel coumarin scaffolds. Chem. Data Collect., 2018, 15-16, 207-222.
[http://dx.doi.org/10.1016/j.cdc.2018.06.002]
[39]
Mourad, A.K.; Mohamed, F.K.; Essawy, A.E.N.I.; Sayed, S.M. A comprehensive synthesis and antimicrobial evaluation of some fused heterocycles based on coumarin moiety. ARKIVOC, 2018, 2018(7), 407-422.
[http://dx.doi.org/10.24820/ark.5550190.p010.674]
[40]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[41]
Chikkula, K.V.; Sundararajan, R. Analgesic, anti-inflammatory, and antimicrobial activities of novel isoxazole/pyrimidine/pyrazole substituted benzimidazole analogs. Med. Chem. Res., 2017, 26(11), 3026-3037.
[http://dx.doi.org/10.1007/s00044-017-2000-0]
[42]
Kuchkova, K.; Aricu, A.; Secara, E.; Barba, A.; Vlad, P.; Ungur, N.; Tuchilus, C.; Shova, S.; Zbancioc, G.; Mangalagiu, I.I. Design, synthesis, and antimicrobial activity of some novel homodrimane sesquiterpenoids with diazine skeleton. Med. Chem. Res., 2014, 23(3), 1559-1568.
[http://dx.doi.org/10.1007/s00044-013-0720-3]
[43]
Malasala, S.; Ahmad, M.N.; Akunuri, R.; Shukla, M.; Kaul, G.; Dasgupta, A.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 212, 112996.
[http://dx.doi.org/10.1016/j.ejmech.2020.112996]
[44]
Gu, X.; Pisoni, L.A.; Wang, Y.; Song, D.; Sykes, M.J.; Qin, Y.; Semple, S.j.; Polyak, S.W.; Venter, H.; Ma, S. Design and synthesis of novel 4-substituted quinazoline-2-carboxamide derivatives targeting AcrB to reverse the bacterial multidrug resistance. Bioorg. Chem., 2020, 105, 104394.
[http://dx.doi.org/10.1016/j.bioorg.2020.104394]
[45]
Maddali, N.K.; Viswanath, I.V.K.; Murthy, Y.L.N.; Bera, R.; Takhi, M.; Rao, N.S.; Gudla, V. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med. Chem. Res., 2019, 28(4), 559-570.
[http://dx.doi.org/10.1007/s00044-019-02313-9]
[46]
Asadi, P.; Khodarahmi, G.; Jahanian-Najafabadi, A.; Saghaie, L.; Hassanzadeh, F. Biologically active heterocyclic hybrids based on quinazolinone, benzofuran and imidazolium moieties: Synthesis, characterization, cytotoxic and antibacterial evaluation. Chem. Biodivers., 2017, 14(4), e1600411.
[http://dx.doi.org/10.1002/cbdv.201600411]
[47]
Bhandare, R.R.; Shaik, A.B. Assessment of the antimicrobial and antiproliferative activities of chloropyrazine-tethered pyrimidine derivatives: In vitro, molecular docking, and in-silico drug-likeness studies. Appl. Sci., 2021, 11(22), 10734.
[http://dx.doi.org/10.3390/app112210734]
[48]
Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Lokesh, B.V.S.; Shahanaaz, S.; Rahman, M.M. Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents. Arab. J. Chem., 2021, 14, 102915.
[http://dx.doi.org/10.1016/j.arabjc.2020.102915]
[49]
Bouz, G.; Juhas, M.; Pausas Otero, L.; Paredes De La Red, C.; Jandourek, O.; Konecna, K.; Paterova, P.; Kubıcek, V.; Janousek, J.; Dolezal, M. Substituted N-(pyrazin-2-yl) benzenesulfonamides; Synthesis, anti-infective evaluation, cytotoxicity, and in silico studies. Molecules, 2020, 25(1), 138.
[http://dx.doi.org/10.3390/molecules25010138]
[50]
Panda, S.S.; Detistov, O.S.; Girgis, A.S.; Mohapatra, P.P.; Samir, A.; Katritzky, A.R. Synthesis and molecular modeling of antimicrobial active fluoroquinolone–pyrazine conjugates with amino acid linkers. Bioorg. Med. Chem. Lett., 2016, 26(9), 2198-2205.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.062] [PMID: 27025339]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy