Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Research Article

Modeling, Optimization, and Simulation of Nanomaterials-Based Organic Thin Film Transistor for Future Use in pH Sensing

Author(s): Vijai Meyyappan Moorthy* and Viranjay Srivastava Mohan

Volume 18, Issue 1, 2024

Published on: 19 June, 2023

Page: [45 - 53] Pages: 9

DOI: 10.2174/1872210517666230414081056

Price: $65

Abstract

Introduction: Applications of Organic Thin Film Transistor (OTFT) range from flexible screens to disposable sensors, making them a prominent research issue in recent decades. A very accurate and exact pH sensing determination, including biosensors, is essential for these sensors.

Methods: In this present research work, authors have proposed a nanomaterial-based OTFT for future pH monitoring and other biosensing applications. This work presents a numerical model of a pH sensor based on Carbon Nano Tubes (CNTs). Sensing in harsh conditions may be possible with the CNTs due to their strong chemical and thermal resilience. This research work describes the numerical modeling of Bottom-Gate Bottom-Contact (BGBC) OTFTs with a Semiconducting Single-Walled Carbon Nanotube (s-SWCNT) and C60 fullerene blended active layer.

Results: The design methodology of organic nanomaterial-based OTFTs has been presented with various parameter extraction precisely its electrical characteristics, modeled by adjusting the parameters of the basic semiconductor technology. For an active layer thickness of 200 nm, the drain current of the highest-performing s-SWCNT:C60 -based OTFT structure was around 4.25 A. This demonstrates that it is better than previously reported patents and published works.

Conclusion: This allows for an accurate representation of the device's electrical characteristics. Using Gold (Ag) Source/Drain (S/D) and back-gate electrodes as the medium for sensing, it has been realized how the thickness of the active layer impacts the performance of an OTFT for pH sensor applications.

Graphical Abstract

[1]
Kim J, Campbell AS, de Ávila BEF, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019; 37(4): 389-406.
[http://dx.doi.org/10.1038/s41587-019-0045-y] [PMID: 30804534]
[2]
Sonner Z, Wilder E, Heikenfeld J, et al. The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics 2015; 9(3): 031301.
[http://dx.doi.org/10.1063/1.4921039] [PMID: 26045728]
[3]
Mannoor MS, Tao H, Clayton JD, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 2012; 3(1): 763.
[http://dx.doi.org/10.1038/ncomms1767] [PMID: 22453836]
[4]
Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 2016; 8(366): 366ra165.
[http://dx.doi.org/10.1126/scitranslmed.aaf2593] [PMID: 27881826]
[5]
Sempionatto JR, Nakagawa T, Pavinatto A, et al. Eyeglasses based wireless electrolyte and metabolite sensor platform. Lab Chip 2017; 17(10): 1834-42.
[http://dx.doi.org/10.1039/C7LC00192D]
[6]
Cuartero M, Parrilla M, Crespo G. Wearable potentiometric sensors for medical applications. Sensors 2019; 19(2): 363.
[http://dx.doi.org/10.3390/s19020363] [PMID: 30658434]
[7]
Jimenez-Jorquera C, Orozco J, Baldi A. ISFET based microsensors for environmental monitoring. Sensors 2009; 10(1): 61-83.
[http://dx.doi.org/10.3390/s100100061] [PMID: 22315527]
[8]
Dargar SK, Srivastava VM. Performance comparison of Amorphous-IGZO and hydrogenated silicon based thin film transistor Int Conf on Advanced Computation and Telecommunication. ICACT Bhopal, India 2018; pp. 1-4.
[http://dx.doi.org/10.1109/ICACAT.2018.8933691]
[9]
Vijai M, Varatharajan P, Rathnasami JD, Srivastava VM. G-optrode bio-interfaces for non-invasive optical cell stimulation: design and evaluation. Biosensors 2022; 12(10): 1-16.
[10]
Jeevarajan AS, Vani S, Taylor TD, Anderson MM. Continuous pH monitoring in a perfused bioreactor system using an optical pH sensor. Biotechnol Bioeng 2002; 78(4): 467-72.
[http://dx.doi.org/10.1002/bit.10212] [PMID: 11948454]
[11]
Banica FG. Chemical sensors and biosensors: Fundamentals and applications. John Wiley & Sons New Jersey, USA 2012.
[12]
Goepel W, Jones TA, Kleitz M. Sensors, chemical, and biochemical sensors. New Jersey, USA: John Wiley & Sons 2008.
[13]
Janata J. Principles of chemical sensors. Springer Science & Business Media 2010.
[14]
Madou MJ, Morrison SR. Chemical sensing with solid state devices Elsevier: Amsterdam. 2012.
[15]
Kaisti M. Detection principles of biological and chemical FET sensors. Biosens Bioelectron 2017; 98(15): 437-48.
[http://dx.doi.org/10.1016/j.bios.2017.07.010] [PMID: 28711826]
[16]
Meyyappan MV, Parthasarathy V, Daniel RJ. Bio‐interface behaviour of graphene and semiconducting SWCNT:C60 blend based nano photodiode for subretinal implant. Biosurf Biotribol 2020; 6(2): 53-8.
[http://dx.doi.org/10.1049/bsbt.2019.0045]
[17]
Arakawa T, Dao DV, Mitsubayashi K. Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Trans Electr Electron Eng 2022; 17(5): 626-36.
[http://dx.doi.org/10.1002/tee.23580]
[18]
Viranjay MS. Singh G, MOSFET Technologies for double-pole four throw radio frequency switch. Springer International Publishing: Switzerland 2014.
[http://dx.doi.org/10.1007/978-3-319-01165-3]
[19]
Bergveld P. ISFET, theory and practice IEEE Sensor Conference; Toronto, Canada, 2003; pp. 1-26.
[20]
Bergveld P. Thirty years of ISFETOLOGY. Sens Actuators B Chem 2003; 88(1): 1-20.
[http://dx.doi.org/10.1016/S0925-4005(02)00301-5]
[21]
Cao S, Sun P, Xiao G, et al. ISFET‐based sensors for (bio)chemical applications: A review. Electrochem Sci Adv 2022; 1-25.
[http://dx.doi.org/10.1002/elsa.202100207]
[22]
Sanjay S, Hossain M, Rao A, Bhat N. Super-Nernstian ion sensitive field-effect transistor exploiting charge screening in WSe2/MoS2 heterostructure. 2D Mater Appl 2021; 5(93)
[http://dx.doi.org/10.1038/s41699-021-00273-6]
[23]
Bergveld P. Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 1970; BME-17(1): 70-1.
[http://dx.doi.org/10.1109/TBME.1970.4502688] [PMID: 5441220]
[24]
Lee CS, Kim S, Kim M. Ion-sensitive field-effect transistor for biological sensing. Sensors 2009; 9(9): 7111-31.
[http://dx.doi.org/10.3390/s90907111] [PMID: 22423205]
[25]
Ito N, Saito A, Kayashima S, et al. Transcutaneous blood glucose monitoring system based on an ISFET glucose sensor and studies on diabetic patients. Front Med Biol Eng 1995; 6(4): 269-80.
[PMID: 7612502]
[26]
Merkoçi A, Li C, Lechuga LM, Ozcan A. COVID-19 biosensing technologies. Biosens Bioelectron 2021; 178: 113046.
[http://dx.doi.org/10.1016/j.bios.2021.113046] [PMID: 33548654]
[27]
Schepel SJ, de Rooij NF, Koning G, Oeseburg B, Zijlstra WG. In vivo experiments with a pH-ISFET electrode. Med Biol Eng Comput 1984; 22(1): 6-11.
[http://dx.doi.org/10.1007/BF02443738] [PMID: 6694449]
[28]
Schütt F, Postica V, Adelung R, Lupan O. Single and networked ZnOeCNT hybrid tetrapods for selective roomtemperature high-performance ammonia sensors. ACS Appl Mater Interfaces 2017; 9(27): 23107-18.
[http://dx.doi.org/10.1021/acsami.7b03702] [PMID: 28654234]
[29]
Guidelli EJ, Guerra EM, Mulato M. V2O5/WO3 mixed oxide films as pH-EGFET sensor: sequential re-usage and fabrication volume analysis. ECS J Solid State Sci Technol 2012; 1(3): 39-44.
[30]
Paramasivam P, Gowthaman N, Srivastava VM. Design and Analysis of InP/InAs/AlGaAs Based Cylindrical Surrounding Double- Gate (CSDG) MOSFETs With La2O3 for 5-nm Technology. IEEE Access 2021; 9: 159566-76.
[http://dx.doi.org/10.1109/ACCESS.2021.3131094]
[31]
Mishra YK, Modi G, Cretu V, et al. Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocataly-sis, UV photodetection, and gas sensing. ACS Appl Mater Interfaces 2015; 7(26): 14303-16.
[http://dx.doi.org/10.1021/acsami.5b02816] [PMID: 26050666]
[32]
Park S, Ko H, Lee S, Kim H, Lee C. Light-activated gas sensing of Bi2O3-core/ZnO-shell nanobelt gas sensors. Thin Solid Films 2014; 570(B): 298-302.
[http://dx.doi.org/10.1016/j.tsf.2014.02.110]
[33]
Devi GS, Manorama SV, Rao VJ. SnO2/Bi2O3: a suitable system for selective carbon monoxide detection. J Electrochem Soc 1998; 145(3): 1039-44.
[http://dx.doi.org/10.1149/1.1838385]
[34]
Bhande SS, Mane RS, Ghule AV, Han SH. A bismuth oxide nanoplate-based carbon dioxide gas sensor. Scr Mater 2011; 65(12): 1081-4.
[http://dx.doi.org/10.1016/j.scriptamat.2011.09.022]
[35]
Malik R, Tomer VK, Dankwort T, Mishra YK, Kienle L. Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J Mater Chem A Mater Energy Sustain 2018; 6(23): 10718-30.
[http://dx.doi.org/10.1039/C8TA02702A]
[36]
Poonia E, Mishra PK, Kiran V, et al. Aero-gel based CeO2 nanoparticles: synthesis, structural properties and detailed humidity sensing response. J Mater Chem C Mater Opt Electron Devices 2019; 7(18): 5477-87.
[http://dx.doi.org/10.1039/C9TC01081E]
[37]
Pan TM, Wang CW, Pan SY. High-performance electrolyte insulator semiconductor pH sensors using high-k CeO2 sensing films. IEEE Electron Device Lett 2015; 36(11): 1195-7.
[http://dx.doi.org/10.1109/LED.2015.2475627]
[38]
Eranna G, Joshi BC, Runthala DP, Gupta RP. Oxide materials for development of integrated gas sensors-A comprehensive review. Crit Rev Solid State Mater Sci 2004; 29(3-4): 111-88.
[http://dx.doi.org/10.1080/10408430490888977]
[39]
Ayesh AI. Metal/metal-oxide nanoclusters for gas sensor applications. J Nanomater 2016; 2016: 2359019.
[http://dx.doi.org/10.1155/2016/2359019]
[40]
Moseley PT. Progress in the development of semiconducting metal oxide gas sensors: A review. Meas Sci Technol 2017; 28(8): 082001.
[http://dx.doi.org/10.1088/1361-6501/aa7443]
[41]
Matsuo T, Esashi M. Methods of isfet fabrication. Sens Actuators 1981; 1: 77-96.
[http://dx.doi.org/10.1016/0250-6874(81)80006-6]
[42]
Chiang JL, Jan SS, Chou JC, Chen YC. Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sens Actuators B Chem 2001; 76(1-3): 624-8.
[http://dx.doi.org/10.1016/S0925-4005(01)00657-8]
[43]
Batista PD, Mulato M. ZnO extended-gate field-effect transistors as pH sensors. Appl Phys Lett 2005; 87(14): 143508.
[http://dx.doi.org/10.1063/1.2084319]
[44]
Li JY, Chang SP, Chang SJ, Tsai TY. Sensitivity of EGFET pH sensors with TiO2 nanowires. ECS Solid State Letters 2014; 3(10): 123-6.
[http://dx.doi.org/10.1149/2.0091410ssl]
[45]
Chang SP, Yang TH. Sensing performance of EGFET pH sensors with CuO nanowires fabricated on glass substrate. Int J Electrochem Sci 2012; 7(6): 5020-7.
[46]
Zhang L, Hashimoto Y, Taishi T, Nakamura I, Ni QQ. Fabrication of flower-shaped Bi2O3 superstructure by a facile template-free process. Appl Surf Sci 2011; 257(15): 6577-82.
[http://dx.doi.org/10.1016/j.apsusc.2011.02.081]
[47]
Gowthaman N, Srivastava VM. Mathematical modeling of electron density arrangement in CSDG MOSFET: a nano-material approach. J Mater Sci 2022; 57(18): 8381-92.
[http://dx.doi.org/10.1007/s10853-021-06717-0]
[48]
Avcı I, Oğuz M, Şen M. An extended gate field effect transistor (EGFET) pH microsensor. Medical Technologies Congress 2021; Antalya, Turkey: pp. 1-.
[http://dx.doi.org/10.1109/TIPTEKNO53239.2021.9632919]
[49]
Moser N, Lande TS, Toumazou C, Georgiou P. ISFETs in CMOS and emergent trends in instrumentation: A review. IEEE Sens J 2016; 16(17): 6496-514.
[http://dx.doi.org/10.1109/JSEN.2016.2585920]
[50]
Sharma P, Gupta S, Singh R, et al. Hydrogen ion sensing characteristics of Na3BiO4–Bi2O3 mixed oxide nanostructures based EGFET pH sensor. Int J Hydrogen Energy 2020; 45(37): 18743-51.
[http://dx.doi.org/10.1016/j.ijhydene.2019.07.252]
[51]
Lu S, Zhang C, Liu Y. Carbon nanotube supported Pt–Ni catalysts for preferential oxidation of CO in hydrogen-rich gases. Int J Hydrogen Energy 2011; 36(3): 1939-48.
[http://dx.doi.org/10.1016/j.ijhydene.2010.11.029]
[52]
Zhu S, Tian Q, Wu G, et al. Highly sensitive and stable H2 gas sensor based on p-PdO-n-WO3-heterostructure-homogeneously-dispersing thin film. Int J Hydrogen Energy 2022; 47(40): 17821-34.
[http://dx.doi.org/10.1016/j.ijhydene.2022.03.237]
[53]
Li B, Lai PT, Tang WM. Dependence of sensing performance of OTFT-based H2 sensor on channel length. Int J Hydrogen Energy 2021; 46(29): 16232-40.
[http://dx.doi.org/10.1016/j.ijhydene.2021.02.125]
[54]
Jain SK, Joshi AM, Bharti D. Performance investigation of organic thin film transistor on varying thickness of semiconductor material: An experimentally verified simulation study. Semiconductors 2020; 54(11): 1483-9.
[http://dx.doi.org/10.1134/S106378262011010X]
[55]
Ahmad RA, Boolchandani D. A novel instrumentation amplifier with high tunable gain and cmrr for biomedical applications. Turk J Electr Eng Comput Sci 2022; 30(3): 996-1015.
[http://dx.doi.org/10.55730/1300-0632.3823]
[56]
Seo G, Lee G, Kim MJ, et al. Correction to rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using Field Effect Transistor-Based biosensor. ACS Nano 2020; 14(9): 257-12.
[http://dx.doi.org/10.1021/acsnano.0c06726]
[57]
Jain SK, Joshi AM. Dielectric-modulated double gate bilayer electrode organic thin film transistor-based biosensor for label-free detection: Simulation study and sensitivity analysis 2022.
[http://dx.doi.org/10.48550/arXiv.2205.15041]
[58]
Khan HU, Jang J, Kim JJ, Knoll W. Effect of passivation on the sensitivity and stability of pentacene transistor sensors in aqueous media. Biosens Bioelectron 2011; 26(10): 4217-21.
[http://dx.doi.org/10.1016/j.bios.2011.03.031] [PMID: 21546238]
[59]
Minamiki T, Sasaki Y, Tokito S, Minami T. Label-free direct electrical detection of a histidine-rich protein with subfemtomolar sensitivity using an organic field-effect transistor. ChemistryOpen 2017; 6(4): 472-5.
[http://dx.doi.org/10.1002/open.201700070] [PMID: 28794937]
[60]
Loi A, Manunza I, Bonfiglio A. Flexible, organic, ion-sensitive field-effect transistor. Appl Phys Lett 2005; 86(10): 103512.
[http://dx.doi.org/10.1063/1.1873051]
[61]
Yan F, Mok SM, Yu J, Chan HLW, Yang M. Label-free DNA sensor based on organic thin film transistors. Biosens Bioelectron 2009; 24(5): 1241-5.
[http://dx.doi.org/10.1016/j.bios.2008.07.030] [PMID: 18771910]
[62]
Sood H, Srivastava VM, Singh G. Advanced MOSFET technologies for next generation communication systems-perspective and challenges: A review. J Eng Sci Technol Review 2018; 11(3): 180-95.
[http://dx.doi.org/10.25103/jestr.113.25]
[63]
Vijai M. Device modeling of organic photovoltaic cells with traditional and inverted cells using s-SWCNT:C60 as active layer. Nanomaterials 2022; 12(16): 1-16.
[http://dx.doi.org/10.3390/nano12162844]
[64]
Gowthaman N, Srivastava VM. Mathematical modeling of drain current estimation in a CSDG MOSFET, based on La2O3 oxide layer with fabrication—A nanomaterial approach. Nanomaterials 2022; 12(19): 1-15.
[http://dx.doi.org/10.3390/nano12193374]
[65]
Babuji A, Cazorla A, Solano E, et al. Charge-transfer complexes in organic field-effect transistors: superior suitability for surface doping. ACS Appl Mater Interfaces 2022; 14(39): 44632-41.
[http://dx.doi.org/10.1021/acsami.2c09168] [PMID: 36126171]
[66]
Kim CH. Organic heterojunction transistors. ACS Appl Electron Mater 2022; 4(6): 2581-8.
[http://dx.doi.org/10.1021/acsaelm.2c00423]
[67]
Tang X, Zhu Y, Guan W, Zhou W, Wei P. Advances in nanosensors for cardiovascular disease detection. Life Sci 2022; 305: 120733.
[http://dx.doi.org/10.1016/j.lfs.2022.120733] [PMID: 35777581]
[68]
Lennox RB, Robert S. Hodges RS, Irvin RT, "Biosensor device and method," U.S. Patent 60165335A, Apr. 25, 1996.
[69]
da Silva Jr M.F., D’Almeida AR, Ribeiro FP, Valente LCG, Braga AMB, Triques ALC. “Optical fiber pH sensor”, US Patent 7251384B2, May 26, 2005.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy