Abstract
Engineered nanomaterials are commonly defined as materials with at least one dimension of 100 nanometers or less. Such materials typically possess nanostructure-dependent properties (e.g., chemical, mechanical, electrical, optical, magnetic, biological), which make them desiderable for commercial or medical application. However, these same properties may potentially lead to nanostructure-dependent biological activity that differs from and is not directly predicted by the bulk properties of the constitutive chemicals and compounds. Nanoparticles and nanomaterials can be on the same scale of living cells components, including proteins, nucleic acids, lipids and cellular organelles. When considering nanoparticles it must be asked how man-made nanostructures can interact with or influence biological systems. Carbon nanotubes (CNTs) are an example of carbon-based nanomaterial, which has won a huge spreading in nanotechnology. The incorporation of CNTs in living systems has raised many concerns because of their hydrophobicity and tendency to aggregate and accumulate into cells, organs, and tissues with dangerous effects. Applications of toxicogenomics to both investigative and predictive toxicology will contribute to the in-depth investigation of molecular mechanisms or the mode of nanomaterials action that is achieved by using conventional toxicological approaches. Parallel toxicogenomic technologies will promote a valuable platform for the development of biomarkers, in order to predict possible nanomaterials toxicity. The potential of characteristic gene expression profiles (“fingerprint”) of exposure or toxicological response to nanoparticles will be discussed in the review to enhance comprehension of the molecular mechanism of in vivo and in vitro system exposed to nanomaterials.
Keywords: Nanomaterials, toxicogenomics