Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanotechnology-based Drug Delivery Systems for the Treatment of Cervical Cancer: A Comprehensive Review

Author(s): Manu Singhai, Ghanshyam Das Gupta, Bharat Khurana, Daisy Arora, Sumel Ashique and Neeraj Mishra*

Volume 20, Issue 2, 2024

Published on: 17 May, 2023

Page: [224 - 247] Pages: 24

DOI: 10.2174/1573413719666230413084140

open access plus

Abstract

Background: Cancer is a global public health issue; in the United States, it is the second leading cause of death. Furthermore, cancer, which consists of distinct subtypes of cancer cells and variable components, may cause a continuum of carcinogenesis. It can be categorized according to the part where it begins in the body, such as breast cancer or cervix cancer. Cervical cancer attacks cervix cells, most commonly in the transition area, when the endocervix's glandular cells transform into the exocervix's squamous cells. Cervical cancer is treated in several methods depending on the degree and size of the tumour and frequently entails surgery, radiotherapy, and chemotherapy.

Methods: It is vital to have an effective drug delivery system that may increase the treatment effectiveness to overcome the limits of traditional therapy and achieve higher cancer therapeutic efficacy that is successful in treating cervical cancer.

Additionally, these therapies are safer than traditional therapy. Although many nanocarriers have been created, only a few numbers have received clinical approval to deliver anticancer medications to the targeted areas where their predicted activity is to be seen.

Conclusion: Along with the patents released, various research reports illustrating the value of nanocarriers are addressed in this review. Some recent publications, clinical evidence, and patent records on nanocarrier architectures have been given, strengthening the understanding of tumor management.

Graphical Abstract

[1]
Ashique, S.; Upadhyay, A.; Kumar, N.; Chauhan, S.; Mishra, N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Adv. Cancer Biol. Metastasis, 2022, 4, 100041.
[http://dx.doi.org/10.1016/j.adcanc.2022.100041]
[2]
Park, W.; Amin, A.R.M.R.; Chen, Z.G.; Shin, D.M. New perspectives of curcumin in cancer prevention. Cancer Prev. Res., 2013, 6(5), 387-400.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0410] [PMID: 23466484]
[3]
Subramani, P.A.; Panati, K.; Narala, V.R. Curcumin nanotechnologies and its anticancer activity. Nutr. Cancer, 2017, 69(3), 381-393.
[http://dx.doi.org/10.1080/01635581.2017.1285405] [PMID: 28287321]
[4]
Vitale, S.G.; Capriglione, S.; Zito, G.; Lopez, S.; Gulino, F.A.; Di Guardo, F.; Vitagliano, A.; Noventa, M.; La Rosa, V.L.; Sapia, F.; Valenti, G.; Rapisarda, A.M.C.; Peterlunger, I.; Rossetti, D.; Laganà, A.S. Management of endometrial, ovarian and cervical cancer in the elderly: Current approach to a challenging condition. Arch. Gynecol. Obstet., 2019, 299(2), 299-315.
[http://dx.doi.org/10.1007/s00404-018-5006-z] [PMID: 30542793]
[5]
Bensen, R.C.; Standke, S.J.; Colby, D.H.; Kothapalli, N.R.; Le-McClain, A.T.; Patten, M.A.; Tripathi, A.; Heinlen, J.E.; Yang, Z.; Burgett, A.W.G. Single-cell mass spectrometry quantification of anticancer drugs: Proof of concept in cancer patients. ACS Pharmacol. Transl. Sci., 2021, 4(1), 96-100.
[http://dx.doi.org/10.1021/acsptsci.0c00156] [PMID: 33615163]
[6]
Jain, S.; Jadav, T.; Sahu, A.K.; Kalia, K.; Sengupta, P. An exploration of advancement in analytical methodology for quantification of anticancer drugs in biometrics. Anal. Sci., 2019, 35(7), 719-732.
[http://dx.doi.org/10.2116/analsci.19R002] [PMID: 30905906]
[7]
Poojar, B.; Ommurugan, B.; Adiga, S.; Thomas, H. Evaluation of antiurolithiatic property of ethanolic extract of fennel seeds in male Wistar albino rats. Asian J. Pharm. Clin. Res., 2017, 10(8), 313.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i8.18923]
[8]
Singh, A.; Negi, D. kaur, S.; Bhattachary, S.; Singh, G. Fundamentals of nanocarriers and probiotics in the treatment of cervical cancer. Curr. Nanomed., 2020, 10(4), 342-357.
[http://dx.doi.org/10.2174/2468187310999201105143429]
[9]
Chauhan, N.; Maher, D.M.; Hafeez, B.B.; Mandil, H.; Singh, M.M.; Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Ormeloxifene nanotherapy for cervical cancer treatment. Int. J. Nanomedicine, 2019, 14, 7107-7121.
[http://dx.doi.org/10.2147/IJN.S200944] [PMID: 31564868]
[10]
Otsuki, Y.; Kotani, A.; Kusu, F. Capillary liquid chromatography with UV detection using N,N-diethyl dithiocarbamate for determining platinum-based antitumor drugs in plasma. Chem. Pharm. Bull., 2012, 60(5), 665-669.
[http://dx.doi.org/10.1248/cpb.60.665] [PMID: 22689405]
[11]
Ahuja, S.; Dong, M. Eds.; Handbook of pharmaceutical analysis by HPLC; Elsevier, Amsterdam, Nether lands; , 2005, pp. 1-658.
[http://dx.doi.org/10.1016/S0149-6395(05)80045-5]
[12]
Tomita, R.; Todoroki, K.; Machida, K.; Nishida, S.; Maruoka, H.; Yoshida, H.; Fujioka, T.; Nakashima, M.; Yamaguchi, M.; Nohta, H. Assessment of the efficacy of anticancer drugs by amino acid metabolomics using fluorescence derivatization-HPLC. Anal. Sci., 2014, 30(7), 751-758.
[http://dx.doi.org/10.2116/analsci.30.751] [PMID: 25007935]
[13]
Sparkman, O.D. A perspective on books on mass spectrometry in chemistry. In: The encyclopedia of mass spectrometry. ; Elsevier, Amsterdam: Nether lands, 2016; pp. 322-341.
[http://dx.doi.org/10.1016/B978-0-08-043848-1.00032-8]
[14]
Huang, M.Q.; Lin, Z.J.; Weng, N. Applications of high-resolution MS in bioanalysis. Bioanalysis, 2013, 5(10), 1269-1276.
[http://dx.doi.org/10.4155/bio.13.100] [PMID: 23721447]
[15]
Sumel, A.; Aakash, U.; Shubneesh, K.; Neeraj, M.; Ashish, G.; Shweta, R. Advancement of nanocarriers-based therapeutics for effective management of colorectal cancer. Curr. Indian Sci., 2023, 1, e240223214003.
[http://dx.doi.org/10.2174/2210299X01666230224095321]
[16]
Niessen, WM Liquid chromatography-mass spectrometry. CRC press., 2006.
[http://dx.doi.org/10.1201/97814200145492]
[17]
Matsumoto, T.; Yamazaki, W.; Jo, A.; Ogawa, S.; Mitamura, K.; Ikegawa, S.; Higashi, T. A method for quantification of tetrahydro glucocorticoid glucuronides in human urine by LC/MS/MS with isotope-coded derivatization. Anal. Sci., 2018, 34(9), 1003-1009.
[http://dx.doi.org/10.2116/analsci.18SCP02] [PMID: 29887546]
[18]
Surendran, S.; Paul, D.; Pokharkar, S.; Choulwar, S.; Deshpande, A.; Giri, S.; Satheeshkumar, N. Novel Bruton tyrosine kinase inhibitor acalabrutinib quantification by validated LC-MS/MS method: An application to pharmacokinetic study in Sprague Dawley rats. J. Pharm. Biomed. Anal., 2019, 164, 509-513.
[http://dx.doi.org/10.1016/j.jpba.2018.11.012] [PMID: 30453157]
[19]
Sparidans, R.W.; Tang, S.C.; Nguyen, L.N.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography–tandem mass spectrometric assay for the ALK inhibitor crizotinib in mouse plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 905, 150-154.
[http://dx.doi.org/10.1016/j.jchromb.2012.08.021] [PMID: 22940474]
[20]
Zhen, Y.; Thomas-Schoemann, A.; Sakji, L.; Boudou-Rouquette, P.; Dupin, N.; Mortier, L.; Vidal, M.; Goldwasser, F.; Blanchet, B. An HPLC-UV method for the simultaneous quantification of vemurafenib and erlotinib in plasma from cancer patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 928, 93-97.
[http://dx.doi.org/10.1016/j.jchromb.2013.03.017] [PMID: 23602929]
[21]
Rood, J.J.M.; van Hoppe, S.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography–tandem mass spectrometric assay for the simultaneous determination of the irreversible BTK inhibitor ibrutinib and its dihydrodiol-metabolite in plasma and its application in mouse pharmacokinetic studies. J. Pharm. Biomed. Anal., 2016, 118, 123-131.
[http://dx.doi.org/10.1016/j.jpba.2015.10.033] [PMID: 26540627]
[22]
Spatari, C.; Li, W.; Schinkel, A.H.; Ragno, G.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Bioanalytical assay for the quantification of the ALK inhibitor lorlatinib in mouse plasma using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1083, 204-208.
[http://dx.doi.org/10.1016/j.jchromb.2018.03.014] [PMID: 29550682]
[23]
Bourget, P.; Amin, A.; Chandesris, M.O.; Vidal, F.; Merlette, C.; Hirsch, I.; Cabaret, L.; Carvalhosa, A.; Mogenet, A.; Frenzel, L.; Damaj, G.; Lortholary, O.; Hermine, O. Liquid chromatography–tandem mass spectrometry assay for therapeutic drug monitoring of the tyrosine kinase inhibitor, midostaurin, in plasma from patients with advanced systemic mastocytosis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 944, 175-181.
[http://dx.doi.org/10.1016/j.jchromb.2013.11.003] [PMID: 24316764]
[24]
Shu, C.; Zeng, T.; Gao, S.; Xia, T.; Huang, L.; Zhang, F.; Chen, W. LC–MS/MS method for simultaneous determination of thalidomide, lenalidomide, cyclophosphamide, bortezomib, dexamethasone and adriamycin in serum of multiple myeloma patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1028, 111-119.
[http://dx.doi.org/10.1016/j.jchromb.2016.06.009] [PMID: 27336703]
[25]
van Erp, N.P.; de Wit, D.; Guchelaar, H.J.; Gelderblom, H.; Hessing, T.J.; Hartigh, J. A validated assay for the simultaneous quantification of six tyrosine kinase inhibitors and two active metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 937, 33-43.
[http://dx.doi.org/10.1016/j.jchromb.2013.08.013] [PMID: 24013127]
[26]
Rodríguez, J.; Castañeda, G.; Muñoz, L.; Delgado, M.C.; Lizcano, I.; Villa, J.C.; Lopez, R. Simultaneous determination of erlotinib and its metabolites in human urine and serum samples by high-performance liquid chromatography. Chromatographia, 2017, 80(3), 409-415.
[http://dx.doi.org/10.1007/s10337-017-3258-6]
[27]
Dziadosz, M.; Bartels, H. Imatinib quantification in human serum for clinical purposes using high-performance liquid chromatography with a diode array detector. Acta Chim. Slov., 2011, 58(2), 347-350.
[PMID: 24062046]
[28]
D’Avolio, A.; Simiele, M.; De Francia, S.; Ariaudo, A.; Baietto, L.; Cusato, J.; Fava, C.; Saglio, G.; Di Carlo, F.; Di Perri, G. HPLC–MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib and nilotinib in human peripheral blood mononuclear cell (PBMC). J. Pharm. Biomed. Anal., 2012, 59, 109-116.
[http://dx.doi.org/10.1016/j.jpba.2011.10.003] [PMID: 22036594]
[29]
Roullet-Renoleau, F.; Lemaitre, F.; Antignac, M.; Zahr, N.; Farinotti, R.; Fernandez, C. Everolimus quantification in peripheral blood mononuclear cells using ultra high performance liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2012, 66, 278-281.
[http://dx.doi.org/10.1016/j.jpba.2012.03.042] [PMID: 22571954]
[30]
Huang, L.; Lizak, P.; Aweeka, F.; Long-Boyle, J. Determination of intracellular fludarabine triphosphate in human peripheral blood mononuclear cells by LC–MS/MS. J. Pharm. Biomed. Anal., 2013, 86, 198-203.
[http://dx.doi.org/10.1016/j.jpba.2013.08.007] [PMID: 24013121]
[31]
Veltkamp, S.A.; Hillebrand, M.J.X.; Rosing, H.; Jansen, R.S.; Wickremsinhe, E.R.; Perkins, E.J.; Schellens, J.H.M.; Beijnen, J.H. Quantitative analysis of gemcitabine triphosphate in human peripheral blood mononuclear cells using weak anion-exchange liquid chromatography coupled with tandem mass spectrometry. J. Mass Spectrom., 2006, 41(12), 1633-1642.
[http://dx.doi.org/10.1002/jms.1133] [PMID: 17117372]
[32]
Kadi, A.A.; Abdelhameed, A.S.; Darwish, H.W.; Attwa, M.W.; Bakheit, A.H. Liquid chromatographic-tandem mass spectrometric assay for simultaneous quantitation of tofacitinib, cabozantinib and afatinib in human plasma and urine. Trop. J. Pharm. Res., 2017, 15(12), 2683-2692.
[http://dx.doi.org/10.4314/tjpr.v15i12.21]
[33]
Dubbelman, A.C.; Tibben, M.; Rosing, H.; Gebretensae, A.; Nan, L.; Gorman, S.H.; Robertson, P., Jr; Schellens, J.H.M.; Beijnen, J.H. Development and validation of LC–MS/MS assays for the quantification of bendamustine and its metabolites in human plasma and urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 893-894, 92-100.
[http://dx.doi.org/10.1016/j.jchromb.2012.02.039] [PMID: 22426286]
[34]
Marahatta, A. Determination of cyclophosphamide in human arine by HPLC coupled to tandem mass spectrometry (masters thesis). Gdansk University of Technology 2010.
[35]
Jain, S.; Jadav, T.; Sahu, A.K.; Kalia, K.; Sengupta, P. An exploration of advancement in analytical methodology for quantification of anticancer drugs in biomatrices. Anal. Sci., 2019, 35(7), 719-732.
[http://dx.doi.org/10.2116/analsci.19R002] [PMID: 30905906]
[36]
Sparidans, R.W.; Li, W.; Schinkel, A.H.; Schellens, J.H.M.; Beijnen, J.H. Bioanalytical liquid chromatography-tandem mass spectrometric assay for the quantification of the ALK inhibitors alectinib, brigatinib and lorlatinib in plasma and mouse tissue homogenates. J. Pharm. Biomed. Anal., 2018, 161, 136-143.
[http://dx.doi.org/10.1016/j.jpba.2018.08.038] [PMID: 30149189]
[37]
Feng, S.; Zhang, J.; Wang, Y.; Sun, R.; Feng, D.; Peng, Y.; Yang, N.; Zhang, Y.; Gao, H.; Gu, H.; Wang, G.; Aa, J.; Zhou, F. Application of liquid chromatography–tandem mass spectrometry to study the effect of docetaxel on pharmacokinetics and tissue distribution of apatinib in mice. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1083, 198-203.
[http://dx.doi.org/10.1016/j.jchromb.2018.03.017] [PMID: 29549743]
[38]
Xiong, S.; Xue, M.; Mu, Y.; Deng, Z.; Sun, P.; Zhou, R. Determination of AZD3759 in rat plasma and brain tissue by LC–MS/MS and its application in pharmacokinetic and brain distribution studies. J. Pharm. Biomed. Anal., 2017, 140, 362-366.
[http://dx.doi.org/10.1016/j.jpba.2017.03.056] [PMID: 28399431]
[39]
He, L.; Grecula, J.C.; Ling, Y.; Enzerra, M.D.; Ammirati, M.; Kendra, K.; Cavaliere, R.; Mayr, N.; McGregor, J.; Olencki, T.; Mrozek, E.; Matharbootham, M.; Oluigbo, C.; Phelps, M.A. Development and validation of sensitive liquid chromatography/tandem mass spectrometry method for quantification of bendamustine in mouse brain tissue. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 905, 141-144.
[http://dx.doi.org/10.1016/j.jchromb.2012.08.013] [PMID: 22925718]
[40]
Teoh, M.; Narayanan, P.; Moo, K.S.; Radhakrisman, S.; Pillappan, R.; Bukhari, N.I.; Segarra, I. HPLC determination of imatinib in plasma and tissues after multiple oral dose administration to mice. Pak. J. Pharm. Sci., 2010, 23(1), 35-41.
[PMID: 20067864]
[41]
Estella-Hermoso de M.A.; Imbuluzqueta, I.; Campanero, M.A.; Gonzalez, D.; Vilas-Zornoza, A.; Agirre, X.; Lana, H.; Abizanda, G.; Prosper, F.; Blanco-Prieto, M.J. Development and validation of ultra high performance liquid chromatography–mass spectrometry method for LBH589 in mouse plasma and tissues. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(30), 3490-3496.
[http://dx.doi.org/10.1016/j.jchromb.2011.09.029] [PMID: 21983199]
[42]
Zang, X.; Zhang, J.; Zhou, Y.; Chen, Q.; Peng, Y.; Sun, J.; Liu, J.; Liu, W.; Wang, G.; Zhou, F. Quantitative determination of intracellular Asulacrine in MCF-7 breast cancer cells by liquid chromatography-mass spectrometry and its application to cellular pharmacokinetic studies of P188 modified liposomes. Biomed. Chromatogr., 2016, 30(12), 1908-1914.
[http://dx.doi.org/10.1002/bmc.3762] [PMID: 27187844]
[43]
Sakai-Kato, K.; Saito, E.; Ishikura, K.; Kawanishi, T. Analysis of intracellular doxorubicin and its metabolites by ultra-high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(19), 1466-1470.
[http://dx.doi.org/10.1016/j.jchromb.2010.03.040] [PMID: 20392674]
[44]
Klawitter, J.; Zhang, Y.L.; Klawitter, J.; Anderson, N.; Serkova, N.J.; Christians, U. Development and validation of a sensitive assay for the quantification of imatinib using LC/LC-MS/MS in human whole blood and cell culture. Biomed. Chromatogr., 2009, 23(12), 1251-1258.
[http://dx.doi.org/10.1002/bmc.1247] [PMID: 19517424]
[45]
Daumar, P.; Dufour, R.; Dubois, C.; Penault-Llorca, F.; Bamdad, M.; Mounetou, E. Development and validation of a high-performance liquid chromatography method for the quantitation of intracellular PARP inhibitor Olaparib in cancer cells. J. Pharm. Biomed. Anal., 2018, 152, 74-80.
[http://dx.doi.org/10.1016/j.jpba.2018.01.036] [PMID: 29414021]
[46]
Wang, T.; Ma, W.; Sun, Y.; Yang, Y.; Zhang, W.; Fawcett, J.P.; Du, H.; Gu, J. Ultra-sensitive assay for paclitaxel in intracellular compartments of A549 cells using liquid chromatography–tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 912, 93-97.
[http://dx.doi.org/10.1016/j.jchromb.2012.10.033] [PMID: 23262197]
[47]
Roche, S.; Sewell, L.; Meiller, J.; Pedersen, K.; Rajpal, R.; O’Gorman, P.; Clynes, M.; O’Connor, R. Development, validation and application of a sensitive LC–MS/MS method for the quantification of thalidomide in human serum, cells and cell culture medium. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2012, 902, 16-26.
[http://dx.doi.org/10.1016/j.jchromb.2012.06.008] [PMID: 22771235]
[48]
Fang, L.; Song, Y.; Weng, X.; Li, F.; Xu, Y.; Lin, N. Highly sensitive HPLC-DAD method for the assay of gefitinib in patient plasma and cerebrospinal fluid: application to a blood-brain barrier penetration study. Biomed. Chromatogr., 2015, 29(12), 1937-1940.
[http://dx.doi.org/10.1002/bmc.3520] [PMID: 26014887]
[49]
Wang, P.; Peng, Y.; Zhang, X.; Fei, F.; Wang, S.; Feng, S.; Huang, J.; Wang, H.; Aa, J.; Wang, G. Liquid chromatography-mass spectrometry/mass spectrometry analysis and pharmacokinetic assessment of ponatinib in Sprague-Dawley rats. Oncol. Ther., 2016, 4(1), 117-128.
[http://dx.doi.org/10.1007/s40487-016-0022-2] [PMID: 28261644]
[50]
Lankheet, N.A.G.; Blank, C.U.; Mallo, H.; Adriaansz, S.; Rosing, H.; Schellens, J.H.M.; Huitema, A.D.R.; Beijnen, J.H. Determination of sunitinib and its active metabolite N-desethylsunitinib in sweat of a patient. J. Anal. Toxicol., 2011, 35(8), 558-565.
[http://dx.doi.org/10.1093/anatox/35.8.558] [PMID: 22004675]
[51]
Bai, F.; Johnson, J.; Wang, F.; Yang, L.; Broniscer, A.; Stewart, C.F. Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(25), 2561-2566.
[http://dx.doi.org/10.1016/j.jchromb.2011.07.012] [PMID: 21803003]
[52]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[53]
Vaccarella, S.; Lortet-Tieulent, J.; Plummer, M.; Franceschi, S.; Bray, F. Worldwide trends in cervical cancer incidence: Impact of screening against changes in disease risk factors. Eur. J. Cancer, 2013, 49(15), 3262-3273.
[http://dx.doi.org/10.1016/j.ejca.2013.04.024] [PMID: 23751569]
[54]
Goodarzi, E.; Khazaei, Z.; Sohrabivafa, M.; Mansori, K.; Naemi, H. Incidence and mortality of cervix cancer and their relationship with the human development index in 185 countries in the world: An ecology study in 2018. Am. J. Hum. Biol., 2019, 9(3), 222.
[http://dx.doi.org/10.4103/AIHB.AIHB_15_19]
[55]
Feng, T.; Wei, Y.; Lee, R.; Zhao, L. Liposomal curcumin and its application in cancer. Int. J. Nanomedicine, 2017, 12, 6027-6044.
[http://dx.doi.org/10.2147/IJN.S132434] [PMID: 28860764]
[56]
Shukla, R; Singhai, AK; Singhai, M Sharma, S Phyllanthus amarus: A medicinally essential herb. 2018, 4, 33-3.
[57]
Aslan, K.; Meydanli, M.M.; Oz, M.; Tohma, Y.A.; Haberal, A.; Ayhan, A. The prognostic value of lymph node ratio in stage IIIC cervical cancer patients triaged to primary treatment by radical hysterectomy with systematic pelvic and para-aortic lymphadenectomy. J. Gynecol. Oncol., 2020, 31(1), e1.
[http://dx.doi.org/10.3802/jgo.2020.31.e1] [PMID: 31788991]
[58]
Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the cervix uteri. Int. J. Gynaecol. Obstet., 2018, 143(S2), 22-36.
[http://dx.doi.org/10.1002/ijgo.12611] [PMID: 30306584]
[59]
Johnson, C.A.; James, D.; Marzan, A.; Armaos, M. Cervical cancer: An overview of pathophysiology and management. Semin. Oncol. Nurs., 2019, 35(2), 166-174.
[http://dx.doi.org/10.1016/j.soncn.2019.02.003] [PMID: 30878194]
[60]
Momenimovahed, Z.; Salehiniya, H. Incidence, mortality and risk factors of cervical cancer in the world. Biomed. Res. Ther., 2017, 4(12), 1795.
[http://dx.doi.org/10.15419/bmrat.v4i12.386]
[61]
Dan, A.K.; Manna, A.; Ghosh, S.; Sikdar, S.; Sahu, R.; Parhi, P.K.; Parida, S. Molecular mechanisms of the lipopeptides from Bacillus subtilis in the apoptosis of cancer cells - A review on its Current Status in different cancer cell lines. Adv. in Can. Bio.-. Metastasis, 2021, 3, 100019.
[http://dx.doi.org/10.1016/j.adcanc.2021.100019]
[62]
Liontos, M.; Kyriazoglou, A.; Dimitriadis, I.; Dimopoulos, M.A.; Bamias, A. Systemic therapy in cervical cancer: 30 years in review. Crit. Rev. Oncol. Hematol., 2019, 137, 9-17.
[http://dx.doi.org/10.1016/j.critrevonc.2019.02.009] [PMID: 31014518]
[63]
Tomeh, M.; Hadianamrei, R.; Zhao, X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci., 2019, 20(5), 1033.
[http://dx.doi.org/10.3390/ijms20051033] [PMID: 30818786]
[64]
Apostolopoulos, V. Cancer vaccines: Research and applications. Cancers, 2019, 11(8), 1041.
[http://dx.doi.org/10.3390/cancers11081041] [PMID: 31344788]
[65]
Neyns, B.; Sadones, J.; Joosens, E.; Bouttens, F.; Verbeke, L.; Baurain, J.F.; D’Hondt, L.; Strauven, T.; Chaskis, C.; In’t Veld, P.; Michotte, A.; De Greve, J. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann. Oncol., 2009, 20(9), 1596-1603.
[http://dx.doi.org/10.1093/annonc/mdp032] [PMID: 19491283]
[66]
Arbyn, M.; Gultekin, M.; Morice, P.; Nieminen, P.; Cruickshank, M.; Poortmans, P.; Kelly, D.; Poljak, M.; Bergeron, C.; Ritchie, D.; Schmidt, D.; Kyrgiou, M.; Van den Bruel, A.; Bruni, L.; Basu, P.; Bray, F.; Weiderpass, E. The European response to the WHO call to eliminate cervical cancer as a public health problem. Int. J. Cancer, 2021, 148(2), 277-284.
[http://dx.doi.org/10.1002/ijc.33189] [PMID: 32638362]
[67]
Li, Z.; Chen, Y.; Yang, Y.; Yu, Y.; Zhang, Y.; Zhu, D.; Yu, X.; Ouyang, X.; Xie, Z.; Zhao, Y.; Li, L. Recent advances in nanomaterials-based chemo-photothermal combination therapy for improving cancer treatment. Front. Bioeng. Biotechnol., 2019, 7, 293.
[http://dx.doi.org/10.3389/fbioe.2019.00293] [PMID: 31696114]
[68]
Chidambaram, M.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci., 2011, 14(1), 67-77.
[http://dx.doi.org/10.18433/J30C7D] [PMID: 21501554]
[69]
Chen, X.J.; Zhang, X.Q.; Liu, Q.; Zhang, J.; Zhou, G. Nanotechnology: A promising method for oral cancer detection and diagnosis. J. Nanobiotechnology, 2018, 16(1), 52.
[http://dx.doi.org/10.1186/s12951-018-0378-6] [PMID: 29890977]
[70]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[71]
Mishra, V.; Bansal, K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J. Solid lipid nanoparticles: Emerging colloidal Nano drug delivery systems. Pharmaceutics, 2018, 10(4), 191.
[http://dx.doi.org/10.3390/pharmaceutics10040191] [PMID: 30340327]
[72]
Ashique, S.; Sandhu, N.K.; Chawla, V.; Chawla, P.A. Targeted drug delivery: Trends and perspectives. Curr. Drug Deliv., 2021, 18(10), 1435-1455.
[http://dx.doi.org/10.2174/1567201818666210609161301] [PMID: 34151759]
[73]
Cosco, D.; Celia, C.; Cilurzo, F.; Trapasso, E.; Paolino, D. Colloidal carriers for the enhanced delivery through the skin. Expert Opin. Drug Deliv., 2008, 5(7), 737-755.
[http://dx.doi.org/10.1517/17425247.5.7.737] [PMID: 18590459]
[74]
Mirchandani, Y.; Patravale, V.B. S, B. Solid lipid nanoparticles for hydrophilic drugs. J. Control. Release, 2021, 335, 457-464.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.032] [PMID: 34048841]
[75]
Ramezani Farani, M.; Azarian, M.; Heydari, S.H.H.; Abdolvahabi, Z.; Mohammadi, A.Z.; Moradi, A.; Mousavi, S.M.; Ashrafizadeh, M.; Makvandi, P.; Saeb, M.R.; Rabiee, N. Folic acid-adorned curcumin-loaded iron oxide nanoparticles for cervical cancer. ACS Appl. Bio Mater., 2022, 5(3), 1305-1318.
[http://dx.doi.org/10.1021/acsabm.1c01311] [PMID: 35201760]
[76]
Tabatabaeain, S.F.; Karimi, E.; Hashemi, M. Satureja khuzistanica essential oil-loaded solid lipid nanoparticles modified with chitosan-folate: Evaluation of encapsulation efficiency, cytotoxic and pro-apoptotic properties. Front Chem., 2022, 10, 904973.
[http://dx.doi.org/10.3389/fchem.2022.904973] [PMID: 35815210]
[77]
Ashique, S.; Almohaywi, B.; Haider, N.; Yasmin, S.; Hussain, A.; Mishra, N.; Garg, A. siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Adv. Cancer Biol. -. Metastasis, 2022, 4, 100047.
[http://dx.doi.org/10.1016/j.adcanc.2022.100047]
[78]
Huai, Y.; Hossen, M.N.; Wilhelm, S.; Bhattacharya, R.; Mukherjee, P. Nanoparticle interactions with the tumor microenvironment. Bioconjug. Chem., 2019, 30(9), 2247-2263.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00448] [PMID: 31408324]
[79]
Anwekar, H.; Patel, S.; Singhai, A.K. Liposome-as drug carriers. Int J Pharm Life Sci., 2011, 2(7), 945-951.
[80]
Xu, X.; Liu, A.; Bai, Y.; Li, Y.; Zhang, C.; Cui, S.; Piao, Y.; Zhang, S. Co-delivery of resveratrol and p53 gene via peptide cationic liposomal nanocarrier for the synergistic treatment of cervical cancer and breast cancer cells. J. Drug Deliv. Sci. Technol., 2019, 51, 746-753.
[http://dx.doi.org/10.1016/j.jddst.2018.05.008]
[81]
Wang, W.Y.; Cao, Y.X.; Zhou, X.; Wei, B. Delivery of folic acid-modified liposomal curcumin for targeted cervical carcinoma therapy. Drug Des. Devel. Ther., 2019, 13, 2205-2213.
[http://dx.doi.org/10.2147/DDDT.S205787] [PMID: 31308632]
[82]
Akhtar, A.; Ghali, L.; Wang, S.X.; Bell, C.; Li, D.; Wen, X. Optimisation of folate-mediated liposomal encapsulated arsenic trioxide for treating HPV-positive cervical cancer cells in vitro. Int. J. Mol. Sci., 2019, 20(9), 2156.
[http://dx.doi.org/10.3390/ijms20092156] [PMID: 31052347]
[83]
Dana, P.; Bunthot, S.; Suktham, K.; Surassmo, S.; Yata, T.; Namdee, K.; Yingmema, W.; Yimsoo, T.; Ruktanonchai, U.R.; Sathornsumetee, S.; Saengkrit, N. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf. B Biointerfaces, 2020, 196, 111270.
[http://dx.doi.org/10.1016/j.colsurfb.2020.111270] [PMID: 32777659]
[84]
Wang, L.; Liang, T.T. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. AMB Express, 2020, 10(1), 54.
[http://dx.doi.org/10.1186/s13568-020-00990-z] [PMID: 32185543]
[85]
Hasan, M.; Elkhoury, K.; Belhaj, N.; Kahn, C.; Tamayol, A.; Barberi-Heyob, M.; Arab-Tehrany, E.; Linder, M. Growth-inhibitory effect of chitosan-coated liposomes encapsulating curcumin on MCF-7 breast cancer cells. Mar. Drugs, 2020, 18(4), 217.
[http://dx.doi.org/10.3390/md18040217] [PMID: 32316578]
[86]
Ledezma-Gallegos, F.; Jurado, R.; Mir, R.; Medina, L.A.; Mondragon-Fuentes, L.; Garcia-Lopez, P. Liposomes co-encapsulating cisplatin/mifepristone improve the effect on cervical cancer: in vitro and in vivo assessment. Pharmaceutics, 2020, 12(9), 897.
[http://dx.doi.org/10.3390/pharmaceutics12090897] [PMID: 32971785]
[87]
Sumel, A.; Aakash, U.; Monica, G.; Dilpreet, S.; Chawla, A.P.; Chawla, V. One-dimensional polymeric nanocomposites in drug delivery systems. Curr. Nanosci., 2023, 19. Epub ahead of print
[http://dx.doi.org/10.2174/1573413719666230110110706]
[88]
Sims, L.B.; Curry, K.C.; Parupalli, S.; Horner, G.; Frieboes, H.B.; Steinbach-Rankins, J.M. Efficacy of surface-modified PLGA nanoparticles as a function of cervical cancer type. Pharm. Res., 2019, 36(5), 66.
[http://dx.doi.org/10.1007/s11095-019-2602-y] [PMID: 30868271]
[89]
Qian, L.; Su, W.; Wang, Y.; Dang, M.; Zhang, W.; Wang, C. Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1173-1180.
[http://dx.doi.org/10.1080/21691401.2018.1549064] [PMID: 30942109]
[90]
Ke, Y.; Al Aboody, M.S.; Alturaiki, W.; Alsagaby, S.A.; Alfaiz, F.A.; Veeraraghavan, V.P.; Mickymaray, S. Photosynthesized gold nanoparticles from Catharanthus roseus induces caspase-mediated apoptosis in cervical cancer cells (HeLa). Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1938-1946.
[http://dx.doi.org/10.1080/21691401.2019.1614017] [PMID: 31099261]
[91]
González-López, M.A.; Gutiérrez-Cárdenas, E.M.; Sánchez-Cruz, C.; Hernández-Paz, J.F.; Pérez, I.; Olivares-Trejo, J.J.; Hernández-González, O. Reducing the effective dose of cisplatin using gold nanoparticles as carriers. Cancer Nanotechnol., 2020, 11(1), 4.
[http://dx.doi.org/10.1186/s12645-020-00060-w]
[92]
Xu, Z.; Feng, Q.; Wang, M.; Zhao, H.; Lin, Y.; Zhou, S. Green biosynthesized silver nanoparticles with aqueous extracts of Ginkgo biloba induce apoptosis via mitochondrial pathway in cervical cancer cells. Front. Oncol., 2020, 10, 575415.
[http://dx.doi.org/10.3389/fonc.2020.575415] [PMID: 33194686]
[93]
Xia, Y.; Xiao, M.; Zhao, M.; Xu, T.; Guo, M.; Wang, C.; Li, Y.; Zhu, B.; Liu, H. Doxorubicin-loaded functionalized selenium nanoparticles for enhanced antitumor efficacy in cervical carcinoma therapy. Mater. Sci. Eng. C, 2020, 106, 110100.
[http://dx.doi.org/10.1016/j.msec.2019.110100] [PMID: 31753388]
[94]
Xia, Y.; Tang, G.; Wang, C.; Zhong, J.; Chen, Y.; Hua, L.; Li, Y.; Liu, H.; Zhu, B. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv., 2020, 27(1), 15-25.
[http://dx.doi.org/10.1080/10717544.2019.1667452] [PMID: 31830840]
[95]
Ghaffari, M.; Dehghan, G.; Baradaran, B.; Zarebkohan, A.; Mansoori, B.; Soleymani, J.; Ezzati, N.D.J.; Hamblin, M.R. Co-delivery of curcumin and Bcl-2 siRNA by PAMAM dendrimers for enhancement of the therapeutic efficacy in HeLa cancer cells. Colloids Surf. B Biointerfaces, 2020, 188, 110762.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110762] [PMID: 31911391]
[96]
Damke, G.M.Z.F.; Damke, E.; de Souza, B.P.; Ratti, B.A.; de Freitas, M.L.E.; da Silva, V.R.S.; Gonçalves, R.S.; César, G.B.; de Oliveira, S.S.; Caetano, W.; Hioka, N.; Souza, R.P.; Consolaro, M.E.L. Selective photodynamic effects on cervical cancer cells provided by P123 Pluronic®-based nanoparticles modulating hypericin delivery. Life Sci., 2020, 255, 117858.
[http://dx.doi.org/10.1016/j.lfs.2020.117858] [PMID: 32497635]
[97]
Wang, J.; Liu, Q.; Yang, L.; Xia, X.; Zhu, R.; Chen, S.; Wang, M.; Cheng, L.; Wu, X.; Wang, S. Curcumin-loaded TPGS/F127/P123 mixed polymeric micelles for cervical cancer therapy: Formulation, characterization, and in vitro and in vivo evaluation. J. Biomed. Nanotechnol., 2017, 13(12), 1631-1646.
[http://dx.doi.org/10.1166/jbn.2017.2442] [PMID: 29490752]
[98]
Liu, B.; Han, L.; Liu, J.; Han, S.; Chen, Z.; Jiang, L. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Int. J. Nanomedicine, 2017, 12, 955-968.
[http://dx.doi.org/10.2147/IJN.S115136] [PMID: 28203075]
[99]
Dou, Y.N.; Zheng, J.; Foltz, W.D.; Weersink, R.; Chaudary, N.; Jaffray, D.A.; Allen, C. Heat-activated thermosensitive liposomal cisplatin (HTLC) results in effective growth delay of cervical carcinoma in mice. J. Control. Release, 2014, 178, 69-78.
[http://dx.doi.org/10.1016/j.jconrel.2014.01.009] [PMID: 24440663]
[100]
Talluri, S.V.; Kuppusamy, G.; Karri, V.V.S.R.; Tummala, S.; Madhunapantula, S.V. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv., 2016, 23(4), 1291-1305.
[http://dx.doi.org/10.3109/10717544.2015.1092183] [PMID: 26430913]
[101]
Dutta, T.; Burgess, M.; McMillan, N.A.J.; Parekh, H.S. Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. Nanomedicine, 2010, 6(3), 463-470.
[http://dx.doi.org/10.1016/j.nano.2009.12.001] [PMID: 20044033]
[102]
Ibrahim, M.; Sabouni, R.; Husseini, G. Anticancer drug delivery using metal-organic frameworks (MOFs). Curr. Med. Chem., 2017, 24(2), 193-214.
[http://dx.doi.org/10.2174/0929867323666160926151216] [PMID: 27686655]
[103]
Rao, C.; Liao, D.; Pan, Y.; Zhong, Y.; Zhang, W.; Ouyang, Q.; Nezamzadeh-Ejhieh, A.; Liu, J. Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opin. Drug Deliv., 2022, 19(10), 1183-1202.
[http://dx.doi.org/10.1080/17425247.2022.2064450] [PMID: 35426756]
[104]
Chen, J.; Cheng, F.; Luo, D.; Huang, J.; Ouyang, J.; Nezamzadeh-Ejhieh, A.; Khan, M.S.; Liu, J.; Peng, Y. Recent advances in Ti-based MOFs in biomedical applications. Dalton Trans., 2022, 51(39), 14817-14832.
[http://dx.doi.org/10.1039/D2DT02470E] [PMID: 36124915]
[105]
Zhou, S.; Lu, L.; Liu, D.; Wang, J.; Sakiyama, H.; Muddassir, M.; Nezamzadeh-Ejhieh, A.; Liu, J. Series of highly stable Cd(II)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic. CrystEngComm, 2021, 23(46), 8043-8052.
[http://dx.doi.org/10.1039/D1CE01264A]
[106]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[107]
Taylor-Pashow, K.M.L.; Della Rocca, J.; Xie, Z.; Tran, S.; Lin, W. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J. Am. Chem. Soc., 2009, 131(40), 14261-14263.
[http://dx.doi.org/10.1021/ja906198y] [PMID: 19807179]
[108]
Liu, D.; He, C.; Poon, C.; Lin, W. Theranostic nanoscale coordination polymers for magnetic resonance imaging and bisphosphonate delivery. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(46), 8249-8255.
[http://dx.doi.org/10.1039/C4TB00751D] [PMID: 32262098]
[109]
Bellido, E.; Hidalgo, T.; Lozano, M.V.; Guillevic, M.; Simón-Vázquez, R.; Santander-Ortega, M.J.; González-Fernández, Á.; Serre, C.; Alonso, M.J.; Horcajada, P. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: toward stealth drug nanocarriers. Adv. Healthc. Mater., 2015, 4(8), 1246-1257.
[http://dx.doi.org/10.1002/adhm.201400755] [PMID: 25771896]
[110]
Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G. Biocompatible Zr-based nanoscale MOFs coated with modified poly(ε-caprolactone) as anticancer drug carriers. Int. J. Pharm., 2016, 509(1-2), 208-218.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.048] [PMID: 27235556]
[111]
Zhao, H.X.; Zou, Q.; Sun, S.K.; Yu, C.; Zhang, X.; Li, R.J.; Fu, Y.Y. Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem. Sci., 2016, 7(8), 5294-5301.
[http://dx.doi.org/10.1039/C6SC01359G] [PMID: 30155180]
[112]
Fang, J.; Yang, Y.; Xiao, W.; Zheng, B.; Lv, Y.B.; Liu, X.L.; Ding, J. Extremely low frequency alternating magnetic field–triggered and MRI–traced drug delivery by optimized magnetic zeolitic imidazolate framework-90 nanoparticles. Nanoscale, 2016, 8(6), 3259-3263.
[http://dx.doi.org/10.1039/C5NR08086J] [PMID: 26809987]
[113]
Ray Chowdhuri, A.; Bhattacharya, D.; Sahu, S.K. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent. Dalton Trans., 2016, 45(7), 2963-2973.
[http://dx.doi.org/10.1039/C5DT03736K] [PMID: 26754449]
[114]
Bian, R.; Wang, T.; Zhang, L.; Li, L.; Wang, C. A combination of tri-modal cancer imaging and in vivo drug delivery by metal–organic framework based composite nanoparticles. Biomater. Sci., 2015, 3(9), 1270-1278.
[http://dx.doi.org/10.1039/C5BM00186B] [PMID: 26236784]
[115]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Xia, G.; Zhou, S.; Liu, Z.; Zhang, N.; Wang, H.; Guo, Z.; Chen, Q. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4 @C@MIL-100(Fe) nanoparticles. Biomaterials, 2016, 107, 88-101.
[http://dx.doi.org/10.1016/j.biomaterials.2016.08.039] [PMID: 27614161]
[116]
Yang, D.; Yang, G.; Gai, S.; He, F.; An, G.; Dai, Y.; Lv, R.; Yang, P. Au25 cluster functionalized metal–organic nanostructures for magnetically targeted photodynamic/photothermal therapy triggered by single wavelength 808 nm near-infrared light. Nanoscale, 2015, 7(46), 19568-19578.
[http://dx.doi.org/10.1039/C5NR06192J] [PMID: 26540558]
[117]
Wang, D.; Guo, Z.; Zhou, J.; Chen, J.; Zhao, G.; Chen, R.; He, M.; Liu, Z.; Wang, H.; Chen, Q. Novel Mn3 [Co(CN)6]2@SiO2@Ag core-shell nanocube: Enhanced two-photon fluorescence and magnetic resonance dual-modal imaging-guided photothermal and chemo-therapy. Small, 2015, 11(44), 5956-5967.
[http://dx.doi.org/10.1002/smll.201502102] [PMID: 26437078]
[118]
Wang, D.; Zhou, J.; Chen, R.; Shi, R.; Zhao, G.; Xia, G.; Li, R.; Liu, Z.; Tian, J.; Wang, H.; Guo, Z.; Wang, H.; Chen, Q. Controllable synthesis of dual-MOFs nanostructures for pH-responsive artemisinin delivery, magnetic resonance and optical dual-model imaging-guided chemo/photothermal combinational cancer therapy. Biomaterials, 2016, 100, 27-40.
[http://dx.doi.org/10.1016/j.biomaterials.2016.05.027] [PMID: 27240160]
[119]
Yang, Y.; Liu, J.; Liang, C.; Feng, L.; Fu, T.; Dong, Z.; Chao, Y.; Li, Y.; Lu, G.; Chen, M.; Liu, Z. Nanoscale metal-organic particles with rapid clearance for magnetic resonance imaging-guided photothermal therapy. ACS Nano, 2016, 10(2), 2774-2781.
[http://dx.doi.org/10.1021/acsnano.5b07882] [PMID: 26799993]
[120]
Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal−organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.034] [PMID: 27155362]
[121]
Yang, H.; Qin, C.; Yu, C.; Lu, Y.; Zhang, H.; Xue, F.; Wu, D.; Zhou, Z.; Yang, S. RGD-conjugated nanoscale coordination polymers for targeted T 1 – and T 2 -weighted magnetic resonance imaging of tumors in vivo. Adv. Funct. Mater., 2014, 24(12), 1738-1747.
[http://dx.doi.org/10.1002/adfm.201302433]
[122]
Li, Y.; Tang, J.; He, L.; Liu, Y.; Liu, Y.; Chen, C.; Tang, Z. Core-shell upconversion nanoparticle metal-organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv. Mater., 2015, 27(27), 4075-4080.
[http://dx.doi.org/10.1002/adma.201501779] [PMID: 26053933]
[123]
Paul, M.; Dastidar, P. Coordination polymers derived from non-steroidal anti-inflammatory drugs for cell imaging and drug delivery. Chemistry, 2016, 22(3), 988-998.
[http://dx.doi.org/10.1002/chem.201503706] [PMID: 26660274]
[124]
Wang, W.; Wang, L.; Li, Z.; Xie, Z. BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chem. Commun., 2016, 52(31), 5402-5405.
[http://dx.doi.org/10.1039/C6CC01048B] [PMID: 27009757]
[125]
Chakraborty, S.P. Medicinal plants and cervical cancer therapy: An overview. J. Pharmacogn. Phytochem., 2019, 8(3), 3633-3641.
[126]
Tejaputri, NA; Arsianti, A; Qorina, F; Fithrotunnisa, Q; Azizah, NN Putrianingsih, R Anticancer activity of Ruellia britoniana flower on cervical hela cancer cells PJ. 2020, 12(1), 29-34.
[http://dx.doi.org/10.5530/pj.2020.12.6]
[127]
Sidhu, J.S.; Zafar, T.A. Indian herbal medicine and their functional components in cancer therapy and prevention.In: Functional Foods in Cancer Prevention and Therapy; Elsevier Inc, 2020, pp. 169-194.
[http://dx.doi.org/10.1016/B978-0-12-816151-7.00010-7]
[128]
Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol., 2021, 69, 5-23.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.014] [PMID: 31421264]
[129]
Yang, J.; Zhang, C. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4), e1612.
[http://dx.doi.org/10.1002/wnan.1612] [PMID: 32114718]
[130]
Li, H.N.; Nie, F.F.; Liu, W.; Dai, Q.S.; Lu, N.; Qi, Q.; Li, Z.Y.; You, Q.D.; Guo, Q.L. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology, 2009, 257(1-2), 80-85.
[http://dx.doi.org/10.1016/j.tox.2008.12.011] [PMID: 19135124]
[131]
Liu, R.M.; Li, Y.B.; Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur. J. Pharmacol., 2012, 681(1-3), 23-33.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.007] [PMID: 22366428]
[132]
Yao, Z.; Shulan, Z. Inhibition effect of Guizhi-Fuling-decoction on the invasion of human cervical cancer. J. Ethnopharmacol., 2008, 120(1), 25-35.
[http://dx.doi.org/10.1016/j.jep.2008.07.044] [PMID: 18761069]
[133]
Shen, L.; Liu, Q.; Ni, J.; Hong, G. A proteomic investigation into the human cervical cancer cell line HeLa treated with dicitratoytterbium (III) complex. Chem. Biol. Interact., 2009, 181(3), 455-462.
[http://dx.doi.org/10.1016/j.cbi.2009.07.013] [PMID: 19632212]
[134]
You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food Chem. Toxicol., 2010, 48(5), 1334-1340.
[http://dx.doi.org/10.1016/j.fct.2010.02.034] [PMID: 20197077]
[135]
Saengkrit, N.; Saesoo, S.; Srinuanchai, W.; Phunpee, S.; Ruktanonchai, U.R. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf. B Biointerfaces, 2014, 114, 349-356.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.005] [PMID: 24246195]
[136]
Berginc, K.; Suljaković, S.; Škalko-Basnet, N.; Kristl, A. Mucoadhesive liposomes as new formulation for vaginal delivery of curcumin. Eur. J. Pharm. Biopharm., 2014, 87(1), 40-46.
[http://dx.doi.org/10.1016/j.ejpb.2014.02.006] [PMID: 24534774]
[137]
Jeyaraj, M.; Rajesh, M.; Arun, R. MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Surf. B Biointerfaces, 2013, 102, 708-717.
[http://dx.doi.org/10.1016/j.colsurfb.2012.09.042] [PMID: 23117153]
[138]
Jeyaraj, M.; Arun, R.; Sathishkumar, G. MubarakAli, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater. Res. Bull., 2014, 52, 15-24.
[http://dx.doi.org/10.1016/j.materresbull.2013.12.060]
[139]
Punfa, W.; Suzuki, S.; Pitchakarn, P.; Yodkeeree, S.; Naiki, T.; Takahashi, S.; Limtrakul, P. Curcumin-loaded PLGA nanoparticles conjugated with anti- P-glycoprotein antibody to overcome multidrug resistance. Asian Pac. J. Cancer Prev., 2014, 15(21), 9249-9258.
[http://dx.doi.org/10.7314/APJCP.2014.15.21.9249] [PMID: 25422208]
[140]
Namvar, F.; Mohammad, R.; Baharara, J.; Mahdavi, M.; Amini, E.; Yeap, S.K.; Chartrand, M.S.; Sulaiman Rahman, H. Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomedicine, 2014, 9, 2479-2488.
[http://dx.doi.org/10.2147/IJN.S59661] [PMID: 24899805]
[141]
Ignatova, M.; Manolova, N.; Toshkova, R.; Rashkov, I.; Gardeva, E.; Yossifova, L.; Alexandrov, M. Quaternized chitosan-coated nanofibrous materials containing gossypol: Preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. Int. J. Pharm., 2012, 436(1-2), 10-24.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.035] [PMID: 22728261]
[142]
Punfa, W.; Yodkeeree, S.; Pitchakarn, P.; Ampasavate, C.; Limtrakul, P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol. Sin., 2012, 33(6), 823-831.
[http://dx.doi.org/10.1038/aps.2012.34] [PMID: 22580738]
[143]
Nair, K.L.; Thulasidasan, A.K.T.; Deepa, G.; Anto, R.J.; Kumar, G.S.V. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm., 2012, 425(1-2), 44-52.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.003] [PMID: 22266528]
[144]
Gonçalves, C.; Martins, J.A.; Gama, F.M. Self-assembled nanoparticles of dextrin substituted with hexadecanethiol. Biomacromolecules, 2007, 8(2), 392-398.
[http://dx.doi.org/10.1021/bm060993e] [PMID: 17291062]
[145]
Hani, U.; Shivakumar, H.G.; Anjum, H.; Pasha, M.Y. Preparation and optimization of curcumin-hydroxy propyl cyclodextrin bioadhesive vaginal films for human papilloma virus-induced cervical cancer. J. Biomater. Tissue Eng., 2014, 4(10), 796-803.
[http://dx.doi.org/10.1166/jbt.2014.1235]
[146]
Zeinali, M.; Abbaspour-Ravasjani, S.; Ghorbani, M.; Babazadeh, A.; Soltanfam, T.; Santos, A.C.; Hamishehkar, H.; Hamblin, M.R. Nanovehicles for co-delivery of anticancer agents. Drug Discov. Today, 2020, 25(8), 1416-1430.
[http://dx.doi.org/10.1016/j.drudis.2020.06.027] [PMID: 32622880]
[147]
Smith, S.; Prewett, S. Principles of chemotherapy and radiotherapy. Obstetrics, Gynaecol. Reprod. Med., 2017, 27(7), 206-212.
[http://dx.doi.org/10.1016/j.ogrm.2017.04.006]
[148]
Lewicki, P.J.; Basourakos, S.P.; Qiu, Y.; Hu, J.C.; Sheyn, D.; Hijaz, A.; Shoag, J.E. Effect of a randomized, controlled trial on surgery for cervical cancer. N. Engl. J. Med., 2021, 384(17), 1669-1671.
[http://dx.doi.org/10.1056/NEJMc2035819] [PMID: 33913646]
[149]
Rahimi, H.; Salehiabar, M.; Davaran, S.; Danafar, H.; Nosrati, H. Albumin-based carriers for systemic delivery to tackle cancer.In:Systemic delivery technologies in anti-aging medicine: methods and applications; Springer, 2020, pp. 247-270.
[http://dx.doi.org/10.1007/978-3-030-54490-4_9]
[150]
Kaye, A.D.; Kaye, A.M.; Urman, R.D., Eds. Essentials of pharmacology for anesthesia, pain medicine, and critical care; Springer: New York, 2015.
[http://dx.doi.org/10.1007/978-1-4614-8948-1]
[151]
NCI. Drugs Approved for Cervical Cancer; National Institutes of Health – National Cancer Institute. 2020. Available from : https://www.cancer.gov/about-cancer/treatment/drugs/cervical
[152]
Sun, H.; Shen, K.; Cao, D. Progress in immunocytochemical staining for cervical cancer screening. Cancer Manag. Res., 2019, 11, 1817-1827.
[http://dx.doi.org/10.2147/CMAR.S195349] [PMID: 30863187]
[153]
Lv, Q.; Wang, Y.; Su, C.; Lakshmipriya, T.; Gopinath, S.C.B.; Pandian, K.; Perumal, V.; Liu, Y. Human papilloma virus DNA-biomarker analysis for cervical cancer: Signal enhancement by gold nanoparticle-coupled tetravalent streptavidin-biotin strategy. Int. J. Biol. Macromol., 2019, 134, 354-360.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.044] [PMID: 31078598]
[154]
Roy, M.; Mukherjee, S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(3), 1403-1410.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1403] [PMID: 24606473]
[155]
Xia, L.; Liang, S.; Wen, H.; Tang, J.; Huang, Y. Anti-tumor effect of polysaccharides from rhizome of Curculigo orchioides Gaertn on cervical cancer. Trop. J. Pharm. Res., 2016, 15(8), 1731-1737.
[http://dx.doi.org/10.4314/tjpr.v15i8.19]
[156]
Lukhele, S.T.; Motadi, L.R. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells. BMC Complement. Altern. Med., 2016, 16(1), 335.
[http://dx.doi.org/10.1186/s12906-016-1280-0] [PMID: 27586579]
[157]
Khan, MA; Zafaryab, M; Mehdi, SH; Ahmad, I; Rizvi, MMA Characterization and anti-proliferative activity of curcumin loaded chitosan nanoparticles in cervical cancer. Int J Biol Macromol, 2016, 93((Pt A)), 242-253.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.050]
[158]
Kashafi, E.; Moradzadeh, M.; Mohamadkhani, A.; Erfanian, S. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed. Pharmacother., 2017, 89, 573-577.
[http://dx.doi.org/10.1016/j.biopha.2017.02.061] [PMID: 28258039]
[159]
Farooqui, A.; Khan, F.; Khan, I.; Ansari, I.A. Glycyrrhizin induces reactive oxygen species-dependent apoptosis and cell cycle arrest at G0/G1 in HPV18+ human cervical cancer HeLa cell line. Biomed. Pharmacother., 2018, 97, 752-764.
[http://dx.doi.org/10.1016/j.biopha.2017.10.147] [PMID: 29107932]
[160]
Drugs Approved for Cervical Cancer Available from: https://www.cancer.gov/about-cancer/treatment/drugs/cervical
[162]
Genes, compositions, kits, and methods for identification, assessment, prevention and therapy of cervical cancer Patent US8062892B2, Available from: https://patents.google.com/?q=

© 2025 Bentham Science Publishers | Privacy Policy