Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biology of Tenascin C and its Role in Physiology and Pathology

Author(s): Malihehsadat Abedsaeidi, Farzaneh Hojjati, Amin Tavassoli and Amirhossein Sahebkar*

Volume 31, Issue 19, 2024

Published on: 15 June, 2023

Page: [2706 - 2731] Pages: 26

DOI: 10.2174/0929867330666230404124229

Price: $65

Abstract

Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.

[1]
Giblin, S.P.; Midwood, K.S. Tenascin-C: Form versus function. Cell Adhes. Migr., 2015, 9(1-2), 48-82.
[http://dx.doi.org/10.4161/19336918.2014.987587] [PMID: 25482829]
[2]
Lowy, C.M.; Oskarsson, T. Tenascin C in metastasis: A view from the invasive front. Cell Adhes. Migr., 2015, 9(1-2), 112-124.
[http://dx.doi.org/10.1080/19336918.2015.1008331] [PMID: 25738825]
[3]
Midwood, K.S.; Chiquet, M.; Tucker, R.P.; Orend, G. Tenascin-C at a glance. J. Cell Sci., 2016, 129(23), 4321-4327.
[PMID: 27875272]
[4]
Midwood, K.S.; Orend, G. The role of tenascin-C in tissue injury and tumorigenesis. J. Cell Commun. Signal., 2009, 3(3-4), 287-310.
[http://dx.doi.org/10.1007/s12079-009-0075-1] [PMID: 19838819]
[5]
Chiquet, M.; Fambrough, D.M. Chick myotendinous antigen. I. A monoclonal antibody as a marker for tendon and muscle morphogenesis. J. Cell Biol., 1984, 98(6), 1926-1936.
[http://dx.doi.org/10.1083/jcb.98.6.1926] [PMID: 6725406]
[6]
Chiquet-Ehrismann, R.; Matsuoka, Y.; Hofer, U.; Spring, J.; Bernasconi, C.; Chiquet, M. Tenascin variants: Differential binding to fibronectin and distinct distribution in cell cultures and tissues. Cell Regul., 1991, 2(11), 927-938.
[http://dx.doi.org/10.1091/mbc.2.11.927] [PMID: 1725601]
[7]
Udalova, I.A.; Ruhmann, M.; Thomson, S.J.; Midwood, K.S. Expression and immune function of tenascin-C. Crit. Rev. Immunol., 2011, 31(2), 115-145.
[http://dx.doi.org/10.1615/CritRevImmunol.v31.i2.30]
[8]
Zuliani-Alvarez, L.; Marzeda, A.M.; Deligne, C.; Schwenzer, A.; McCann, F.E.; Marsden, B.D.; Piccinini, A.M.; Midwood, K.S. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat. Commun., 2017, 8(1), 1595.
[http://dx.doi.org/10.1038/s41467-017-01718-7] [PMID: 29150600]
[9]
Yokosaki, Y.; Monis, H.; Chen, J.; Sheppard, D. Differential effects of the integrins α9β1, alphavbeta3, and alphavbeta6 on cell proliferative responses to tenascin. Roles of the β subunit extracellular and cytoplasmic domains. J. Biol. Chem., 1996, 271(39), 24144-24150.
[http://dx.doi.org/10.1074/jbc.271.39.24144] [PMID: 8798654]
[10]
Midwood, K.; Sacre, S.; Piccinini, A.M.; Inglis, J.; Trebaul, A.; Chan, E.; Drexler, S.; Sofat, N.; Kashiwagi, M.; Orend, G.; Brennan, F.; Foxwell, B. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med., 2009, 15(7), 774-780.
[http://dx.doi.org/10.1038/nm.1987] [PMID: 19561617]
[11]
Nikoloudaki, G. Functions of matricellular proteins in dental tissues and their emerging roles in orofacial tissue development, maintenance, and disease. Int. J. Mol. Sci., 2021, 22(12), 6626.
[http://dx.doi.org/10.3390/ijms22126626] [PMID: 34205668]
[12]
Okada, T.; Suzuki, H. The role of tenascin-C in tissue injury and repair after stroke. Front. Immunol., 2021, 11, 607587.
[http://dx.doi.org/10.3389/fimmu.2020.607587] [PMID: 33552066]
[13]
Fujimoto, N.; Onishi, K.; Sato, A.; Terasaki, F.; Tsukada, B.; Nozato, T.; Yamada, T.; Imanaka-Yoshida, K.; Yoshida, T.; Ito, M.; Hiroe, M. Incremental prognostic values of serum tenascin-C levels with blood B-type natriuretic peptide testing at discharge in patients with dilated cardiomyopathy and decompensated heart failure. J. Card. Fail., 2009, 15(10), 898-905.
[http://dx.doi.org/10.1016/j.cardfail.2009.06.443] [PMID: 19944367]
[14]
Bourdon, M.A.; Wikstrand, C.J.; Furthmayr, H.; Matthews, T.J.; Bigner, D.D. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res., 1983, 43(6), 2796-2805.
[PMID: 6342760]
[15]
Erickson, H.P.; Inglesias, J.L. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature, 1984, 311(5983), 267-269.
[http://dx.doi.org/10.1038/311267a0] [PMID: 6482952]
[16]
Kruse, J.; Keilhauer, G.; Faissner, A.; Timpl, R.; Schachner, M. The J1 glycoprotein—a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature, 1985, 316(6024), 146-148.
[http://dx.doi.org/10.1038/316146a0] [PMID: 2409452]
[17]
Grumet, M.; Hoffman, S.; Chuong, C.M.; Edelman, G.M. Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc. Natl. Acad. Sci., 1984, 81(24), 7989-7993.
[http://dx.doi.org/10.1073/pnas.81.24.7989] [PMID: 6393132]
[18]
Erickson, H.P.; Taylor, H.C. Hexabrachion proteins in embryonic chicken tissues and human tumors. J. Cell Biol., 1987, 105(3), 1387-1394.
[http://dx.doi.org/10.1083/jcb.105.3.1387] [PMID: 3654758]
[19]
Chiquet-Ehrismann, R.; Mackie, E.J.; Pearson, C.A.; Sakakura, T. Tenascin: An extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell, 1986, 47(1), 131-139.
[http://dx.doi.org/10.1016/0092-8674(86)90374-0] [PMID: 2428505]
[20]
Tucker, R.P.; Chiquet-Ehrismann, R. Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. Int. J. Biochem. Cell Biol., 2009, 41(2), 424-434.
[http://dx.doi.org/10.1016/j.biocel.2008.08.003] [PMID: 18761101]
[21]
Adams, J.C.; Chiquet-Ehrismann, R.; Tucker, R.P. The evolution of tenascins and fibronectin. Cell Adhes. Migr., 2015, 9(1-2), 22-33.
[http://dx.doi.org/10.4161/19336918.2014.970030] [PMID: 25482621]
[22]
Orend, G.; Tucker, R.P. Did tenascin-C Co-evolve with the general immune system of vertebrates? Front. Immunol., 2021, 12, 663902.
[http://dx.doi.org/10.3389/fimmu.2021.663902] [PMID: 33912190]
[23]
Jones, F.S.; Jones, P.L. The tenascin family of ECM glycoproteins: Structure, function, and regulation during embryonic development and tissue remodeling. Dev. Dyn., 2000, 218(2), 235-259.
[http://dx.doi.org/10.1002/(SICI)1097-0177(200006)218:2<235::AID-DVDY2>3.0.CO;2-G] [PMID: 10842355]
[24]
Xia, S.; Lal, B.; Tung, B.; Wang, S.; Goodwin, C.R.; Laterra, J. Tumor microenvironment tenascin-C promotes glioblastoma invasion and negatively regulates tumor proliferation. Neuro-oncol., 2016, 18(4), 507-517.
[http://dx.doi.org/10.1093/neuonc/nov171] [PMID: 26320116]
[25]
Loustau, T.; Abou-Faycal, C.; Erne, W.; zur Wiesch, P.A.; Ksouri, A.; Imhof, T.; Mörgelin, M.; Li, C.; Mathieu, M.; Salomé, N.; Crémel, G.; Dhaouadi, S.; Bouhaouala-Zahar, B.; Koch, M.; Orend, G. Modulating tenascin-C functions by targeting the MAtrix REgulating MOtif, “MAREMO”. Matrix Biol., 2022, 108, 20-38.
[http://dx.doi.org/10.1016/j.matbio.2022.02.007] [PMID: 35227929]
[26]
Midwood, K.S.; Hussenet, T.; Langlois, B.; Orend, G. Advances in tenascin-C biology. Cell. Mol. Life Sci., 2011, 68(19), 3175-3199.
[http://dx.doi.org/10.1007/s00018-011-0783-6] [PMID: 21818551]
[27]
Hasegawa, M.; Yoshida, T.; Sudo, A. Tenascin-C in osteoarthritis and rheumatoid arthritis. Front. Immunol., 2020, 11, 577015.
[http://dx.doi.org/10.3389/fimmu.2020.577015] [PMID: 33101302]
[28]
Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer, 2018, 18(9), 533-548.
[http://dx.doi.org/10.1038/s41568-018-0038-z] [PMID: 30002479]
[29]
Tucker, R.P.; Chiquet-Ehrismann, R. Tenascin-C: Its functions as an integrin ligand. Int. J. Biochem. Cell Biol., 2015, 65, 165-168.
[http://dx.doi.org/10.1016/j.biocel.2015.06.003] [PMID: 26055518]
[30]
Yoshida, T.; Akatsuka, T.; Imanaka-Yoshida, K. Tenascin-C and integrins in cancer. Cell Adhes. Migr., 2015, 9(1-2), 96-104.
[http://dx.doi.org/10.1080/19336918.2015.1008332] [PMID: 25793576]
[31]
Hendaoui, I.; Tucker, R.P.; Zingg, D.; Bichet, S.; Schittny, J.; Chiquet-Ehrismann, R. Tenascin-C is required for normal Wnt/β-catenin signaling in the whisker follicle stem cell niche. Matrix Biol., 2014, 40, 46-53.
[http://dx.doi.org/10.1016/j.matbio.2014.08.017] [PMID: 25196097]
[32]
Chen, S.; Fu, H.; Wu, S.; Zhu, W.; Liao, J.; Hong, X.; Miao, J.; Luo, C.; Wang, Y.; Hou, F.F.; Zhou, L.; Liu, Y. Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int., 2019, 95(1), 62-74.
[http://dx.doi.org/10.1016/j.kint.2018.08.029] [PMID: 30409456]
[33]
Gherzi, R.; Carnemolla, B.; Siri, A.; Ponassi, M.; Balza, E.; Zardi, L. Human tenascin gene. Structure of the 5′-region, identification, and characterization of the transcription regulatory sequences. J. Biol. Chem., 1995, 270(7), 3429-3434.
[http://dx.doi.org/10.1074/jbc.270.7.3429] [PMID: 7531707]
[34]
Chiovaro, F.; Chiquet-Ehrismann, R.; Chiquet, M. Transcriptional regulation of tenascin genes. Cell Adhes. Migr., 2015, 9(1-2), 34-47.
[http://dx.doi.org/10.1080/19336918.2015.1008333] [PMID: 25793574]
[35]
Moritz, S.; Lehmann, S.; Faissner, A.; von Holst, A. An induction gene trap screen in neural stem cells reveals an instructive function of the niche and identifies the splicing regulator sam68 as a tenascin-C-regulated target gene. Stem Cells, 2008, 26(9), 2321-2331.
[http://dx.doi.org/10.1634/stemcells.2007-1095] [PMID: 18617690]
[36]
Golledge, J.; Clancy, P.; Maguire, J.; Lincz, L.; Koblar, S. The role of tenascin C in cardiovascular disease. Cardiovasc. Res., 2011, 92(1), 19-28.
[http://dx.doi.org/10.1093/cvr/cvr183] [PMID: 21712412]
[37]
González-González, L.; Alonso, J. Periostin: A matricellular protein with multiple functions in cancer development and progression. Front. Oncol., 2018, 8, 225.
[http://dx.doi.org/10.3389/fonc.2018.00225] [PMID: 29946533]
[38]
Finch-Edmondson, M.; Sudol, M. Framework to function: Mechanosensitive regulators of gene transcription. Cell. Mol. Biol. Lett., 2016, 21(1), 28.
[http://dx.doi.org/10.1186/s11658-016-0028-7] [PMID: 28536630]
[39]
Jinnin, M.; Ihn, H.; Asano, Y.; Yamane, K.; Trojanowska, M.; Tamaki, K. Tenascin-C upregulation by transforming growth factor-β in human dermal fibroblasts involves Smad3, Sp1, and Ets1. Oncogene, 2004, 23(9), 1656-1667.
[http://dx.doi.org/10.1038/sj.onc.1207064] [PMID: 15001984]
[40]
Jinnin, M.; Ihn, H.; Asano, Y.; Yamane, K.; Trojanowska, M.; Tamaki, K. Platelet derived growth factor induced tenascin-C transcription is phosphoinositide 3-kinase/Akt-dependent and mediated by Ets family transcription factors. J. Cell. Physiol., 2006, 206(3), 718-727.
[http://dx.doi.org/10.1002/jcp.20527] [PMID: 16245312]
[41]
Sivasankaran, B.; Degen, M.; Ghaffari, A.; Hegi, M.E.; Hamou, M.F.; Ionescu, M.C.S.; Zweifel, C.; Tolnay, M.; Wasner, M.; Mergenthaler, S.; Miserez, A.R.; Kiss, R.; Lino, M.M.; Merlo, A.; Chiquet-Ehrismann, R.; Boulay, J.L. Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res., 2009, 69(2), 458-465.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2610] [PMID: 19147558]
[42]
Oppong, E.; Flink, N.; Cato, A.C.B. Molecular mechanisms of glucocorticoid action in mast cells. Mol. Cell. Endocrinol., 2013, 380(1-2), 119-126.
[http://dx.doi.org/10.1016/j.mce.2013.05.014] [PMID: 23707629]
[43]
Ekblom, M.; Fässler, R.; Tomasini-Johansson, B.; Nilsson, K.; Ekblom, P. Downregulation of tenascin expression by glucocorticoids in bone marrow stromal cells and in fibroblasts. J. Cell Biol., 1993, 123(4), 1037-1045.
[http://dx.doi.org/10.1083/jcb.123.4.1037] [PMID: 7693719]
[44]
Mackie, E.J.; Scott-Burden, T.; Hahn, A.W.; Kern, F.; Bernhardt, J.; Regenass, S.; Weller, A.; Bühler, F.R. Expression of tenascin by vascular smooth muscle cells. Alterations in hypertensive rats and stimulation by angiotensin II. Am. J. Pathol., 1992, 141(2), 377-388.
[PMID: 1379781]
[45]
Flück, M.; Tunç-Civelek, V.; Chiquet, M. Rapid and reciprocal regulation of tenascin-C and tenascin-Y expression by loading of skeletal muscle. J. Cell Sci., 2000, 113(20), 3583-3591.
[http://dx.doi.org/10.1242/jcs.113.20.3583] [PMID: 11017874]
[46]
Sarasa-Renedo, A.; Chiquet, M. Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand. J. Med. Sci. Sports, 2005, 15(4), 223-230.
[http://dx.doi.org/10.1111/j.1600-0838.2005.00461.x] [PMID: 15998339]
[47]
Lutz, R.; Sakai, T.; Chiquet, M. Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts. J. Cell Sci., 2010, 123(9), 1511-1521.
[http://dx.doi.org/10.1242/jcs.060905] [PMID: 20375066]
[48]
Asparuhova, M.B.; Gelman, L.; Chiquet, M. Role of the actin cytoskeleton in tuning cellular responses to external mechanical stress. Scand. J. Med. Sci. Sports, 2009, 19(4), 490-499.
[http://dx.doi.org/10.1111/j.1600-0838.2009.00928.x] [PMID: 19422655]
[49]
Scherer, C.; Pfisterer, L.; Wagner, A.H.; Hödebeck, M.; Cattaruzza, M.; Hecker, M.; Korff, T. Arterial wall stress controls NFAT5 activity in vascular smooth muscle cells. J. Am. Heart Assoc., 2014, 3(2), e000626.
[http://dx.doi.org/10.1161/JAHA.113.000626] [PMID: 24614757]
[50]
Chiquet, M. Tenascin: An extracellular matrix protein involved in morphogenesis of epithelial organs. Kidney Int., 1992, 41(3), 629-631.
[http://dx.doi.org/10.1038/ki.1992.96] [PMID: 1374137]
[51]
Akbareian, S.E.; Nagy, N.; Steiger, C.E.; Mably, J.D.; Miller, S.A.; Hotta, R.; Molnar, D.; Goldstein, A.M. Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev. Biol., 2013, 382(2), 446-456.
[http://dx.doi.org/10.1016/j.ydbio.2013.08.006] [PMID: 23958436]
[52]
Sahlberg, C.; Aukhil, I.; Thesleff, I. Tenascin-C in developing mouse teeth: Expression of splice variants and stimulation by TGFβ and FGF. Eur. J. Oral Sci., 2001, 109(2), 114-124.
[http://dx.doi.org/10.1034/j.1600-0722.2001.00990.x] [PMID: 11347655]
[53]
Wiese, S.; Faissner, A. The role of extracellular matrix in spinal cord development. Exp. Neurol., 2015, 274(Pt B), 90-99.
[http://dx.doi.org/10.1016/j.expneurol.2015.05.018] [PMID: 26028310]
[54]
Crossin, K.L.; Hoffman, S.; Grumet, M.; Thiery, J.P.; Edelman, G.M. Site-restricted expression of cytotactin during development of the chicken embryo. J. Cell Biol., 1986, 102(5), 1917-1930.
[http://dx.doi.org/10.1083/jcb.102.5.1917] [PMID: 2422181]
[55]
Tongiorgi, E. Tenascin-C expression in the trunk of wild-type, cyclops and floating head zebrafish embryos. Brain Res. Bull., 1999, 48(1), 79-88.
[http://dx.doi.org/10.1016/S0361-9230(98)00149-X] [PMID: 10210171]
[56]
Tan, S.S.; Crossin, K.L.; Hoffman, S.; Edelman, G.M. Asymmetric expression in somites of cytotactin and its proteoglycan ligand is correlated with neural crest cell distribution. Proc. Natl. Acad. Sci., 1987, 84(22), 7977-7981.
[http://dx.doi.org/10.1073/pnas.84.22.7977] [PMID: 2446315]
[57]
Fan, C.M.; Tessier-Lavigne, M. Patterning of mammalian somites by surface ectoderm and notochord: Evidence for sclerotome induction by a hedgehog homolog. Cell, 1994, 79(7), 1175-1186.
[http://dx.doi.org/10.1016/0092-8674(94)90009-4] [PMID: 8001153]
[58]
Roelink, H.; Augsburger, A.; Heemskerk, J.; Korzh, V.; Norlin, S. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell., 1994, 76(4), 761-775.
[http://dx.doi.org/10.1016/0092-8674(94)90514-2] [PMID: 8124714]
[59]
Yasuoka, Y. Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model. Dev. Growth Differ., 2020, 62(6), 379-390.
[http://dx.doi.org/10.1111/dgd.12665] [PMID: 32275068]
[60]
Mackie, E.J.; Thesleff, I.; Chiquet-Ehrismann, R. Tenascin is associated with chondrogenic and osteogenic differentiation in vivo and promotes chondrogenesis in vitro . J. Cell Biol., 1987, 105(6), 2569-2579.
[http://dx.doi.org/10.1083/jcb.105.6.2569] [PMID: 2447094]
[61]
Tongiorgi, E.; Bernhardt, R.R.; Zinn, K.; Schachner, M. Tenascin-C mRNA is expressed in cranial neural crest cells, in some placodal derivatives, and in discrete domains of the embryonic zebrafish brain. J. Neurobiol., 1995, 28(3), 391-407.
[http://dx.doi.org/10.1002/neu.480280311] [PMID: 8568519]
[62]
Hoffman, S.; Crossin, K.L.; Edelman, G.M. Molecular forms, binding functions, and developmental expression patterns of cytotactin and cytotactin-binding proteoglycan, an interactive pair of extracellular matrix molecules. J. Cell Biol., 1988, 106(2), 519-532.
[http://dx.doi.org/10.1083/jcb.106.2.519] [PMID: 2448317]
[63]
Faissner, A.; Roll, L.; Theocharidis, U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol. Cell. Neurosci., 2017, 81, 22-31.
[http://dx.doi.org/10.1016/j.mcn.2016.11.003] [PMID: 27836730]
[64]
Song, I.; Dityatev, A. Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull., 2018, 136, 101-108.
[http://dx.doi.org/10.1016/j.brainresbull.2017.03.003] [PMID: 28284900]
[65]
Faissner, A. The tenascin gene family in axon growth and guidance. Cell Tissue Res., 1997, 290(2), 331-341.
[http://dx.doi.org/10.1007/s004410050938] [PMID: 9321695]
[66]
Guillon, E.; Bretaud, S.; Ruggiero, F. Slow muscle precursors lay down a collagen XV matrix fingerprint to guide motor axon navigation. J. Neurosci., 2016, 36(9), 2663-2676.
[http://dx.doi.org/10.1523/JNEUROSCI.2847-15.2016] [PMID: 26937007]
[67]
Yuasa, S. Bergmann glial development in the mouse cerebellum as revealed by tenascin expression. Anat. Embryol., 1996, 194(3), 223-234.
[http://dx.doi.org/10.1007/BF00187133] [PMID: 8849669]
[68]
Reinhard, J.; Joachim, S.C.; Faissner, A. Extracellular matrix remodeling during retinal development. Exp. Eye Res., 2015, 133, 132-140.
[http://dx.doi.org/10.1016/j.exer.2014.07.001] [PMID: 25017186]
[69]
Besser, M.; Jagatheaswaran, M.; Reinhard, J.; Schaffelke, P.; Faissner, A. Tenascin C regulates proliferation and differentiation processes during embryonic retinogenesis and modulates the de-differentiation capacity of Müller glia by influencing growth factor responsiveness and the extracellular matrix compartment. Dev. Biol., 2012, 369(2), 163-176.
[http://dx.doi.org/10.1016/j.ydbio.2012.05.020] [PMID: 22691363]
[70]
Kardon, G. Muscle and tendon morphogenesis in the avian hind limb. Development, 1998, 125(20), 4019-4032.
[http://dx.doi.org/10.1242/dev.125.20.4019] [PMID: 9735363]
[71]
Kannus, P.; Jozsa, L.; Järvinen, T.A.H.; Järvinen, T.L.N.; Kvist, M.; Natri, A.; Järvinen, M. Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem. J., 1998, 30(11), 799-810.
[http://dx.doi.org/10.1023/A:1003448106673] [PMID: 9988347]
[72]
Mikic, B.; Wong, M.; Chiquet, M.; Hunziker, E.B. Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. J. Orthop. Res., 2000, 18(3), 406-415.
[http://dx.doi.org/10.1002/jor.1100180312] [PMID: 10937627]
[73]
Imanaka-Yoshida, K.; Matsumoto, K.; Hara, M.; Sakakura, T.; Yoshida, T. The dynamic expression of tenascin-C and tenascin-X during early heart development in the mouse. Differentiation, 2003, 71(4-5), 291-298.
[http://dx.doi.org/10.1046/j.1432-0436.2003.7104506.x] [PMID: 12823230]
[74]
Imanaka-Yoshida, K.; Yoshida, T.; Miyagawa-Tomita, S. Tenascin-C in development and disease of blood vessels. Anat. Rec., 2014, 297(9), 1747-1757.
[http://dx.doi.org/10.1002/ar.22985] [PMID: 25125186]
[75]
Ando, K.; Takahashi, M.; Yamagishi, T.; Miyagawa-Tomita, S.; Imanaka-Yoshida, K.; Yoshida, T.; Nakajima, Y. Tenascin C may regulate the recruitment of smooth muscle cells during coronary artery development. Differentiation, 2011, 81(5), 299-306.
[http://dx.doi.org/10.1016/j.diff.2011.03.002] [PMID: 21497984]
[76]
Imanaka-Yoshida, K. Extracellular matrix remodeling in vascular development and disease; Etiology and Morphogenesis of Congenital Heart Disease, 2016, pp. 221-226.
[http://dx.doi.org/10.1007/978-4-431-54628-3_29]
[77]
Ishigaki, T.; Imanaka-Yoshida, K.; Shimojo, N.; Matsushima, S.; Taki, W.; Yoshida, T. Tenascin-C enhances crosstalk signaling of integrin αvβ3/PDGFR-β complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J. Cell. Physiol., 2011, 226(10), 2617-2624.
[http://dx.doi.org/10.1002/jcp.22614] [PMID: 21792920]
[78]
Cohen, E.D.; Ihida-Stansbury, K.; Lu, M.M.; Panettieri, R.A.; Jones, P.L.; Morrisey, E.E. Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J. Clin. Invest., 2009, 119(9), 2538-2549.
[http://dx.doi.org/10.1172/JCI38079] [PMID: 19690384]
[79]
Mund, S.I.; Schittny, J.C. Tenascin-C deficiency impairs alveolarization and microvascular maturation during postnatal lung development. J. Appl. Physiol., 2020, 128(5), 1287-1298.
[http://dx.doi.org/10.1152/japplphysiol.00258.2019] [PMID: 32078464]
[80]
Gremlich, S.; Roth-Kleiner, M.; Equey, L.; Fytianos, K.; Schittny, J.C.; Cremona, T.P. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci. Rep., 2020, 10(1), 5118.
[http://dx.doi.org/10.1038/s41598-020-61919-x] [PMID: 32198404]
[81]
Roth-Kleiner, M.; Hirsch, E.; Schittny, J.C. Fetal lungs of tenascin-C-deficient mice grow well, but branch poorly in organ culture. Am. J. Respir. Cell Mol. Biol., 2004, 30(3), 360-366.
[http://dx.doi.org/10.1165/rcmb.2002-0266OC] [PMID: 12904321]
[82]
Yoshida, T.; Yoshimura, E.; Numata, H.; Sakakura, Y.; Sakakura, T. Involvement of tenascin-C in proliferation and migration of laryngeal carcinoma cells. Virchows Arch., 1999, 435(5), 496-500.
[http://dx.doi.org/10.1007/s004280050433] [PMID: 10592053]
[83]
Tsunoda, T.; Inada, H.; Kalembeyi, I.; Imanaka-Yoshida, K.; Sakakibara, M.; Okada, R.; Katsuta, K.; Sakakura, T.; Majima, Y.; Yoshida, T. Involvement of large tenascin-C splice variants in breast cancer progression. Am. J. Pathol., 2003, 162(6), 1857-1867.
[http://dx.doi.org/10.1016/S0002-9440(10)64320-9] [PMID: 12759243]
[84]
Sun, Z.; Schwenzer, A.; Rupp, T.; Murdamoothoo, D.; Vegliante, R.; Lefebvre, O.; Klein, A.; Hussenet, T.; Orend, G. Tenascin-C promotes tumor cell migration and metastasis through integrin α9β1–mediated YAP inhibition. Cancer Res., 2018, 78(4), 950-961.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1597] [PMID: 29259017]
[85]
Kohannezhad, K.; Norouzi, S.; Tafazoli, M.; Soleymani, S.; Shahri, N.M.; Tavassoli, A. The in vitro analysis of migration and polarity of blastema cells in the extracellular matrix derived from bovine mesenteric in the presence of fibronectin. Anat. Cell Biol., 2022, 55(2), 229-238.
[http://dx.doi.org/10.5115/acb.21.233] [PMID: 35668476]
[86]
Saito, Y.; Imazeki, H.; Miura, S.; Yoshimura, T.; Okutsu, H.; Harada, Y.; Ohwaki, T.; Nagao, O.; Kamiya, S.; Hayashi, R.; Kodama, H.; Handa, H.; Yoshida, T.; Fukai, F. A peptide derived from tenascin-C induces β1 integrin activation through syndecan-4. J. Biol. Chem., 2007, 282(48), 34929-34937.
[http://dx.doi.org/10.1074/jbc.M705608200] [PMID: 17901052]
[87]
Thodeti, C.K.; Albrechtsen, R.; Grauslund, M.; Asmar, M.; Larsson, C.; Takada, Y.; Mercurio, A.M.; Couchman, J.R.; Wewer, U.M. ADAM12/syndecan-4 signaling promotes β 1 integrin-dependent cell spreading through protein kinase Calpha and RhoA. J. Biol. Chem., 2003, 278(11), 9576-9584.
[http://dx.doi.org/10.1074/jbc.M208937200] [PMID: 12509413]
[88]
Midwood, K.S.; Schwarzbauer, J.E. Tenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways. Mol. Biol. Cell, 2002, 13(10), 3601-3613.
[http://dx.doi.org/10.1091/mbc.e02-05-0292] [PMID: 12388760]
[89]
Trebaul, A.; Chan, E.K.; Midwood, K.S. Regulation of fibroblast migration by tenascin-C. Biochem. Soc. Trans., 2007, 35(4), 695-697.
[http://dx.doi.org/10.1042/BST0350695] [PMID: 17635125]
[90]
Matsuda, A.; Yoshiki, A.; Tagawa, Y.; Matsuda, H.; Kusakabe, M. Corneal wound healing in tenascin knockout mouse. Invest. Ophthalmol. Vis. Sci., 1999, 40(6), 1071-1080.
[PMID: 10235540]
[91]
El-Karef, A; Yoshida, T; Gabazza, E; Nishioka, T; Inada, H; Sakakura, T Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J. Pathol., 2007, 211(1), 86-94.
[http://dx.doi.org/10.1002/path.2099]
[92]
Mane, D.R.; Rahman, S.U.; Desai, K.M.; Kale, A.D.; Bhat, K.G.; Arany, P.R. Roles of the matricellular protein Tenascin-C in T-lymphocyte trafficking and etiopathogenesis of Oral Lichen Planus. Arch. Oral Biol., 2020, 110, 104622.
[http://dx.doi.org/10.1016/j.archoralbio.2019.104622] [PMID: 31783297]
[93]
Clark, R.A.; Erickson, H.P.; Springer, T.A. Tenascin supports lymphocyte rolling. J. Cell Biol., 1997, 137(3), 755-765.
[http://dx.doi.org/10.1083/jcb.137.3.755] [PMID: 9151679]
[94]
Wang, Z.; Wei, Q.; Han, L.; Cao, K.; Lan, T.; Xu, Z.; Wang, Y.; Gao, Y.; Xue, J.; Shan, F.; Feng, J.; Xie, X. Tenascin-c renders a proangiogenic phenotype in macrophage via annexin II. J. Cell. Mol. Med., 2018, 22(1), 429-438.
[http://dx.doi.org/10.1111/jcmm.13332] [PMID: 28857429]
[95]
Davies, M.G.; Hagen, P-O. Pathobiology of intimal hyperplasia. Br. J. Surg., 2005, 81(9), 1254-1269.
[http://dx.doi.org/10.1002/bjs.1800810904] [PMID: 7953384]
[96]
Malabanan, K.P.; Sheahan, A.V.; Khachigian, L.M. Platelet-derived growth factor-BB mediates cell migration through induction of activating transcription factor 4 and tenascin-C. Am. J. Pathol., 2012, 180(6), 2590-2597.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.009] [PMID: 22507839]
[97]
Ljubimov, A.V.; Burgeson, R.E.; Butkowski, R.J.; Couchman, J.R.; Zardi, L.; Ninomiya, Y.; Sado, Y.; Huang, Z.S.; Nesburn, A.B.; Kenney, M.C. Basement membrane abnormalities in human eyes with diabetic retinopathy. J. Histochem. Cytochem., 1996, 44(12), 1469-1479.
[http://dx.doi.org/10.1177/44.12.8985139] [PMID: 8985139]
[98]
Spirin, K.S.; Saghizadeh, M.; Lewin, S.L.; Zardi, L.; Kenney, M.C.; Ljubimov, A.V. Basement membrane and growth factor gene expression in normal and diabetic human retinas. Curr. Eye Res., 1999, 18(6), 490-499.
[http://dx.doi.org/10.1076/ceyr.18.6.490.5267] [PMID: 10435836]
[99]
Castellon, R.; Caballero, S.; Hamdi, H.K.; Atilano, S.R.; Aoki, A.M.; Tarnuzzer, R.W.; Kenney, M.C.; Grant, M.B.; Ljubimov, A.V. Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture. Invest. Ophthalmol. Vis. Sci., 2002, 43(8), 2758-2766.
[PMID: 12147613]
[100]
Joester, A.; Faissner, A. The structure and function of tenascins in the nervous system. Matrix Biol., 2001, 20(1), 13-22.
[http://dx.doi.org/10.1016/S0945-053X(00)00136-0] [PMID: 11246000]
[101]
Fujioka, T.; Kaneko, N.; Ajioka, I.; Nakaguchi, K.; Omata, T.; Ohba, H.; Fässler, R.; García-Verdugo, J.M.; Sekiguchi, K.; Matsukawa, N.; Sawamoto, K. β1 integrin signaling promotes neuronal migration along vascular scaffolds in the post-stroke brain. EBioMedicine, 2017, 16, 195-203.
[http://dx.doi.org/10.1016/j.ebiom.2017.01.005] [PMID: 28153772]
[102]
Kiernan, B.W.; Götz, B.; Faissner, A.; ffrench-Constant, C. Tenascin-C inhibits oligodendrocyte precursor cell migration by both adhesion-dependent and adhesion-independent mechanisms. Mol. Cell. Neurosci., 1996, 7(4), 322-335.
[http://dx.doi.org/10.1006/mcne.1996.0024] [PMID: 8793866]
[103]
Wiese, S.; Karus, M.; Faissner, A. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol., 2012, 3, 120.
[http://dx.doi.org/10.3389/fphar.2012.00120] [PMID: 22740833]
[104]
Carnemolla, B.; Castellani, P.; Ponassi, M.; Borsi, L.; Urbini, S.; Nicolo, G.; Dorcaratto, A.; Viale, G.; Winter, G.; Neri, D.; Zardi, L. Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am. J. Pathol., 1999, 154(5), 1345-1352.
[http://dx.doi.org/10.1016/S0002-9440(10)65388-6] [PMID: 10329587]
[105]
Joester, A.; Faissner, A. Evidence for combinatorial variability of tenascin-C isoforms and developmental regulation in the mouse central nervous system. J. Biol. Chem., 1999, 274(24), 17144-17151.
[http://dx.doi.org/10.1074/jbc.274.24.17144] [PMID: 10358070]
[106]
Tucker, R.P. Abnormal neural crest cell migration after the in vivo knockdown of tenascin-C expression with morpholino antisense oligonucleotides. Dev. Dyn., 2001, 222(1), 115-119.
[http://dx.doi.org/10.1002/dvdy.1171] [PMID: 11507773]
[107]
Halfter, W.; Chiquet-Ehrismann, R.; Tucker, R.P. The effect of tenascin and embryonic basal lamina on the behavior and morphology of neural crest cells in vitro . Dev. Biol., 1989, 132(1), 14-25.
[http://dx.doi.org/10.1016/0012-1606(89)90200-5] [PMID: 2465193]
[108]
Radwanska, A.; Grall, D.; Schaub, S.; Divonne, S.B.F.; Ciais, D.; Rekima, S.; Rupp, T.; Sudaka, A.; Orend, G.; Van Obberghen-Schilling, E. Counterbalancing anti-adhesive effects of Tenascin-C through fibronectin expression in endothelial cells. Sci. Rep., 2017, 7(1), 12762.
[http://dx.doi.org/10.1038/s41598-017-13008-9] [PMID: 28986537]
[109]
Yalcin, F.; Dzaye, O.; Xia, S. Tenascin-C Function in Glioma: Immunomodulation and Beyond. Tumor Microenvironment; Springer, 2020, pp. 149-172.
[110]
Nakahara, H.; Gabazza, E.C.; Fujimoto, H.; Nishii, Y.; D’Alessandro-Gabazza, C.N.; Bruno, N.E.; Takagi, T.; Hayashi, T.; Maruyama, J.; Maruyama, K.; Imanaka-Yoshida, K.; Suzuki, K.; Yoshida, T.; Adachi, Y.; Taguchi, O. Deficiency of tenascin C attenuates allergen-induced bronchial asthma in the mouse. Eur. J. Immunol., 2006, 36(12), 3334-3345.
[http://dx.doi.org/10.1002/eji.200636271] [PMID: 17125141]
[111]
Jayaraj, R.L.; Azimullah, S.; Beiram, R.; Jalal, F.Y.; Rosenberg, G.A. Neuroinflammation: Friend and foe for ischemic stroke. J. Neuroinflammation, 2019, 16(1), 142.
[http://dx.doi.org/10.1186/s12974-019-1516-2] [PMID: 31291966]
[112]
Haage, V.; Elmadany, N.; Roll, L.; Faissner, A.; Gutmann, D.H.; Semtner, M.; Kettenmann, H. Tenascin C regulates multiple microglial functions involving TLR4 signaling and HDAC1. Brain Behav. Immun., 2019, 81, 470-483.
[http://dx.doi.org/10.1016/j.bbi.2019.06.047] [PMID: 31271872]
[113]
Caso, J.R.; Pradillo, J.M.; Hurtado, O.; Lorenzo, P.; Moro, M.A.; Lizasoain, I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 2007, 115(12), 1599-1608.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.603431] [PMID: 17372179]
[114]
Neumann, J.; Riek-Burchardt, M.; Herz, J.; Doeppner, T.R.; König, R.; Hütten, H.; Etemire, E.; Männ, L.; Klingberg, A.; Fischer, T.; Görtler, M.W.; Heinze, H.J.; Reichardt, P.; Schraven, B.; Hermann, D.M.; Reymann, K.G.; Gunzer, M. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke. Acta Neuropathol., 2015, 129(2), 259-277.
[http://dx.doi.org/10.1007/s00401-014-1355-2] [PMID: 25391494]
[115]
Manrique-Castano, D.; Dzyubenko, E.; Borbor, M.; Vasileiadou, P.; Kleinschnitz, C.; Roll, L.; Faissner, A.; Hermann, D.M. Tenascin-C preserves microglia surveillance and restricts leukocyte and, more specifically, T cell infiltration of the ischemic brain. Brain Behav. Immun., 2021, 91, 639-648.
[http://dx.doi.org/10.1016/j.bbi.2020.10.016] [PMID: 33122023]
[116]
Kon, S.; Uede, T. The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J. Cell Commun. Signal., 2018, 12(1), 333-342.
[http://dx.doi.org/10.1007/s12079-017-0413-7] [PMID: 28975544]
[117]
Song, J.; Schwenzer, A.; Wong, A.; Turcinov, S.; Rims, C.; Martinez, L.R.; Arribas-Layton, D.; Gerstner, C.; Muir, V.S.; Midwood, K.S.; Malmström, V.; James, E.A.; Buckner, J.H. Shared recognition of citrullinated tenascin-C peptides by T and B cells in rheumatoid arthritis. JCI Insight, 2021, 6(5), e145217.
[http://dx.doi.org/10.1172/jci.insight.145217] [PMID: 33507879]
[118]
Momčilović, M.; Stamenković, V.; Jovanović, M.; Andjus, P.R.; Jakovčevski, I.; Schachner, M.; Miljković, Đ. Tenascin-C deficiency protects mice from experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2017, 302, 1-6.
[http://dx.doi.org/10.1016/j.jneuroim.2016.12.001] [PMID: 27974153]
[119]
Machino-Ohtsuka, T.; Tajiri, K.; Kimura, T.; Sakai, S.; Sato, A.; Yoshida, T.; Hiroe, M.; Yasutomi, Y.; Aonuma, K.; Imanaka-Yoshida, K. Tenascin-C aggravates autoimmune myocarditis via dendritic cell activation and Th17 cell differentiation. J. Am. Heart Assoc., 2014, 3(6), e001052.
[http://dx.doi.org/10.1161/JAHA.114.001052] [PMID: 25376187]
[120]
Bauch, J.; Faissner, A. The extracellular matrix proteins tenascin-c and tenascin-r retard oligodendrocyte precursor maturation and myelin regeneration in a cuprizone-induced long-term demyelination animal model. Cells, 2022, 11(11), 1773.
[http://dx.doi.org/10.3390/cells11111773] [PMID: 35681468]
[121]
Franklin, R.J.M.; ffrench-Constant, C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat. Rev. Neurosci., 2017, 18(12), 753-769.
[http://dx.doi.org/10.1038/nrn.2017.136] [PMID: 29142295]
[122]
Czopka, T.; Von Holst, A.; Schmidt, G.; Ffrench-Constant, C.; Faissner, A. Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Glia, 2009, 57(16), 1790-1801.
[http://dx.doi.org/10.1002/glia.20891] [PMID: 19459213]
[123]
Wenk, M.B.; Midwood, K.S.; Schwarzbauer, J.E. Tenascin-C suppresses Rho activation. J. Cell Biol., 2000, 150(4), 913-920.
[http://dx.doi.org/10.1083/jcb.150.4.913] [PMID: 10953015]
[124]
Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoué, F.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Pagès, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 2006, 313(5795), 1960-1964.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[125]
Huang, J.Y.; Cheng, Y.J.; Lin, Y.P.; Lin, H.C.; Su, C.C.; Juliano, R.; Yang, B.C. Extracellular matrix of glioblastoma inhibits polarization and transmigration of T cells: the role of tenascin-C in immune suppression. J. Immunol., 2010, 185(3), 1450-1459.
[http://dx.doi.org/10.4049/jimmunol.0901352] [PMID: 20622113]
[126]
Jachetti, E.; Caputo, S.; Mazzoleni, S.; Brambillasca, C.S.; Parigi, S.M.; Grioni, M.; Piras, I.S.; Restuccia, U.; Calcinotto, A.; Freschi, M.; Bachi, A.; Galli, R.; Bellone, M. Tenascin-C protects cancer stem–like cells from immune surveillance by arresting T-cell activation. Cancer Res., 2015, 75(10), 2095-2108.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2346] [PMID: 25808872]
[127]
Su, C.C.; Lin, Y.P.; Cheng, Y.J.; Huang, J.Y.; Chuang, W.J.; Shan, Y.S.; Yang, B.C. Phosphatidylinositol 3-kinase/Akt activation by integrin-tumor matrix interaction suppresses Fas-mediated apoptosis in T cells. J. Immunol., 2007, 179(7), 4589-4597.
[http://dx.doi.org/10.4049/jimmunol.179.7.4589] [PMID: 17878356]
[128]
Loike, J.D.; Cao, L.; Budhu, S.; Hoffman, S.; Silverstein, S.C. Blockade of α 5 β 1 integrins reverses the inhibitory effect of tenascin on chemotaxis of human monocytes and polymorphonuclear leukocytes through three-dimensional gels of extracellular matrix proteins. J. Immunol., 2001, 166(12), 7534-7542.
[http://dx.doi.org/10.4049/jimmunol.166.12.7534] [PMID: 11390508]
[129]
Hauzenberger, D.; Olivier, P.; Gundersen, D.; Rüegg, C. Tenascin-C inhibits β1 integrin-dependent T lymphocyte adhesion to fibronectin through the binding of its fnIII 1 – 5 repeats to fibronectin. Eur. J. Immunol., 1999, 29(5), 1435-1447.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199905)29:05<1435::AID-IMMU1435>3.0.CO;2-N] [PMID: 10359097]
[130]
Rougerie, P.; Delon, J. Rho GTPases: Masters of T lymphocyte migration and activation. Immunol. Lett., 2012, 142(1-2), 1-13.
[http://dx.doi.org/10.1016/j.imlet.2011.12.003] [PMID: 22207038]
[131]
Tybulewicz, V.L.J.; Henderson, R.B. Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol., 2009, 9(9), 630-644.
[http://dx.doi.org/10.1038/nri2606] [PMID: 19696767]
[132]
Mackie, E.J.; Tucker, R.P. The tenascin-C knockout revisited. J. Cell Sci., 1999, 112(22), 3847-3853.
[http://dx.doi.org/10.1242/jcs.112.22.3847] [PMID: 10547346]
[133]
Mangan, R.J.; Stamper, L.; Ohashi, T.; Eudailey, J.A.; Go, E.P.; Jaeger, F.H.; Itell, H.L.; Watts, B.E.; Fouda, G.G.; Erickson, H.P.; Alam, S.M.; Desaire, H.; Permar, S.R. Determinants of Tenascin-C and HIV-1 envelope binding and neutralization. Mucosal Immunol., 2019, 12(4), 1004-1012.
[http://dx.doi.org/10.1038/s41385-019-0164-2] [PMID: 30976088]
[134]
Sur, S.; Khatun, M.; Steele, R.; Isbell, T.S.; Ray, R.; Ray, R.B. Exosomes from COVID-19 patients carry Tenascin-C and Fibrinogen-β in triggering inflammatory signals in cells of distant organ. Int. J. Mol. Sci., 2021, 22(6), 3184.
[http://dx.doi.org/10.3390/ijms22063184] [PMID: 33804769]
[135]
Amemiya, K.; Kobayashi, T.; Kataoka, Y.; Iwai, T.; Nakagawa, S.; Morita, Y.; Ohta-Ogo, K.; Matsumoto, M.; Ikeda, Y.; Katano, H.; Suzuki, T.; Izumi, C.; Noguchi, T.; Hatakeyama, K. Myocarditis after COVID-19 mRNA vaccination in three young adult males: Significance of biopsy in vaccine-associated myocarditis. Pathol. Int., 2022, 72(7), 385-387.
[http://dx.doi.org/10.1111/pin.13234] [PMID: 35583173]
[136]
Tajiri, K.; Yonebayashi, S.; Li, S.; Ieda, M. Immunomodulatory role of tenascin-C in myocarditis and inflammatory cardiomyopathy. Front. Immunol., 2021, 12, 624703.
[http://dx.doi.org/10.3389/fimmu.2021.624703] [PMID: 33692798]
[137]
Zeng, H.L.; Chen, D.; Yan, J.; Yang, Q.; Han, Q.Q.; Li, S.S.; Cheng, L. Proteomic characteristics of bronchoalveolar lavage fluid in critical COVID-19 patients. FEBS J., 2021, 288(17), 5190-5200.
[http://dx.doi.org/10.1111/febs.15609] [PMID: 33098359]
[138]
Zuliani-Alvarez, L.; Piccinini, A.M. A virological view of tenascin-C in infection. Am. J. Physiol. Cell Physiol., 2023, 324(1), C1-C9.
[http://dx.doi.org/10.1152/ajpcell.00333.2022] [PMID: 36458980]
[139]
Yuan, W.; Zhang, W.; Yang, X.; Zhou, L.; Hanghua, Z.; Xu, K. Clinical significance and prognosis of serum tenascin-C in patients with sepsis. BMC Anesthesiol., 2018, 18(1), 170.
[http://dx.doi.org/10.1186/s12871-018-0634-1] [PMID: 30442110]
[140]
Albacete-Albacete, L.; Navarro-Lérida, I.; López, J.A.; Martín-Padura, I.; Astudillo, A.M.; Ferrarini, A.; Van-Der-Heyden, M.; Balsinde, J.; Orend, G.; Vázquez, J.; del Pozo, M.Á. ECM deposition is driven by caveolin-1–dependent regulation of exosomal biogenesis and cargo sorting. J. Cell Biol., 2020, 219(11), e202006178.
[http://dx.doi.org/10.1083/jcb.202006178] [PMID: 33053168]
[141]
Campos, A.; Salomon, C.; Bustos, R.; Díaz, J.; Martínez, S.; Silva, V.; Reyes, C.; Díaz-Valdivia, N.; Varas-Godoy, M.; Lobos-González, L.; Quest, A.F.G. Caveolin-1-containing extracellular vesicles transport adhesion proteins and promote malignancy in breast cancer cell lines. Nanomedicine, 2018, 13(20), 2597-2609.
[http://dx.doi.org/10.2217/nnm-2018-0094] [PMID: 30338706]
[142]
Ji, H.; Greening, D.W.; Barnes, T.W.; Lim, J.W.; Tauro, B.J.; Rai, A.; Xu, R.; Adda, C.; Mathivanan, S.; Zhao, W.; Xue, Y.; Xu, T.; Zhu, H.J.; Simpson, R.J. Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 2013, 13(10-11), 1672-1686.
[http://dx.doi.org/10.1002/pmic.201200562] [PMID: 23585443]
[143]
Zheng, J.; Hernandez, J.M.; Doussot, A.; Bojmar, L.; Zambirinis, C.P.; Costa-Silva, B.; van Beek, E.J.A.H.; Mark, M.T.; Molina, H.; Askan, G.; Basturk, O.; Gonen, M.; Kingham, T.P.; Allen, P.J.; D’Angelica, M.I.; DeMatteo, R.P.; Lyden, D.; Jarnagin, W.R. Extracellular matrix proteins and carcinoembryonic antigen-related cell adhesion molecules characterize pancreatic duct fluid exosomes in patients with pancreatic cancer. HPB, 2018, 20(7), 597-604.
[http://dx.doi.org/10.1016/j.hpb.2017.12.010] [PMID: 29339034]
[144]
Mirzaei, R.; Sarkar, S.; Dzikowski, L.; Rawji, K.S.; Khan, L.; Faissner, A. Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity; Taylor & Francis, 2018.
[http://dx.doi.org/10.1080/2162402X.2018.1478647]
[145]
Pedretti, M.; Soltermann, A.; Arni, S.; Weder, W.; Neri, D.; Hillinger, S. Comparative immunohistochemistry of L19 and F16 in non-small cell lung cancer and mesothelioma: Two human antibodies investigated in clinical trials in patients with cancer. Lung Cancer, 2009, 64(1), 28-33.
[http://dx.doi.org/10.1016/j.lungcan.2008.07.013] [PMID: 18799229]
[146]
Niebroj-Dobosz, I; Madej-Pilarczyk, A; Marchel, M Circulating tenascin-C levels in patients with dilated cardiomyopathy in the course of Emery-Dreifuss muscular dystrophy. Clin Chim Acta, 2011, 412(17-18), 1533-1538.
[http://dx.doi.org/10.1016/j.cca.2011.04.033] [PMID: 21596026]
[147]
Page, T.H.; Charles, P.J.; Piccinini, A.M.; Nicolaidou, V.; Taylor, P.C.; Midwood, K.S. Raised circulating tenascin-C in rheumatoid arthritis. Arthritis Res. Ther., 2012, 14(6), R260.
[http://dx.doi.org/10.1186/ar4105] [PMID: 23193984]
[148]
Indumathi, A.; Senthilkumar, G.P.; Jayashree, K.; Ramesh Babu, K. Assessment of circulating fibrotic proteins (periostin and tenascin -C) In Type 2 diabetes mellitus patients with and without retinopathy. Endocrine, 2022, 76(3), 570-577.
[http://dx.doi.org/10.1007/s12020-022-03027-6] [PMID: 35274283]
[149]
Tenascins in CNS lesions. Seminars in cell & developmental biology; Roll, L.; Faissner, A., Eds.; Elsevier, 2019.
[150]
Hausmann, R.; Betz, P. Course of glial immunoreactivity for vimentin, tenascin and α1-antichymotrypsin after traumatic injury to human brain. Int. J. Legal Med., 2001, 114(6), 338-342.
[http://dx.doi.org/10.1007/s004140000199] [PMID: 11508799]
[151]
Stamenkovic, V.; Stamenkovic, S.; Jaworski, T.; Gawlak, M.; Jovanovic, M.; Jakovcevski, I.; Wilczynski, G.M.; Kaczmarek, L.; Schachner, M.; Radenovic, L.; Andjus, P.R. The extracellular matrix glycoprotein tenascin-C and matrix metalloproteinases modify cerebellar structural plasticity by exposure to an enriched environment. Brain Struct. Funct., 2017, 222(1), 393-415.
[http://dx.doi.org/10.1007/s00429-016-1224-y] [PMID: 27089885]
[152]
Geissler, M.; Gottschling, C.; Aguado, A.; Rauch, U.; Wetzel, C.H.; Hatt, H.; Faissner, A. Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J. Neurosci., 2013, 33(18), 7742-7755.
[http://dx.doi.org/10.1523/JNEUROSCI.3275-12.2013] [PMID: 23637166]
[153]
Jansen, S.; Gottschling, C.; Faissner, A.; Manahan-Vaughan, D. Intrinsic cellular and molecular properties of in vivo hippocampal synaptic plasticity are altered in the absence of key synaptic matrix molecules. Hippocampus, 2017, 27(8), 920-933.
[http://dx.doi.org/10.1002/hipo.22742] [PMID: 28512860]
[154]
Quattromani, M.J.; Hakon, J.; Rauch, U.; Bauer, A.Q.; Wieloch, T. Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components. Neurobiol. Dis., 2018, 112, 91-105.
[http://dx.doi.org/10.1016/j.nbd.2018.01.011] [PMID: 29367009]
[155]
Dzyubenko, E.; Manrique-Castano, D.; Kleinschnitz, C.; Faissner, A.; Hermann, D.M. Topological remodeling of cortical perineuronal nets in focal cerebral ischemia and mild hypoperfusion. Matrix Biol., 2018, 74, 121-132.
[http://dx.doi.org/10.1016/j.matbio.2018.08.001] [PMID: 30092283]
[156]
Šekeljić, V.; Andjus, P.R. Tenascin-C and its functions in neuronal plasticity. Int. J. Biochem. Cell Biol., 2012, 44(6), 825-829.
[http://dx.doi.org/10.1016/j.biocel.2012.02.014] [PMID: 22405938]
[157]
Wlodarczyk, J.; Mukhina, I.; Kaczmarek, L.; Dityatev, A. Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev. Neurobiol., 2011, 71(11), 1040-1053.
[http://dx.doi.org/10.1002/dneu.20958] [PMID: 21793226]
[158]
Xie, K.; Liu, Y.; Hao, W.; Walter, S.; Penke, B.; Hartmann, T.; Schachner, M.; Fassbender, K. Tenascin-C deficiency ameliorates Alzheimer’s disease-related pathology in mice. Neurobiol. Aging, 2013, 34(10), 2389-2398.
[http://dx.doi.org/10.1016/j.neurobiolaging.2013.04.013] [PMID: 23673309]
[159]
Scheffler, B.; Faissner, A.; Beck, H.; Behle, K.; Wolf, H.K.; Wiestler, O.D.; Blümcke, I. Hippocampal loss of tenascin boundaries in Ammon’s horn sclerosis. Glia, 1997, 19(1), 35-46.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199701)19:1<35::AID-GLIA4>3.0.CO;2-9] [PMID: 8989566]
[160]
Mi, Z.; Halfter, W.; Abrahamson, E.E.; Klunk, W.E.; Mathis, C.A.; Mufson, E.J.; Ikonomovic, M.D. Tenascin-C is associated with cored amyloid-β plaques in Alzheimer disease and pathology burdened cognitively normal elderly. J. Neuropathol. Exp. Neurol., 2016, 75(9), 868-876.
[http://dx.doi.org/10.1093/jnen/nlw062] [PMID: 27444354]
[161]
Hasanzadeh, Z.; Nourazarian, A.; Nikanfar, M.; Laghousi, D.; Vatankhah, A.M.; Sadrirad, S. Evaluation of the serum Dkk-1, tenascin-C, oxidative stress markers levels and Wnt signaling pathway genes expression in patients with Alzheimer’s disease. J. Mol. Neurosci., 2021, 71(4), 879-887.
[http://dx.doi.org/10.1007/s12031-020-01710-9] [PMID: 32935274]
[162]
Soares, H.D.; Potter, W.Z.; Pickering, E.; Kuhn, M.; Immermann, F.W.; Shera, D.M.; Ferm, M.; Dean, R.A.; Simon, A.J.; Swenson, F.; Siuciak, J.A.; Kaplow, J.; Thambisetty, M.; Zagouras, P.; Koroshetz, W.J.; Wan, H.I.; Trojanowski, J.Q.; Shaw, L.M. Plasma biomarkers associated with the apolipoprotein E genotype and Alzheimer disease. Arch. Neurol., 2012, 69(10), 1310-1317.
[http://dx.doi.org/10.1001/archneurol.2012.1070] [PMID: 22801723]
[163]
Morellini, F.; Schachner, M. Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. Eur. J. Neurosci., 2006, 23(5), 1255-1268.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04657.x] [PMID: 16553788]
[164]
Stamenkovic, V.; Milenkovic, I.; Galjak, N.; Todorovic, V.; Andjus, P. Enriched environment alters the behavioral profile of tenascin-C deficient mice. Behav. Brain Res., 2017, 331, 241-253.
[http://dx.doi.org/10.1016/j.bbr.2017.05.047] [PMID: 28549651]
[165]
Hamza, O.; Kiss, A.; Kramer, A.M.; Trojanek, S.; Abraham, D.; Acar, E.; Nagel, F.; Tretter, V.E.; Kitzwögerer, M.; Podesser, B.K. Tenascin C promotes valvular remodeling in two large animal models of ischemic mitral regurgitation. Basic Res. Cardiol., 2020, 115(6), 76.
[http://dx.doi.org/10.1007/s00395-020-00837-5] [PMID: 33258993]
[166]
Peng, R.; Li, Y. Associations between tenascin-C and testosterone deficiency in men with major depressive disorder: A cross-sectional retrospective study. J. Inflamm. Res., 2021, 14, 897-905.
[http://dx.doi.org/10.2147/JIR.S298270] [PMID: 33758529]
[167]
Peng, R.; Dai, W.; Li, Y. High serum levels of tenascin-C are associated with suicide attempts in depressed patients. Psychiatry Res., 2018, 268, 60-64.
[http://dx.doi.org/10.1016/j.psychres.2018.06.069] [PMID: 30005189]
[168]
Zhang, Z.; Yu, B.; Gu, Y.; Zhou, S.; Qian, T.; Wang, Y.; Ding, G.; Ding, F.; Gu, X. Fibroblast-derived tenascin-C promotes Schwann cell migration through β1-integrin dependent pathway during peripheral nerve regeneration. Glia, 2016, 64(3), 374-385.
[http://dx.doi.org/10.1002/glia.22934] [PMID: 26497118]
[169]
Kwiatkowska, M.; Reinhard, J.; Roll, L.; Kraft, N.; Dazert, S.; Faissner, A.; Volkenstein, S. The expression pattern and inhibitory influence of Tenascin-C on the growth of spiral ganglion neurons suggest a regulatory role as boundary formation molecule in the postnatal mouse inner ear. Neuroscience, 2016, 319, 46-58.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.039] [PMID: 26812032]
[170]
Dugu, L.; Hayashida, S.; Nakahara, T.; Xie, L.; Iwashita, Y.; Liu, X.; Uchi, H.; Tateuchi, S.; Takahara, M.; Oda, Y.; Moroi, Y.; Furue, M. Aberrant expression of tenascin-c and neuronatin in malignant peripheral nerve sheath tumors. Eur. J. Dermatol., 2010, 20(5), 580-584.
[PMID: 20610366]
[171]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[172]
Dueck, M.; Riedl, S.; Hinz, U.; Tandara, A.; Möller, P.; Herfarth, C.; Faissner, A. Detection of tenascin-C isoforms in colorectal mucosa, ulcerative colitis, carcinomas and liver metastases. Int. J. Cancer, 1999, 82(4), 477-483.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19990812)82:4<477::AID-IJC2>3.0.CO;2-5] [PMID: 10404058]
[173]
Suzuki, H.; Sasada, M.; Kamiya, S.; Ito, Y.; Watanabe, H.; Okada, Y.; Ishibashi, K.; Iyoda, T.; Yanaka, A.; Fukai, F. The promoting effect of the extracellular matrix peptide TNIIIA2 derived from tenascin-C in colon cancer cell infiltration. Int. J. Mol. Sci., 2017, 18(1), 181.
[http://dx.doi.org/10.3390/ijms18010181] [PMID: 28106752]
[174]
Silacci, M.; Brack, S.S.; Späth, N.; Buck, A.; Hillinger, S.; Arni, S.; Weder, W.; Zardi, L.; Neri, D. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumors in vivo. Protein Eng. Des. Sel., 2006, 19(10), 471-478.
[http://dx.doi.org/10.1093/protein/gzl033] [PMID: 16928692]
[175]
Schwager, K.; Villa, A.; Rösli, C.; Neri, D.; Rösli-Khabas, M.; Moser, G. A comparative immunofluorescence analysis of three clinical-stage antibodies in head and neck cancer. Head Neck Oncol., 2011, 3(1), 25.
[http://dx.doi.org/10.1186/1758-3284-3-25] [PMID: 21548989]
[176]
Frey, K.; Fiechter, M.; Schwager, K.; Belloni, B.; Barysch, M.J.; Neri, D.; Dummer, R. Different patterns of fibronectin and tenascin-C splice variants expression in primary and metastatic melanoma lesions. Exp. Dermatol., 2011, 20(8), 685-688.
[http://dx.doi.org/10.1111/j.1600-0625.2011.01314.x] [PMID: 21649738]
[177]
Wilson, K.E.; Langdon, S.P.; Lessells, A.M.; Miller, W.R. Expression of the extracellular matrix protein tenascin in malignant and benign ovarian tumours. Br. J. Cancer, 1996, 74(7), 999-1004.
[http://dx.doi.org/10.1038/bjc.1996.480] [PMID: 8855965]
[178]
Adams, M.; Jones, J.L.; Walker, R.A.; Pringle, J.H.; Bell, S.C. Changes in tenascin-C isoform expression in invasive and preinvasive breast disease. Cancer Res., 2002, 62(11), 3289-3297.
[PMID: 12036947]
[179]
Berndt, A.; Anger, K.; Richter, P.; Borsi, L.; Brack, S.; Silacci, M.; Franz, M.; Wunderlich, H.; Gajda, M.; Zardi, L.; Neri, D.; Kosmehl, H. Differential expression of tenascin-C splicing domains in urothelial carcinomas of the urinary bladder. J. Cancer Res. Clin. Oncol., 2006, 132(8), 537-546.
[http://dx.doi.org/10.1007/s00432-006-0106-8] [PMID: 16788848]
[180]
Richter, P.; Tost, M.; Franz, M.; Altendorf-Hofmann, A.; Junker, K.; Borsi, L.; Neri, D.; Kosmehl, H.; Wunderlich, H.; Berndt, A. B and C domain containing tenascin-C: urinary markers for invasiveness of urothelial carcinoma of the urinary bladder? J. Cancer Res. Clin. Oncol., 2009, 135(10), 1351-1358.
[http://dx.doi.org/10.1007/s00432-009-0576-6] [PMID: 19326143]
[181]
Guttery, D.S.; Hancox, R.A.; Mulligan, K.T.; Hughes, S.; Lambe, S.M.; Pringle, J.H.; Walker, R.A.; Jones, J.L.; Shaw, J.A. Association of invasion-promoting tenascin-C additional domains with breast cancers in young women. Breast Cancer Res., 2010, 12(4), R57.
[http://dx.doi.org/10.1186/bcr2618] [PMID: 20678196]
[182]
Iyoda, T.; Fujita, M.; Fukai, F. Biologically active TNIIIA2 region in tenascin-C molecule: A major contributor to elicit aggressive malignant phenotypes from tumors/tumor stroma. Front. Immunol., 2020, 11, 610096.
[http://dx.doi.org/10.3389/fimmu.2020.610096] [PMID: 33362799]
[183]
Hancox, R.A.; Allen, M.D.; Holliday, D.L.; Edwards, D.R.; Pennington, C.J.; Guttery, D.S.; Shaw, J.A.; Walker, R.A.; Pringle, J.H.; Jones, J.L. Tumour-associated tenascin-C isoforms promote breast cancer cell invasion and growth by matrix metalloproteinase-dependent and independent mechanisms. Breast Cancer Res., 2009, 11(2), R24.
[http://dx.doi.org/10.1186/bcr2251] [PMID: 19405959]
[184]
Sun, Z.; Velázquez-Quesada, I.; Murdamoothoo, D.; Ahowesso, C.; Yilmaz, A.; Spenlé, C.; Averous, G.; Erne, W.; Oberndorfer, F.; Oszwald, A.; Kain, R.; Bourdon, C.; Mangin, P.; Deligne, C.; Midwood, K.; Abou-Faycal, C.; Lefebvre, O.; Klein, A.; van der Heyden, M.; Chenard, M.P.; Christofori, G.; Mathelin, C.; Loustau, T.; Hussenet, T.; Orend, G. Tenascin-C increases lung metastasis by impacting blood vessel invasions. Matrix Biol., 2019, 83, 26-47.
[http://dx.doi.org/10.1016/j.matbio.2019.07.001] [PMID: 31288084]
[185]
Kasprzycka, M.; Hammarström, C.; Haraldsen, G. Tenascins in fibrotic disorders—from bench to bedside. Cell Adhes. Migr., 2015, 9(1-2), 83-89.
[http://dx.doi.org/10.4161/19336918.2014.994901] [PMID: 25793575]
[186]
Katoh, D.; Kozuka, Y.; Noro, A.; Ogawa, T.; Imanaka-Yoshida, K.; Yoshida, T. Tenascin-C induces phenotypic changes in fibroblasts to myofibroblasts with high contractility through the integrin αvβ1/transforming growth factor β/SMAD signaling axis in human breast cancer. Am. J. Pathol., 2020, 190(10), 2123-2135.
[http://dx.doi.org/10.1016/j.ajpath.2020.06.008] [PMID: 32650003]
[187]
Yeo, S.Y.; Lee, K.W.; Shin, D.; An, S.; Cho, K.H.; Kim, S.H. A positive feedback loop bi-stably activates fibroblasts. Nat. Commun., 2018, 9(1), 3016.
[http://dx.doi.org/10.1038/s41467-018-05274-6] [PMID: 30069061]
[188]
Huang, W.; Chiquet-Ehrismann, R.; Moyano, J.V.; Garcia-Pardo, A.; Orend, G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res., 2001, 61(23), 8586-8594.
[PMID: 11731446]
[189]
Fujita, M.; Sasada, M.; Iyoda, T.; Fukai, F. Involvement of integrin-activating peptides derived from tenascin-c in cancer aggression and new anticancer strategy using the fibronectin-derived integrin-inactivating peptide. Molecules, 2020, 25(14), 3239.
[http://dx.doi.org/10.3390/molecules25143239] [PMID: 32708610]
[190]
Fujita, M.; Sasada, M.; Iyoda, T.; Osada, S.; Kodama, H.; Fukai, F. Biofunctional peptide FNIII14. Encyclopedia, 2021, 1(2), 350-359.
[http://dx.doi.org/10.3390/encyclopedia1020029]
[191]
Fujita, M.; Sasada, M.; Iyoda, T.; Nagai, R.; Kudo, C.; Yamamoto, T.; Osada, S.; Kodama, H.; Fukai, F. Anoikis resistance conferred by tenascin-C-derived peptide TNIIIA2 and its disruption by integrin inactivation. Biochem. Biophys. Res. Commun., 2021, 536, 14-19.
[http://dx.doi.org/10.1016/j.bbrc.2020.12.050] [PMID: 33360093]
[192]
Swindle, C.S.; Tran, K.T.; Johnson, T.D.; Banerjee, P.; Mayes, A.M.; Griffith, L.; Wells, A. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J. Cell Biol., 2001, 154(2), 459-468.
[http://dx.doi.org/10.1083/jcb.200103103] [PMID: 11470832]
[193]
Iyer, A.K.V.; Tran, K.T.; Borysenko, C.W.; Cascio, M.; Camacho, C.J.; Blair, H.C.; Bahar, I.; Wells, A. Tenascin cytotactin epidermal growth factor-like repeat binds epidermal growth factor receptor with low affinity. J. Cell. Physiol., 2007, 211(3), 748-758.
[http://dx.doi.org/10.1002/jcp.20986] [PMID: 17311283]
[194]
Brösicke, N.; Faissner, A. Role of tenascins in the ECM of gliomas. Cell Adhes. Migr., 2015, 9(1-2), 131-140.
[http://dx.doi.org/10.1080/19336918.2014.1000071] [PMID: 25695402]
[195]
Cai, J.; Lu, W.; Du, S.; Guo, Z.; Wang, H.; Wei, W.; Shen, X. Tenascin-C modulates cell cycle progression to enhance tumour cell proliferation through AKT/FOXO1 signalling in pancreatic cancer. J. Cancer, 2018, 9(23), 4449-4462.
[http://dx.doi.org/10.7150/jca.25926] [PMID: 30519351]
[196]
Langlois, B.; Saupe, F.; Rupp, T.; Arnold, C.; van der Heyden, M.; Orend, G.; Hussenet, T. AngioMatrix, a signature of the tumor angiogenic switch-specific matrisome, correlates with poor prognosis for glioma and colorectal cancer patients. Oncotarget, 2014, 5(21), 10529-10545.
[http://dx.doi.org/10.18632/oncotarget.2470] [PMID: 25301723]
[197]
Kubo, Y.; Ishikawa, K.; Mori, K.; Kobayashi, Y.; Nakama, T.; Arima, M.; Nakao, S.; Hisatomi, T.; Haruta, M.; Sonoda, K.H.; Yoshida, S. Periostin and tenascin-C interaction promotes angiogenesis in ischemic proliferative retinopathy. Sci. Rep., 2020, 10(1), 9299.
[http://dx.doi.org/10.1038/s41598-020-66278-1] [PMID: 32518264]
[198]
Tanaka, K.; Hiraiwa, N.; Hashimoto, H.; Yamazaki, Y.; Kusakabe, M. Tenascin-C regulates angiogenesis in tumor through the regulation of vascular endothelial growth factor expression. Int. J. Cancer, 2004, 108(1), 31-40.
[http://dx.doi.org/10.1002/ijc.11509] [PMID: 14618612]
[199]
Rupp, T.; Langlois, B.; Koczorowska, M.M.; Radwanska, A.; Sun, Z.; Hussenet, T.; Lefebvre, O.; Murdamoothoo, D.; Arnold, C.; Klein, A.; Biniossek, M.L.; Hyenne, V.; Naudin, E.; Velazquez-Quesada, I.; Schilling, O.; Van Obberghen-Schilling, E.; Orend, G. Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro-and anti-angiogenic signaling. Cell Rep., 2016, 17(10), 2607-2619.
[http://dx.doi.org/10.1016/j.celrep.2016.11.012] [PMID: 27926865]
[200]
Fischer, D.; Brown-Lüdi, M.; Schulthess, T.; Chiquet-Ehrismann, R. Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J. Cell Sci., 1997, 110(13), 1513-1522.
[http://dx.doi.org/10.1242/jcs.110.13.1513] [PMID: 9224768]
[201]
Wawrzyniak, D.; Grabowska, M.; Głodowicz, P.; Kuczyński, K.; Kuczyńska, B.; Fedoruk-Wyszomirska, A.; Rolle, K. Down-regulation of tenascin-C inhibits breast cancer cells development by cell growth, migration, and adhesion impairment. PLoS One, 2020, 15(8), e0237889.
[http://dx.doi.org/10.1371/journal.pone.0237889] [PMID: 32817625]
[202]
San Martin, R.; Pathak, R.; Jain, A.; Jung, S.Y.; Hilsenbeck, S.G.; Piña-Barba, M.C.; Sikora, A.G.; Pienta, K.J.; Rowley, D.R. Tenascin-C and integrin α9 mediate interactions of prostate cancer with the bone microenvironment. Cancer Res., 2017, 77(21), 5977-5988.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0064] [PMID: 28916657]
[203]
Rappl, A.; Piontek, G.; Schlegel, J. EGFR-dependent migration of glial cells is mediated by reorganisation of N-cadherin. J. Cell Sci., 2008, 121(24), 4089-4097.
[http://dx.doi.org/10.1242/jcs.027995] [PMID: 19033391]
[204]
Steitz, A.M.; Steffes, A.; Finkernagel, F.; Unger, A.; Sommerfeld, L.; Jansen, J.M.; Wagner, U.; Graumann, J.; Müller, R.; Reinartz, S. Tumor-associated macrophages promote ovarian cancer cell migration by secreting transforming growth factor beta induced (TGFBI) and tenascin C. Cell Death Dis., 2020, 11(4), 249.
[http://dx.doi.org/10.1038/s41419-020-2438-8] [PMID: 32312959]
[205]
Lange, K.; Kammerer, M.; Saupe, F.; Hegi, M.E.; Grotegut, S.; Fluri, E.; Orend, G. Combined lysophosphatidic acid/platelet-derived growth factor signaling triggers glioma cell migration in a tenascin-C microenvironment. Cancer Res., 2008, 68(17), 6942-6952.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0347] [PMID: 18757408]
[206]
Sarkar, S.; Nuttall, R.K.; Liu, S.; Edwards, D.R.; Yong, V.W. Tenascin-C stimulates glioma cell invasion through matrix metalloproteinase-12. Cancer Res., 2006, 66(24), 11771-11780.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0470] [PMID: 17178873]
[207]
Sarkar, S.; Zemp, F.J.; Senger, D.; Robbins, S.M.; Yong, V.W. ADAM-9 is a novel mediator of tenascin-C-stimulated invasiveness of brain tumor–initiating cells. Neuro-oncol., 2015, 17(8), 1095-1105.
[http://dx.doi.org/10.1093/neuonc/nou362] [PMID: 25646025]
[208]
Hauzenberger, D.; Bergström, S.E.; Klominek, J.; Sundqvist, K.G. Spectrum of extracellular matrix degrading enzymes in normal and malignant T lymphocytes. Anticancer Res., 1999, 19(3A), 1945-1952.
[PMID: 10470139]
[209]
Benbow, J.H.; Thompson, K.J.; Cope, H.L.; Brandon-Warner, E.; Culberson, C.R.; Bossi, K.L.; Li, T.; Russo, M.W.; Gersin, K.S.; McKillop, I.H.; deLemos, A.S.; Schrum, L.W. Diet-induced obesity enhances progression of hepatocellular carcinoma through tenascin-C/toll-like receptor 4 signaling. Am. J. Pathol., 2016, 186(1), 145-158.
[http://dx.doi.org/10.1016/j.ajpath.2015.09.015] [PMID: 26603137]
[210]
Hanmin, C.; Xiangyue, Z.; Lenahan, C.; Ling, W.; Yibo, O.; Yue, H. Pleiotropic role of tenascin-C in central nervous system diseases: From basic to clinical applications. Front. Neurol., 2020, 11, 576230.
[http://dx.doi.org/10.3389/fneur.2020.576230] [PMID: 33281711]
[211]
Murdamoothoo, D.; Sun, Z.; Yilmaz, A.; Riegel, G.; Abou-Faycal, C.; Deligne, C.; Velazquez-Quesada, I.; Erne, W.; Nascimento, M.; Mörgelin, M.; Cremel, G.; Paul, N.; Carapito, R.; Veber, R.; Dumortier, H.; Yuan, J.; Midwood, K.S.; Loustau, T.; Orend, G. Tenascin-C immobilizes infiltrating T lymphocytes through CXCL12 promoting breast cancer progression. EMBO Mol. Med., 2021, 13(6), e13270.
[http://dx.doi.org/10.15252/emmm.202013270] [PMID: 33988305]
[212]
Deligne, C.; Murdamoothoo, D.; Gammage, A.N.; Gschwandtner, M.; Erne, W.; Loustau, T.; Marzeda, A.M.; Carapito, R.; Paul, N.; Velazquez-Quesada, I.; Mazzier, I.; Sun, Z.; Orend, G.; Midwood, K.S. Matrix-targeting immunotherapy controls tumor growth and spread by switching macrophage phenotype. Cancer Immunol. Res., 2020, 8(3), 368-382.
[http://dx.doi.org/10.1158/2326-6066.CIR-19-0276] [PMID: 31941671]
[213]
Spenlé, C.; Loustau, T.; Murdamoothoo, D.; Erne, W.; Beghelli-de la Forest Divonne, S.; Veber, R.; Petti, L.; Bourdely, P.; Mörgelin, M.; Brauchle, E.M.; Cremel, G.; Randrianarisoa, V.; Camara, A.; Rekima, S.; Schaub, S.; Nouhen, K.; Imhof, T.; Hansen, U.; Paul, N.; Carapito, R.; Pythoud, N.; Hirschler, A.; Carapito, C.; Dumortier, H.; Mueller, C.G.; Koch, M.; Schenke-Layland, K.; Kon, S.; Sudaka, A.; Anjuère, F.; Van Obberghen-Schilling, E.; Orend, G. Tenascin-C orchestrates an immune suppressive tumor microenvironment in oral squamous cell carcinoma. Cancer Immunol. Res., 2020, 8(9), 1122-1138.
[http://dx.doi.org/10.1158/2326-6066.CIR-20-0074] [PMID: 32665262]
[214]
Wang, Y.; Xu, H.; Zhu, B.; Qiu, Z.; Lin, Z. Systematic identification of the key candidate genes in breast cancer stroma. Cell. Mol. Biol. Lett., 2018, 23(1), 44.
[http://dx.doi.org/10.1186/s11658-018-0110-4] [PMID: 30237810]
[215]
Hongu, T.; Pein, M.; Insua-Rodríguez, J.; Gutjahr, E.; Mattavelli, G.; Meier, J.; Decker, K.; Descot, A.; Bozza, M.; Harbottle, R.; Trumpp, A.; Sinn, H.P.; Riedel, A.; Oskarsson, T. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs. Nat. Can., 2022, 3(4), 486-504.
[http://dx.doi.org/10.1038/s43018-022-00353-6] [PMID: 35469015]
[216]
Islam, M.S.; Kusakabe, M.; Horiguchi, K.; Iino, S.; Nakamura, T.; Iwanaga, K.; Hashimoto, H.; Matsumoto, S.; Murata, T.; Hori, M.; Ozaki, H. PDGF and TGF-β promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Br. J. Pharmacol., 2014, 171(2), 375-388.
[http://dx.doi.org/10.1111/bph.12452] [PMID: 24116743]
[217]
Lu, Y.; Su, F.; Li, Q.; Zhang, J.; Li, Y.; Tang, T.; Hu, Q.; Yu, X.Q. Pattern recognition receptors in Drosophila immune responses. Dev. Comp. Immunol., 2020, 102, 103468.
[http://dx.doi.org/10.1016/j.dci.2019.103468] [PMID: 31430488]
[218]
Kanayama, M.; Kurotaki, D.; Morimoto, J.; Asano, T.; Matsui, Y.; Nakayama, Y.; Saito, Y.; Ito, K.; Kimura, C.; Iwasaki, N.; Suzuki, K.; Harada, T.; Li, H.M.; Uehara, J.; Miyazaki, T.; Minami, A.; Kon, S.; Uede, T. α9 integrin and its ligands constitute critical joint microenvironments for development of autoimmune arthritis. J. Immunol., 2009, 182(12), 8015-8025.
[http://dx.doi.org/10.4049/jimmunol.0900725] [PMID: 19494327]
[219]
Goh, F.G.; Piccinini, A.M.; Krausgruber, T.; Udalova, I.A.; Midwood, K.S. Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J. Immunol., 2010, 184(5), 2655-2662.
[http://dx.doi.org/10.4049/jimmunol.0903359] [PMID: 20107185]
[220]
Imanaka-Yoshida, K. Tenascin-C in cardiovascular tissue remodeling: from development to inflammation and repair. Circ. J., 2012, 76(11), 2513-2520.
[http://dx.doi.org/10.1253/circj.CJ-12-1033] [PMID: 23064399]
[221]
Fu, H.; Tian, Y.; Zhou, L.; Zhou, D.; Tan, R.J.; Stolz, D.B.; Liu, Y. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J. Am. Soc. Nephrol., 2017, 28(3), 785-801.
[http://dx.doi.org/10.1681/ASN.2016020165] [PMID: 27612995]
[222]
Siddiqui, S.; Horvat-Bröcker, A.; Faissner, A. The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD. Neuron Glia Biol., 2008, 4(4), 271-283.
[http://dx.doi.org/10.1017/S1740925X09990020] [PMID: 19508743]
[223]
Andrews, M.R.; Czvitkovich, S.; Dassie, E.; Vogelaar, C.F.; Faissner, A.; Blits, B.; Gage, F.H.; ffrench-Constant, C.; Fawcett, J.W. α9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J. Neurosci., 2009, 29(17), 5546-5557.
[http://dx.doi.org/10.1523/JNEUROSCI.0759-09.2009] [PMID: 19403822]
[224]
Imanaka-Yoshida, K.; Hiroe, M.; Nishikawa, T.; Ishiyama, S.; Shimojo, T.; Ohta, Y.; Sakakura, T.; Yoshida, T. Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Lab. Invest., 2001, 81(7), 1015-1024.
[http://dx.doi.org/10.1038/labinvest.3780313] [PMID: 11454990]
[225]
Collins, A.R.; Schnee, J.; Wang, W.; Kim, S.; Fishbein, M.C.; Bruemmer, D.; Law, R.E.; Nicholas, S.; Ross, R.S.; Hsueh, W.A. Osteopontin modulates angiotensin II- induced fibrosis in the intact murine heart. J. Am. Coll. Cardiol., 2004, 43(9), 1698-1705.
[http://dx.doi.org/10.1016/j.jacc.2003.11.058] [PMID: 15120833]
[226]
Settles, D.L.; Cihak, R.A.; Erickson, H.P. Tenascin-C expression in dystrophin-related muscular dystrophy. Muscle Nerve, 1996, 19(2), 147-154.
[http://dx.doi.org/10.1002/(SICI)1097-4598(199602)19:2<147::AID-MUS4>3.0.CO;2-E] [PMID: 8559162]
[227]
Kääriäinen, M.; Järvinen, T.; Järvinen, M.; Rantanen, J.; Kalimo, H. Relation between myofibers and connective tissue during muscle injury repair. Scand. J. Med. Sci. Sports, 2000, 10(6), 332-337.
[http://dx.doi.org/10.1034/j.1600-0838.2000.010006332.x] [PMID: 11085560]
[228]
Hamada, K.; Miura, Y.; Toma, N.; Miyamoto, K.; Imanaka-Yoshida, K.; Matsushima, S.; Yoshida, T.; Taki, W.; Suzuki, H. Gellan sulfate core platinum coil with tenascin-C promotes intra-aneurysmal organization in rats. Transl. Stroke Res., 2014, 5(5), 595-603.
[http://dx.doi.org/10.1007/s12975-014-0352-z] [PMID: 24939607]
[229]
Clark, R.A.F. Biology of dermal wound repair. Dermatol. Clin., 1993, 11(4), 647-666.
[http://dx.doi.org/10.1016/S0733-8635(18)30218-3] [PMID: 8222349]
[230]
Patel, S. Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Curr. Allergy Asthma Rep., 2018, 18(11), 63.
[http://dx.doi.org/10.1007/s11882-018-0817-3] [PMID: 30267163]
[231]
Liabeuf, S.; Barreto, D.V.; Kretschmer, A.; Barreto, F.C.; Renard, C.; Andrejak, M.; Choukroun, G.; Massy, Z. High circulating levels of large splice variants of tenascin-C is associated with mortality and cardiovascular disease in chronic kidney disease patients. Atherosclerosis, 2011, 215(1), 116-124.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.11.038] [PMID: 21183183]
[232]
Zhu, H.; Liao, J.; Zhou, X.; Hong, X.; Song, D.; Hou, F.F.; Liu, Y.; Fu, H. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney Int., 2020, 97(5), 1017-1031.
[http://dx.doi.org/10.1016/j.kint.2020.01.026] [PMID: 32245660]
[233]
Yasuda, M.; Harada, N.; Harada, S.; Ishimori, A.; Katsura, Y.; Itoigawa, Y.; Matsuno, K.; Makino, F.; Ito, J.; Ono, J.; Tobino, K.; Akiba, H.; Atsuta, R.; Izuhara, K.; Takahashi, K. Characterization of tenascin-C as a novel biomarker for asthma: Utility of tenascin-C in combination with periostin or immunoglobulin E. Allergy Asthma Clin. Immunol., 2018, 14(1), 72.
[http://dx.doi.org/10.1186/s13223-018-0300-7] [PMID: 30473714]
[234]
Johannson, K.A.; Kolb, M.; Fell, C.D.; Assayag, D.; Fisher, J.; Churg, A. Evaluation of patients with fibrotic interstitial lung disease: A Canadian Thoracic Society position statement; Taylor & Francis, 2017.
[235]
Taş, İ.; Zhou, R.; Park, S.Y.; Yang, Y.; Gamage, C.D.B.; Son, Y.J.; Paik, M.J.; Kim, H. Inflammatory and tumorigenic effects of environmental pollutants found in particulate matter on lung epithelial cells. Toxicol. In Vitro, 2019, 59, 300-311.
[http://dx.doi.org/10.1016/j.tiv.2019.05.022] [PMID: 31154059]
[236]
Carey, W.A.; Taylor, G.D.; Dean, W.B.; Bristow, J.D. Tenascin-C deficiency attenuates TGF-β-mediated fibrosis following murine lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2010, 299(6), L785-L793.
[http://dx.doi.org/10.1152/ajplung.00385.2009] [PMID: 20833777]
[237]
Clancy, P.; Lincz, L.F.; Maguire, J.; McEvoy, M.; Koblar, S.A.; Golledge, J. Tenascin-C is increased in atherothrombotic stroke patients and has an anti-inflammatory effect in the human carotid artery. Biofactors, 2014, 40(4), 448-457.
[http://dx.doi.org/10.1002/biof.1170] [PMID: 24823872]
[238]
Liu, L.; Fujimoto, M.; Nakano, F.; Nishikawa, H.; Okada, T.; Kawakita, F.; Imanaka-Yoshida, K.; Yoshida, T.; Suzuki, H. Deficiency of tenascin-C alleviates neuronal apoptosis and neuroinflammation after experimental subarachnoid hemorrhage in mice. Mol. Neurobiol., 2018, 55(11), 8346-8354.
[http://dx.doi.org/10.1007/s12035-018-1006-z] [PMID: 29546590]
[239]
Suzuki, H.; Kanamaru, K.; Suzuki, Y.; Aimi, Y.; Matsubara, N.; Araki, T.; Takayasu, M.; Kinoshita, N.; Imanaka-Yoshida, K.; Yoshida, T.; Taki, W. Tenascin-C is induced in cerebral vasospasm after subarachnoid hemorrhage in rats and humans: A pilot study. Neurol. Res., 2010, 32(2), 179-184.
[http://dx.doi.org/10.1179/174313208X355495] [PMID: 19589197]
[240]
Shiba, M.; Suzuki, H.; Fujimoto, M.; Shimojo, N.; Imanaka-Yoshida, K.; Yoshida, T.; Kanamaru, K.; Matsushima, S.; Taki, W. Imatinib mesylate prevents cerebral vasospasm after subarachnoid hemorrhage via inhibiting tenascin-C expression in rats. Neurobiol. Dis., 2012, 46(1), 172-179.
[http://dx.doi.org/10.1016/j.nbd.2012.01.005] [PMID: 22300707]
[241]
Chiquet, M.; Sarasa-Renedo, A.; Tunç-Civelek, V. Induction of tenascin-C by cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and MAPK signaling pathways. Biochim. Biophys. Acta Mol. Cell Res., 2004, 1693(3), 193-204.
[http://dx.doi.org/10.1016/j.bbamcr.2004.08.001] [PMID: 15363633]
[242]
Fujimoto, M.; Shiba, M.; Kawakita, F.; Liu, L.; Shimojo, N.; Imanaka-Yoshida, K.; Yoshida, T.; Suzuki, H. Deficiency of tenascin-C and attenuation of blood-brain barrier disruption following experimental subarachnoid hemorrhage in mice. J. Neurosurg., 2016, 124(6), 1693-1702.
[http://dx.doi.org/10.3171/2015.4.JNS15484] [PMID: 26473781]
[243]
Cho, A.; Graves, J.; Reidy, M.A. Mitogen-activated protein kinases mediate matrix metalloproteinase-9 expression in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 2000, 20(12), 2527-2532.
[http://dx.doi.org/10.1161/01.ATV.20.12.2527] [PMID: 11116048]
[244]
Okada, T.; Suzuki, H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol. Histopathol., 2020, 35(7), 623-636.
[PMID: 32026458]
[245]
Hendryk, S.; Jarzab, B.; Josko, J. Increase of the IL-1 beta and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuroendocrinol. Lett., 2004, 25(1-2), 141-147.
[PMID: 15159698]
[246]
Suzuki, K.; Meguro, K.; Sakurai, T.; Saitoh, Y.; Takeuchi, S.; Nose, T. Endothelin-1 concentration increases in the cerebrospinal fluid in cerebral vasospasm caused by subarachnoid hemorrhage. Surg. Neurol., 2000, 53(2), 131-135.
[http://dx.doi.org/10.1016/S0090-3019(99)00179-2] [PMID: 10713190]
[247]
Okada, T.; Kawakita, F.; Nishikawa, H.; Nakano, F.; Liu, L.; Suzuki, H. Selective toll-like receptor 4 antagonists prevent acute blood-brain barrier disruption after subarachnoid hemorrhage in mice. Mol. Neurobiol., 2019, 56(2), 976-985.
[http://dx.doi.org/10.1007/s12035-018-1145-2] [PMID: 29855971]
[248]
Suzuki, H.; Fujimoto, M.; Kawakita, F.; Liu, L.; Nakatsuka, Y.; Nakano, F.; Nishikawa, H.; Okada, T.; Kanamaru, H.; Imanaka-Yoshida, K.; Yoshida, T.; Shiba, M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J. Neurosci. Res., 2020, 98(1), 42-56.
[http://dx.doi.org/10.1002/jnr.24330] [PMID: 30242870]
[249]
Suzuki, H.; Okada, T. Toll-like receptor 4 as a possible therapeutic target for delayed brain injuries after aneurysmal subarachnoid hemorrhage. Neural Regen. Res., 2017, 12(2), 193-196.
[http://dx.doi.org/10.4103/1673-5374.200795] [PMID: 28400792]
[250]
Fujimoto, M.; Shiba, M.; Kawakita, F.; Liu, L.; Shimojo, N.; Imanaka-Yoshida, K.; Yoshida, T.; Suzuki, H. Effects of tenascin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol. Neurobiol., 2018, 55(3), 1951-1958.
[http://dx.doi.org/10.1007/s12035-017-0466-x] [PMID: 28244007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy