Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

A Review on Nanotechnology Mediated - Herbal Drug Delivery for the Treatment of Obesity

Author(s): Dipthi Shree*, Chinam Niranjan Patra and Biswa Mohan Sahoo

Volume 14, Issue 1, 2024

Published on: 05 May, 2023

Article ID: e120423215704 Pages: 17

DOI: 10.2174/2210315513666230412111914

Price: $65

Abstract

Since ancient times, traditional herbs have been widely used around the world for health promotion and therapy. Obesity is a complex metabolic disorder and is becoming a mammoth problem that adversely affects an individual’s quality of life. Conventional therapy for the management of obesity mainly involves the use of synthetic moiety and bariatric surgical procedures which has severe side effects and patient non-compliance. To circumvent these limitations, plant-derived medicines are utilized which are safe, effective, economic, and easily available. The advancement of nanotechnology enables the development of novel strategies that could potentiate the therapeutic efficacy of the phytoconstituents with minimal toxic effects and promotes the controlled release of the plant bioactive compounds. Moreover, great efforts have been made through targeted nanotechnology-based herbal treatment, where novel nanocarriers are employed as herbal drug delivery vehicles to improve the pharmacokinetics of antiobesity drugs. The recent advancement in phytonanotechnology have opened an avenue to explore novel carriers to utilize bioactive compounds in biomedical and therapeutic applications. In the current review, an extensive search is conducted for the existing original research articles using databases i.e., Google Scholar, PubMed, ScienceDirect, Embase, Baidu, etc. Further, painstaking efforts are made to compile and update the novel herbal nanocarriers such as liposomes, solid lipid nanoparticles, etc. which are widely used for the treatment of obesity. This article portrays a comprehensive survey of the novel strategies employed by the innovators working exclusively on herbal drug delivery systems. The recent development of nanotechnology-based herbal drug delivery has a wide range of biomedical applications and has provided an unprecedented opportunity to improve the treatment of obesity and obesity-related comorbidities. Furthermore, the advancement of phytopharmacological science has led to several novel strategies with improved nanotherapeutics for the management of obesity. Scientific research is still being carried out in the field of nanotechnology for a better perspective on herbal drug delivery for obesity treatment over conventional therapy.

Graphical Abstract

[1]
Oussaada, S.M.; van Galen, K.A.; Cooiman, M.I.; Kleinendorst, L.; Hazebroek, E.J.; van Haelst, M.M.; ter Horst, K.W.; Serlie, M.J. The pathogenesis of obesity. Metabolism, 2019, 92, 26-36.
[http://dx.doi.org/10.1016/j.metabol.2018.12.012] [PMID: 30639246]
[2]
Hoyt, C.L.; Burnette, J.L.; Auster-Gussman, L. “Obesity is a disease”: Examining the self-regulatory impact of this public-health message. Psychol. Sci., 2014, 25(4), 997-1002.
[http://dx.doi.org/10.1177/0956797613516981] [PMID: 24463553]
[3]
Sikaris, K.A. The clinical biochemistry of obesity. Clin. Biochem. Rev., 2004, 25(3), 165-181.
[PMID: 18458706]
[4]
Borén, J.; Taskinen, M.R.; Olofsson, S.O.; Levin, M. Ectopic lipid storage and insulin resistance: A harmful relationship. J. Intern. Med., 2013, 274(1), 25-40.
[http://dx.doi.org/10.1111/joim.12071] [PMID: 23551521]
[5]
Flores-Dorantes, M.T.; Díaz-López, Y.E.; Gutiérrez-Aguilar, R. Environment and gene association with obesity and their impact on neurodegenerative and neurodevelopmental diseases. Front. Neurosci., 2020, 14, 863.
[http://dx.doi.org/10.3389/fnins.2020.00863] [PMID: 32982666]
[6]
Fruh, S.M. Obesity. J. Am. Assoc. Nurse Pract., 2017, 29(S1), S3-S14.
[http://dx.doi.org/10.1002/2327-6924.12510] [PMID: 29024553]
[7]
Khaodhiar, L.; McCowen, K.C.; Blackburn, G.L. Obesity and its comorbid conditions. Clin. Cornerstone, 1999, 2(3), 17-31.
[http://dx.doi.org/10.1016/S1098-3597(99)90002-9] [PMID: 10696282]
[8]
Bhurosy, T.; Jeewon, R. Overweight and obesity epidemic in developing countries: A problem with diet, physical activity, or socioeconomic status? ScientificWorldJ., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/964236] [PMID: 25379554]
[9]
Tsai, A.G.; Williamson, D.F.; Glick, H.A. Direct medical cost of overweight and obesity in the USA: A quantitative systematic review. Obes. Rev., 2011, 12(1), 50-61.
[http://dx.doi.org/10.1111/j.1467-789X.2009.00708.x] [PMID: 20059703]
[10]
Adan, R.A.H. Mechanisms underlying current and future anti-obesity drugs. Trends Neurosci., 2013, 36(2), 133-140.
[http://dx.doi.org/10.1016/j.tins.2012.12.001] [PMID: 23312373]
[11]
Ioannides-Demos, L.L.; Piccenna, L.; McNeil, J.J. Pharmacotherapies for obesity: Past, current, and future therapies. J. Obes., 2011, 2011, 1-18.
[http://dx.doi.org/10.1155/2011/179674] [PMID: 21197148]
[12]
Rodríguez, J.E.; Campbell, K.M. Past, present, and future of pharmacologic therapy in obesity. Prim. Care, 2016, 43(1), 61-67.
[http://dx.doi.org/10.1016/j.pop.2015.08.011] [PMID: 26896200]
[13]
Khalil, H.; Ellwood, L.; Lord, H.; Fernandez, R. Pharmacological treatment for obesity in adults: An umbrella review. Ann. Pharmacother., 2020, 54(7), 691-705.
[http://dx.doi.org/10.1177/1060028019898912] [PMID: 31958967]
[14]
Manning, S.; Pucci, A.; Finer, N. Pharmacotherapy for obesity: Novel agents and paradigms. Ther. Adv. Chronic Dis., 2014, 5(3), 135-148.
[http://dx.doi.org/10.1177/2040622314522848] [PMID: 24790728]
[15]
Gogtay, N.J.; Bhatt, H.A.; Dalvi, S.S.; Kshirsagar, N.A. The use and safety of non-allopathic Indian medicines. Drug Saf., 2002, 25(14), 1005-1019.
[http://dx.doi.org/10.2165/00002018-200225140-00003] [PMID: 12408732]
[16]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[17]
Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med., 2013, 10(5), 210-229.
[http://dx.doi.org/10.4314/ajtcam.v10i5.2] [PMID: 24311829]
[18]
Wang, S.; Su, R.; Nie, S.; Sun, M.; Zhang, J.; Wu, D.; Moustaid-Moussa, N. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J. Nutr. Biochem., 2014, 25(4), 363-376.
[http://dx.doi.org/10.1016/j.jnutbio.2013.10.002] [PMID: 24406273]
[19]
Bonifácio, B.V.; Silva, P.B.; Ramos, M.A.D.S.; Negri, K.M.S.; Bauab, T.M.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2014, 9, 1-15.
[PMID: 24363556]
[20]
Goktas, Z.; Zu, Y.; Abbasi, M.; Galyean, S.; Wu, D.; Fan, Z.; Wang, S. Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. J. Agric. Food Chem., 2020, 68(31), 8119-8131.
[http://dx.doi.org/10.1021/acs.jafc.0c00131] [PMID: 32633507]
[21]
Sibuyi, N.R.S.; Moabelo, K.L.; Meyer, M.; Onani, M.O.; Dube, A.; Madiehe, A.M. Nanotechnology advances towards development of targeted-treatment for obesity. J. Nanobiotechnology, 2019, 17(1), 122.
[http://dx.doi.org/10.1186/s12951-019-0554-3] [PMID: 31842876]
[22]
Nuttall, F.Q. Body 6dex. Nutr. Today, 2015, 50(3), 117-128.
[http://dx.doi.org/10.1097/NT.0000000000000092] [PMID: 27340299]
[23]
Engin, A. The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol., 2017, 960, 1-17.
[http://dx.doi.org/10.1007/978-3-319-48382-5_1] [PMID: 28585193]
[24]
Weir, C.B.; Jan, A. BMI classification percentile and cut off points. In: statpearls; Statpearls publishing: Treasure island (FL), 2022.
[25]
Lefèbvre, P.; Scheen, A. Obesity: Causes and new treatments. Exp. Clin. Endocrinol. Diabetes, 2001, 109(Suppl. 2), S215-S224.
[http://dx.doi.org/10.1055/s-2001-18583] [PMID: 11460572]
[26]
Pérusse, L.; Bouchard, C. Gene-diet interactions in obesity. Am. J. Clin. Nutr., 2000, 72(Suppl. 5), 1285s-1290s.
[http://dx.doi.org/10.1093/ajcn/72.5.1285s] [PMID: 11063470]
[27]
Marti, A.; Martinez-González, M.A.; Martinez, J.A. Interaction between genes and lifestyle factors on obesity. Proc. Nutr. Soc., 2008, 67(1), 1-8.
[http://dx.doi.org/10.1017/S002966510800596X] [PMID: 18234126]
[28]
Klok, M.D.; Jakobsdottir, S.; Drent, M.L. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: A review. Obes. Rev., 2007, 8(1), 21-34.
[http://dx.doi.org/10.1111/j.1467-789X.2006.00270.x] [PMID: 17212793]
[29]
Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol., 2020, 10, 1607.
[http://dx.doi.org/10.3389/fphys.2019.01607] [PMID: 32063863]
[30]
Davis, C.D. The gut microbiome and its role in obesity. Nutr. Today, 2016, 51(4), 167-174.
[http://dx.doi.org/10.1097/NT.0000000000000167] [PMID: 27795585]
[31]
Kim, J.Y. Optimal diet strategies for weight loss and weight loss maintenance. J. Obes. Metab. Syndr., 2021, 30(1), 20-31.
[http://dx.doi.org/10.7570/jomes20065] [PMID: 33107442]
[32]
Luís Griera, J.; María Manzanares, J.; Barbany, M.; Contreras, J.; Amigó, P. Salas-Salvadó, J. Physical activity, energy balance and obesity. Public Health Nutr., 2007, 10(10A), 1194-1199.
[http://dx.doi.org/10.1017/S1368980007000705] [PMID: 17903330]
[33]
Santos, A.P.; Rogero, M.M.; Bastos, D.H.M. Edible plants, their secondary metabolites and antiobesogenic potential. Recent Pat. Food Nutr. Agric., 2010, 2(3), 195-212.
[PMID: 20858195]
[34]
Seidell, J.C.; Halberstadt, J. The global burden of obesity and the challenges of prevention. Ann. Nutr. Metab., 2015, 66(Suppl. 2), 7-12.
[http://dx.doi.org/10.1159/000375143] [PMID: 26045323]
[35]
Kumar, P.; Dubey, K.K. Current trends and future prospects of lipstatin: A lipase inhibitor and pro-drug for obesity. RSC Adv., 2015, 5(106), 86954-86966.
[http://dx.doi.org/10.1039/C5RA14892H]
[36]
Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism, 2019, 92, 6-10.
[http://dx.doi.org/10.1016/j.metabol.2018.09.005] [PMID: 30253139]
[37]
Oh, S.; Kim, K.; Chung, Y.; Shong, M.; Park, S. Anti-obesity agents: A focused review on the structural classification of therapeutic entities. Curr. Top. Med. Chem., 2009, 9(6), 466-481.
[http://dx.doi.org/10.2174/156802609788897862] [PMID: 19689361]
[38]
Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D. Pharmacological management of obesity: An endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab., 2015, 100(2), 342-362.
[http://dx.doi.org/10.1210/jc.2014-3415] [PMID: 25590212]
[39]
Rahman, M.M.; Islam, M.R.; Shohag, S.; Hossain, M.E.; Rahaman, M.S.; Islam, F.; Ahmed, M.; Mitra, S.; Khandaker, M.U.; Idris, A.M.; Chidambaram, K.; Emran, T.B.; Cavalu, S. The multifunctional role of herbal products in the management of diabetes and obesity: A comprehensive review. Molecules, 2022, 27(5), 1713.
[http://dx.doi.org/10.3390/molecules27051713] [PMID: 35268815]
[40]
Sekhon-Loodu, S.; Rupasinghe, H.P.V. Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front. Nutr., 2019, 6, 53.
[http://dx.doi.org/10.3389/fnut.2019.00053] [PMID: 31106207]
[41]
Sun, N.N.; Wu, T.Y.; Chau, C.F. Natural dietary and herbal products in anti-obesity treatment. Molecules, 2016, 21(10), 1351.
[http://dx.doi.org/10.3390/molecules21101351] [PMID: 27727194]
[42]
Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother., 2019, 110, 224-238.
[http://dx.doi.org/10.1016/j.biopha.2018.11.076] [PMID: 30481727]
[43]
Liu, Y.; Sun, M.; Yao, H.; Liu, Y.; Gao, R. Herbal medicine for the treatment of obesity: An overview of scientific evidence from 2007 to 2017. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/8943059] [PMID: 29234439]
[44]
Bhardwaj, M.; Yadav, P.; Vashishth, D.; Sharma, K.; Kumar, A.; Chahal, J.; Dalal, S.; Kataria, S.K. A review on obesity management through natural compounds and a green nanomedicine-based approach. Molecules, 2021, 26(11), 3278.
[http://dx.doi.org/10.3390/molecules26113278] [PMID: 34071722]
[45]
Pandeya, P.R.; Lamichhane, R.; Lamichhane, G.; Lee, K.H.; Lee, H.K.; Rhee, S.; Jung, H.J. 18KHT01, a potent anti-obesity polyherbal formulation. Front. Pharmacol., 2021, 12, 807081.
[http://dx.doi.org/10.3389/fphar.2021.807081] [PMID: 34975503]
[46]
Mohamed, G.A.; Ibrahim, S.R.M.; Elkhayat, E.S.; Dine, R.S.E. Natural anti-obesity agents; Bulletin Facult Pharmacy Cairo Univ., 2014.
[http://dx.doi.org/10.1016/j.bfopcu.2014.05.001]
[47]
Birari, R.B.; Bhutani, K.K. Pancreatic lipase inhibitors from natural sources: Unexplored potential. Drug Discov. Today, 2007, 12(19-20), 879-889.
[http://dx.doi.org/10.1016/j.drudis.2007.07.024] [PMID: 17933690]
[48]
Hu, F.; Sun, D.S.; Wang, K.L.; Shang, D.Y. Nanomedicine of plant origin for the treatment of metabolic disorders. Front. Bioeng. Biotechnol., 2022, 9, 811917.
[http://dx.doi.org/10.3389/fbioe.2021.811917] [PMID: 35223819]
[49]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[50]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep., 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[51]
Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab., 2016, 13(1), 27.
[http://dx.doi.org/10.1186/s12986-016-0080-3] [PMID: 27069498]
[52]
Miller, D.D.; Li, T.; Liu, R.H. Antioxidants and phytochemicals. In: Reference Module in Biomedical Research 3rd ed; , 2014; pp. 1-12.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.00236-1]
[53]
Kawser Hossain, M.; Abdal Dayem, A.; Han, J.; Yin, Y.; Kim, K.; Kumar Saha, S.; Yang, G.M.; Choi, H.; Cho, S.G. Molecular mechanisms of the anti-obesity and anti-diabetic properties of flavonoids. Int. J. Mol. Sci., 2016, 17(4), 569.
[http://dx.doi.org/10.3390/ijms17040569] [PMID: 27092490]
[54]
Neri-Numa, I.A.; Cazarin, C.B.B.; Ruiz, A.L.T.G.; Paulino, B.N.; Molina, G.; Pastore, G.M. Targeting flavonoids on modulation of metabolic syndrome. J. Funct. Foods, 2020, 73, 104132.
[http://dx.doi.org/10.1016/j.jff.2020.104132]
[55]
Vezza, T.; Canet, F.; de Marañón, A.M.; Bañuls, C.; Rocha, M.; Víctor, V.M. Phytosterols: Nutritional health players in the management of obesity and its related disorders. Antioxidants, 2020, 9(12), 1266.
[http://dx.doi.org/10.3390/antiox9121266] [PMID: 33322742]
[56]
Mukherjee, K.; Biswas, R.; Chaudhary, S.K.; Mukherjee, P.K. Botanicals as medicinal food and their effects against obesity. Evidence-Based Validation Herb. Med., 2015, 18, 373-403.
[http://dx.doi.org/10.1016/B978-0-12-800874-4.00018-0]
[57]
Ghaedi, E.; Varkaneh, H.K.; Rahmani, J.; Mousavi, S.M.; Mohammadi, H.; Fatahi, S.; Pantovic, A.; Darooghegi Mofrad, M.; Zhang, Y. Possible anti-obesity effects of phytosterols and phytostanols supplementation in humans: A systematic review and dose–response meta-analysis of randomized controlled trials. Phytother. Res., 2019, 33(5), 1246-1257.
[http://dx.doi.org/10.1002/ptr.6319] [PMID: 30838686]
[58]
Rideout, T.C.; Harding, S.V.; Jones, P.J.H. Consumption of plant sterols reduces plasma and hepatic triglycerides and modulates the expression of lipid regulatory genes and de novo lipogenesis in C57BL/6J mice. Mol. Nutr. Food Res., 2010, 54(Suppl. 1), S7-S13.
[http://dx.doi.org/10.1002/mnfr.201000027] [PMID: 20333723]
[59]
Zheng, J.; Zheng, S.; Feng, Q.; Zhang, Q.; Xiao, X. Dietary capsaicin and its anti-obesity potency: From mechanism to clinical implications. Biosci. Rep., 2017, 37(3), BSR20170286.
[http://dx.doi.org/10.1042/BSR20170286] [PMID: 28424369]
[60]
Zheng, G.; Sayama, K.; Okubo, T.; Juneja, L.R.; Oguni, I. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo, 2004, 18(1), 55-62.
[PMID: 15011752]
[61]
Papathanasopoulos, A.; Camilleri, M. Dietary fiber supplements: Effects in obesity and metabolic syndrome and relationship to gastrointestinal functions. Gastroenterology, 2010, 138(1), 65-72-e2,2.
[http://dx.doi.org/10.1053/j.gastro.2009.11.045] [PMID: 19931537]
[62]
Slavin, J.L. Dietary fiber and body weight. Nutrition, 2005, 21(3), 411-418.
[http://dx.doi.org/10.1016/j.nut.2004.08.018] [PMID: 15797686]
[63]
Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients, 2010, 2(12), 1266-1289.
[http://dx.doi.org/10.3390/nu2121266] [PMID: 22254008]
[64]
Slavin, J.; Green, H. Dietary fibre and satiety. Nutr. Bull., 2007, 32(s1), 32-42.
[http://dx.doi.org/10.1111/j.1467-3010.2007.00603.x]
[65]
Rebello, C.J.; O’Neil, C.E.; Greenway, F.L. Dietary fiber and satiety: The effects of oats on satiety. Nutr. Rev., 2016, 74(2), 131-147.
[http://dx.doi.org/10.1093/nutrit/nuv063] [PMID: 26724486]
[66]
Bendtsen, L.Q.; Lorenzen, J.K.; Bendsen, N.T.; Rasmussen, C.; Astrup, A. Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: A review of the evidence from controlled clinical trials. Adv. Nutr., 2013, 4(4), 418-438.
[http://dx.doi.org/10.3945/an.113.003723] [PMID: 23858091]
[67]
Morell, P.; Fiszman, S. Revisiting the role of protein-induced satiation and satiety. Food Hydrocoll., 2017, 68, 199-210.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.003]
[68]
Chambers, L.; McCrickerd, K.; Yeomans, M.R. Optimising foods for satiety. Trends Food Sci. Technol., 2015, 41(2), 149-160.
[http://dx.doi.org/10.1016/j.tifs.2014.10.007]
[69]
van der Klaauw, A.A.; Keogh, J.M.; Henning, E.; Trowse, V.M.; Dhillo, W.S.; Ghatei, M.A.; Farooqi, I.S. High protein intake stimulates postprandial GLP1 and PYY release. Obesity, 2013, 21(8), 1602-1607.
[http://dx.doi.org/10.1002/oby.20154] [PMID: 23666746]
[70]
McGregor, R.A.; Poppitt, S.D. Milk protein for improved metabolic health: A review of the evidence. Nutr. Metab., 2013, 10(1), 46.
[http://dx.doi.org/10.1186/1743-7075-10-46] [PMID: 23822206]
[71]
Baek, S.H.; Chung, H.J.; Lee, H.K.; D’Souza, R.; Jeon, Y.; Kim, H.J.; Kweon, S.J.; Hong, S.T. Treatment of obesity with the resveratrol-enriched rice DJ-526. Sci. Rep., 2014, 4(1), 3879.
[http://dx.doi.org/10.1038/srep03879] [PMID: 24464364]
[72]
Namazi, N.; Larijani, B.; Ayati, M.H.; Abdollahi, M. The effects of Nigella sativa L. on obesity: A systematic review and meta-analysis. J. Ethnopharmacol., 2018, 219, 173-181.
[http://dx.doi.org/10.1016/j.jep.2018.03.001] [PMID: 29559374]
[73]
Zhang, Y.; Xu, L.; Ding, M.; Su, G.; Zhao, Y. Anti-obesity effect of garlic oil on obese rats via Shenque point administration. J. Ethnopharmacol., 2019, 231, 486-493.
[http://dx.doi.org/10.1016/j.jep.2018.11.030] [PMID: 30472401]
[74]
Gwon, S.Y.; Choi, W.H.; Lee, D.H.; Ahn, J.Y.; Jung, C.H.; Moon, B.; Ha, T.Y. Shikonin protects against obesity through the modulation of adipogenesis, lipogenesis, and β-oxidation in vivo. J. Funct. Foods, 2015, 16, 484-493.
[http://dx.doi.org/10.1016/j.jff.2015.04.040]
[75]
Lee, Y.S.; Cha, B.Y.; Saito, K.; Choi, S.S.; Wang, X.X.; Choi, B.K.; Yonezawa, T.; Teruya, T.; Nagai, K.; Woo, J.T. Effects of a Citrus depressa Hayata (shiikuwasa) extract on obesity in high-fat diet-induced obese mice. Phytomedicine, 2011, 18(8-9), 648-654.
[http://dx.doi.org/10.1016/j.phymed.2010.11.005] [PMID: 21216135]
[76]
Torre-Villalvazo, I.; Tovar, A.R.; Ramos-Barragán, V.E.; Cerbón-Cervantes, M.A.; Torres, N. Soy protein ameliorates metabolic abnormalities in liver and adipose tissue of rats fed a high fat diet. J. Nutr., 2008, 138(3), 462-468.
[http://dx.doi.org/10.1093/jn/138.3.462] [PMID: 18287350]
[77]
Xu, Y.; Zhang, M.; Wu, T.; Dai, S.; Xu, J.; Zhou, Z. The anti-obesity effect of green tea polysaccharides, polyphenols and caffeine in rats fed with a high-fat diet. Food Funct., 2015, 6(1), 296-303.
[http://dx.doi.org/10.1039/C4FO00970C] [PMID: 25431018]
[78]
Yang, S.C.; Huang, W.C.; Ng, X.E.; Lee, M.C.; Hsu, Y.J.; Huang, C.C.; Wu, H.H.; Yeh, C.L.; Shirakawa, H.; Budijanto, S.; Tung, T.H.; Tung, Y.T. Rice bran reduces weight gain and modulates lipid metabolism in rats with high-energy-diet-induced obesity. Nutrients, 2019, 11(9), 2033.
[http://dx.doi.org/10.3390/nu11092033] [PMID: 31480353]
[79]
Wu, T.; Tang, Q.; Gao, Z.; Yu, Z.; Song, H.; Zheng, X.; Chen, W. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS One, 2013, 8(10), e77585.
[http://dx.doi.org/10.1371/journal.pone.0077585] [PMID: 24143244]
[80]
Murase, T.; Misawa, K.; Minegishi, Y.; Aoki, M.; Ominami, H.; Suzuki, Y.; Shibuya, Y.; Hase, T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab., 2011, 300(1), E122-E133.
[http://dx.doi.org/10.1152/ajpendo.00441.2010] [PMID: 20943752]
[81]
Joo, J.I.; Kim, D.H.; Choi, J.W.; Yun, J.W. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res., 2010, 9(6), 2977-2987.
[http://dx.doi.org/10.1021/pr901175w] [PMID: 20359164]
[82]
Birari, R.; Javia, V.; Bhutani, K.K. Antiobesity and lipid lowering effects of Murraya koenigii (L.) Spreng leaves extracts and mahanimbine on high fat diet induced obese rats. Fitoterapia, 2010, 81(8), 1129-1133.
[http://dx.doi.org/10.1016/j.fitote.2010.07.013] [PMID: 20655993]
[83]
Ikarashi, N.; Toda, T.; Okaniwa, T.; Ito, K.; Ochiai, W.; Sugiyama, K. Anti-obesity and anti-diabetic effects of acacia polyphenol in obese diabetic KKAy mice fed high-fat diet. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-10.
[http://dx.doi.org/10.1093/ecam/nep241] [PMID: 21799697]
[84]
Du, H.; You, J.S.; Zhao, X.; Park, J.Y.; Kim, S.H.; Chang, K.J. Antiobesity and hypolipidemic effects of lotus leaf hot water extract with taurine supplementation in rats fed a high fat diet. J. Biomed. Sci., 2010, 17(Suppl. 1), S42.
[http://dx.doi.org/10.1186/1423-0127-17-S1-S42] [PMID: 20804619]
[85]
Mele, M.M.; Nachvak, M.; Asghari-Jafarabadi, M.; Alipour, B.; Zohourtabar, A.; Fasihi, M. The role of Tripterygium wilfordii extract in weight loss, energy expenditure, glucose and lipid metabolism. Prog. Nutr., 2018, 20(4), 549-553.
[86]
Kim, J.H.; Kim, O.K.; Yoon, H.G.; Park, J.; You, Y.; Kim, K.; Lee, Y.H.; Choi, K.C.; Lee, J.; Jun, W. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr. Res., 2016, 60(1), 30428.
[http://dx.doi.org/10.3402/fnr.v60.30428] [PMID: 26822962]
[87]
Mahmoud, R.H.; Elnour, W.A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(1), 75-83.
[PMID: 23329526]
[88]
Xie, W.; Gu, D.; Li, J.; Cui, K.; Zhang, Y. Effects and action mechanisms of berberine and Rhizoma coptidis on gut microbes and obesity in high-fat diet-fed C57BL/6J mice. PLoS One, 2011, 6(9), e24520.
[http://dx.doi.org/10.1371/journal.pone.0024520] [PMID: 21915347]
[89]
Zhang, Y.; Fan, S.; Hu, N.; Gu, M.; Chu, C.; Li, Y.; Lu, X.; Huang, C. Rhein reduces fat weight in db/db mouse and prevents diet-induced obesity in C57Bl/6 mouse through the inhibition of PPARγ signaling. PPAR Res., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/374936] [PMID: 23049539]
[90]
Lim, H.H.; Lee, S.O.; Kim, S.Y.; Yang, S.J.; Lim, Y. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp. Biol. Med., 2013, 238(10), 1160-1169.
[http://dx.doi.org/10.1177/1535370213498982] [PMID: 24000381]
[91]
Alkhudhayri, D.A.; Osman, M.A.; Alshammari, G.M.; Al Maiman, S.A.; Yahya, M.A. Moringa peregrina leaf extracts produce anti-obesity, hypoglycemic, anti-hyperlipidemic, and hepatoprotective effects on high-fat diet fed rats. Saudi J. Biol. Sci., 2021, 28(6), 3333-3342.
[http://dx.doi.org/10.1016/j.sjbs.2021.02.078] [PMID: 34121870]
[92]
Kilany, O.E.; Abdelrazek, H.M.A.; Aldayel, T.S.; Abdo, S.; Mahmoud, M.M.A. Anti-obesity potential of Moringa olifera seed extract and lycopene on high fat diet induced obesity in male Sprauge Dawely rats. Saudi J. Biol. Sci., 2020, 27(10), 2733-2746.
[http://dx.doi.org/10.1016/j.sjbs.2020.06.026] [PMID: 32994733]
[93]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[94]
Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules, 2020, 25(9), 2193.
[http://dx.doi.org/10.3390/molecules25092193] [PMID: 32397080]
[95]
Prasad, M.; Lambe, U.P.; Brar, B.; Shah, I. J, M.; Ranjan, K.; Rao, R.; Kumar, S.; Mahant, S.; Khurana, S.K.; Iqbal, H.M.N.; Dhama, K.; Misri, J.; Prasad, G. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother., 2018, 97, 1521-1537.
[http://dx.doi.org/10.1016/j.biopha.2017.11.026] [PMID: 29793315]
[96]
Ash, G.I.; Kim, D.; Choudhury, M. Promises of nanotherapeutics in obesity. Trends Endocrinol. Metab., 2019, 30(6), 369-383.
[http://dx.doi.org/10.1016/j.tem.2019.04.004] [PMID: 31126754]
[97]
Shende, P.; Narvenker, R. Herbal nanotherapy: A new paradigm over conventional obesity treatment. J. Drug Deliv. Sci. Technol., 2021, 61, 102291.
[http://dx.doi.org/10.1016/j.jddst.2020.102291]
[98]
Tsou, Y.H.; Wang, B.; Ho, W.; Hu, B.; Tang, P.; Sweet, S.; Zhang, X.Q.; Xu, X. Nanotechnology-mediated drug delivery for the treatment of obesity and its related comorbidities. Adv. Healthc. Mater., 2019, 8(12), 1801184.
[http://dx.doi.org/10.1002/adhm.201801184] [PMID: 30938934]
[99]
Shishir, I.; Rezaul, M.; Karim, N.; Gowd, V.; Zheng, X.; Chen, W. Liposomal delivery of natural product: A promising approach in health care. Trends Food Sci. Technol., 2018, 79, 35-54.
[100]
Dumont, C.; Bourgeois, S.; Fessi, H.; Jannin, V. Lipid-based nanosuspensions for oral delivery of peptides, a critical review. Int. J. Pharm., 2018, 541(1-2), 117-135.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.038] [PMID: 29476783]
[101]
Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, characterisation, preparation, and recent innovation in clinical applications. J. Drug Target., 2019, 27(7), 742-761.
[http://dx.doi.org/10.1080/1061186X.2018.1527337] [PMID: 30239255]
[102]
Patel, V. Liposome: A novel carrier for targeting drug delivery system. Asian J. Pharm. Res. Dev., 2020, 8(4), 67-76.
[103]
Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience, 2022, 12(1), 274-291.
[http://dx.doi.org/10.1007/s12668-022-00941-x] [PMID: 35096502]
[104]
Sogut, O.; Aydemir Sezer, U.; Sezer, S. Liposomal delivery systems for herbal extracts. J. Drug Deliv. Sci. Technol., 2021, 61, 102147.
[http://dx.doi.org/10.1016/j.jddst.2020.102147]
[105]
Zu, Y.; Overby, H.; Ren, G.; Fan, Z.; Zhao, L.; Wang, S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces, 2018, 164, 414-423.
[http://dx.doi.org/10.1016/j.colsurfb.2017.12.044] [PMID: 29433059]
[106]
Harika, P.; Deepthi, B.V.P.; Vinitha, B.; Baherji, R.; Ali, J.; Sharma, J.V.C. Herbal nanoparticles. World J. Pharm. Med. Res., 2021, 7(3), 127-130.
[107]
Yadav, D.; Suri, S.; Choudhary, A.A.; Sikender, M. Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int. J. Pharm. Tech., 2011, 3, 3092-3116.
[108]
Mathur, M.; Vyas, G. Role of nanoparticles for production of smart herbal drug-An overview. Indian J. Nat. Prod. Resour., 2013, 4(4), 329-338.
[109]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[110]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217-223.
[http://dx.doi.org/10.4103/2278-344X.107832]
[111]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[112]
Chiriac, A.P.; Rusu, A.G.; Nita, L.E.; Chiriac, V.M.; Neamtu, I.; Sandu, A. Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics, 2021, 13(5), 631.
[http://dx.doi.org/10.3390/pharmaceutics13050631] [PMID: 33925127]
[113]
Qadir, A.; Khan, N.; Singh, S.P.; Akhtar, J.; Arif, M. Nanotechnological approaches to herbal drugs used in cancer therapy. Int. J. Pharm. Sci. Res., 2015, 6(10), 4137-4144.
[114]
Essa, D.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. The design of Poly (lactide-co-glycolide) nanocarriers for medical applications. Front. Bioeng. Biotechnol., 2020, 8, 48.
[http://dx.doi.org/10.3389/fbioe.2020.00048] [PMID: 32117928]
[115]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(Suppl. 1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[116]
Kulkarni, G.T. Herbal drug delivery systems: An emerging area in herbal drug research. J. chronother. Drug deliv., 2011, 2(3), 113-119.
[117]
Ruirui, Z.; He, J.; Xu, X.; Li, S.; Peng, H.; Deng, Z.; Huang, Y. PLGA-based drug delivery system for combined therapy of cancer: Research progress. Mater. Res. Express, 2021, 8(12), 122002.
[http://dx.doi.org/10.1088/2053-1591/ac3f5e]
[118]
Gadad, AF.; Vannuruswamy, G.; Sharath, CF.; Dandagi, PM.; Mastiholimath, VS. Study of different properties and applications of poly lactic-coglycolic acid (plga) nanotechnology: An overview. Indian Drugs., 2012, 49(12), 5-22.
[119]
Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C, 2020, 114, 111035.
[http://dx.doi.org/10.1016/j.msec.2020.111035] [PMID: 32994029]
[120]
Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci, 2015, 11(3), 1-13.
[121]
Ansari, S.H.; Sameem, M.; Islam, F. Influence of nanotechnology on herbal drugs: A review. J. Adv. Pharm. Technol. Res., 2012, 3(3), 142-146.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[122]
Jain, N.; Valli, K.S.; Devi, V.K. Importance of novel drug delivery systems in herbal medicines. Pharmacogn. Rev., 2010, 4(7), 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[123]
Ahmed, H.H.; Kotob, S.E.; Abd-Rabou, A.A.; Aglan, H.A.; Elmegeed, G.A.; Mohawed, O.A. Pre-clinical evidence for the anti-obesity potential of quercetin and curcumin loaded chitosan/PEG blended PLGA nanoparticles. Biomed. Pharmacol. J., 2021, 14(4), 1731-1759.
[http://dx.doi.org/10.13005/bpj/2274]
[124]
Chen, X.; Li, Q.W.; Wang, X.M. Gold nanostructures for bioimaging, drug delivery and therapeutics. Precious metals for biomedical applications., 2014, 8, 163-176.
[125]
Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol., 2020, 8, 990.
[http://dx.doi.org/10.3389/fbioe.2020.00990] [PMID: 32903562]
[126]
Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 2012, 4(6), 1871-1880.
[http://dx.doi.org/10.1039/C1NR11188D] [PMID: 22076024]
[127]
Verma, A.; Uzun, O.; Hu, Y.; Hu, Y.; Han, H.S.; Watson, N.; Chen, S.; Irvine, D.J.; Stellacci, F. Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater., 2008, 7(7), 588-595.
[http://dx.doi.org/10.1038/nmat2202] [PMID: 18500347]
[128]
Ahmad, T.; Sarwar, R.; Iqbal, A.; Bashir, U.; Farooq, U.; Halim, S.A.; Khan, A.; Al-Harrasi, A. Recent advances in combinatorial cancer therapy via multifunctionalized gold nanoparticles. Nanomedicine, 2020, 15(12), 1221-1237.
[http://dx.doi.org/10.2217/nnm-2020-0051] [PMID: 32370608]
[129]
Gao, L.; Hu, Y.; Hu, D.; Li, Y.; Yang, S.; Dong, X.; Alharbi, S.A.; Liu, H. Anti-obesity activity of gold nanoparticles synthesized from Salacia chinensis modulates the biochemical alterations in high-fat diet-induced obese rat model via AMPK signaling pathway. Arab. J. Chem., 2020, 13(8), 6589-6597.
[http://dx.doi.org/10.1016/j.arabjc.2020.06.015]
[130]
Ansari, S.; Bari, A.; Ullah, R.; Mathanmohun, M.; Veeraraghavan, V.P.; Sun, Z. Gold nanoparticles synthesized with Smilax glabra rhizome modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. J. Photochem. Photobiol. B, 2019, 201, 111643.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111643] [PMID: 31698218]
[131]
Li, W.; Wan, H.; Yan, S.; Yan, Z.; Chen, Y.; Guo, P.; Ramesh, T.; Cui, Y.; Ning, L. Gold nanoparticles synthesized with Poria cocos modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. Arab. J. Chem., 2020, 13(7), 5966-5977.
[http://dx.doi.org/10.1016/j.arabjc.2020.04.031]
[132]
Zu, Y.; Zhao, L.; Hao, L.; Mechref, Y.; Zabet-Moghaddam, M.; Keyel, P.A.; Abbasi, M.; Wu, D.; Dawson, J.A.; Zhang, R.; Nie, S.; Moustaid-Moussa, N.; Kolonin, M.G.; Daquinag, A.C.; Brandi, L.; Warraich, I.; San Francisco, S.K.; Sun, X.; Fan, Z.; Wang, S. Browning white adipose tissue using adipose stromal cell-targeted resveratrol-loaded nanoparticles for combating obesity. J. Control. Release, 2021, 333, 339-351.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.022] [PMID: 33766692]
[133]
Ariamoghaddam, A.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Sahraeian, R. In vivo anti-obesity efficacy of curcumin loaded nanofibers transdermal patches in high-fat diet induced obese rats. Mater. Sci. Eng. C, 2018, 92, 161-171.
[http://dx.doi.org/10.1016/j.msec.2018.06.030] [PMID: 30184739]
[134]
El-Menshawe, S.; Ali, A.; Rabeh, M.; Khalil, N. Nanosized soy phytosome-based thermogel as topical anti-obesity formulation: An approach for acceptable level of evidence of an effective novel herbal weight loss product. Int. J. Nanomedicine, 2018, 13, 307-318.
[http://dx.doi.org/10.2147/IJN.S153429] [PMID: 29391791]
[135]
Chen, C.H.; Chen, C.J.; Elzoghby, A.O.; Yeh, T.S.; Fang, J.Y. Self-assembly and directed assembly of lipid nanocarriers for prevention of liver fibrosis in obese rats: A comparison with the therapy of bariatric surgery. Nanomedicine, 2018, 13(13), 1551-1566.
[http://dx.doi.org/10.2217/nnm-2018-0001] [PMID: 29998778]
[136]
Lacatusu, I.; Badea, N.; Udeanu, D.; Coc, L.; Pop, A.; Cioates Negut, C.; Tanase, C.; Stan, R.; Meghea, A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Mater. Sci. Eng. C, 2019, 99, 12-24.
[http://dx.doi.org/10.1016/j.msec.2019.01.071] [PMID: 30889655]
[137]
Llaiyaraja, N.; Devi, A.; Khanum, F. Chlorogenic acid-loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci., 2015, 10(3), 203-211.
[138]
Ezhilarasi, P.N.; Muthukumar, S.P.; Anandharamakrishnan, C. Solid lipid nanoparticle enhances bioavailability of hydroxycitric acid compared to a microparticle delivery system. RSC Adv., 2016, 6(59), 53784-53793.
[http://dx.doi.org/10.1039/C6RA04312G]
[139]
Lee, J.H.; Kim, J.C. Effect of cubic phase nanoparticle on obesity-suppressing efficacy of herbal extracts. Biotechnol. Bioprocess Eng.; BBE, 2015, 20(6), 1005-1015.
[http://dx.doi.org/10.1007/s12257-015-0417-1]
[140]
Berger, E.; Colosetti, P.; Jalabert, A.; Meugnier, E.; Wiklander, O.P.B.; Jouhet, J.; Errazurig-Cerda, E.; Chanon, S.; Gupta, D.; Rautureau, G.J.P.; Geloen, A.; El-Andaloussi, S.; Panthu, B.; Rieusset, J.; Rome, S. Use of nanovesicles from orange juice to reverse diet-induced gut modifications in diet-induced obese mice. Mol. Ther. Methods Clin. Dev., 2020, 18, 880-892.
[http://dx.doi.org/10.1016/j.omtm.2020.08.009] [PMID: 32953937]
[141]
Lee, M.S.; Jung, S.; Shin, Y.; Lee, S.; Kim, C.T.; Kim, I.H.; Kim, Y. Lipolytic efficacy of alginate double-layer nanoemulsion containing oleoresin capsicum in differentiated 3T3-L1 adipocytes. Food Nutr. Res., 2017, 61(1), 1339553.
[http://dx.doi.org/10.1080/16546628.2017.1339553] [PMID: 28747860]
[142]
Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metabolism, 2019, 92, 71-81.
[http://dx.doi.org/10.1016/j.metabol.2018.11.005] [PMID: 30447223]
[143]
Trandafir, L.M.; Dodi, G.; Frasinariu, O.; Luca, A.C.; Butnariu, L.I.; Tarca, E.; Moisa, S.M. Tackling dyslipidemia in obesity from a nanotechnology perspective. Nutrients, 2022, 14(18), 3774.
[http://dx.doi.org/10.3390/nu14183774] [PMID: 36145147]
[144]
Al-Kurdy, M.J.J.; Khudair, K.K. The effect of black currant selenium nanoparticles on dyslipidemia and oxidant-antioxidant status in D- galactose treated rats. Kufa J. Vet. Sci., 2020, 11(1), 23-38.
[145]
Ragavan, G.; Muralidaran, Y.; Sridharan, B.; Nachiappa Ganesh, R.; Viswanathan, P. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food Chem. Toxicol., 2017, 105, 203-213.
[http://dx.doi.org/10.1016/j.fct.2017.04.019] [PMID: 28428086]
[146]
Al-Okbi, S.Y.; Hussein, A.M.S.; Elbakry, H.F.H.; Fouda, K.A.; Mahmoud, K.F.; Hassan, M.E. Health benefits of fennel, rosemary volatile oils and their nano- forms in dyslipidemic rat model. Pak. J. Biol. Sci., 2018, 21(7), 348-358.
[http://dx.doi.org/10.3923/pjbs.2018.348.358] [PMID: 30417995]
[147]
Ali, Z.S.; Khudair, K.K. Synthesis, characterization of silver nanoparticles using Nigella sativa seeds and study their effects on the serum lipid profile and DNA damage on the rats’ blood treated with hydrogen peroxide. Iraqi J. Veterinary Med., 2019, 43(2), 23-37.
[http://dx.doi.org/10.30539/iraqijvm.v43i2.526]
[148]
Cheong, A.M.; Jessica Koh, J.X.; Patrick, N.O.; Tan, C.P.; Nyam, K.L. Hypocholesterolemic effects of Kenaf seed oil, macroemulsion, and nanoemulsion in high-cholesterol diet induced rats. J. Food Sci., 2018, 83(3), 854-863.
[http://dx.doi.org/10.1111/1750-3841.14038] [PMID: 29412455]
[149]
Omari-Siaw, E.; Wang, Q.; Sun, C.; Gu, Z.; Zhu, Y.; Cao, X.; Firempong, C.K.; Agyare, R.; Xu, X.; Yu, J. Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. Int. J. Pharm., 2016, 513(1-2), 68-77.
[http://dx.doi.org/10.1016/j.ijpharm.2016.08.042] [PMID: 27567929]
[150]
Javanshir, R.; Honarmand, M.; Hosseini, M.; Hemmati, M. Anti-dyslipidemic properties of green gold nanoparticle: Improvement in oxidative antioxidative balance and associated atherogenicity and insulin resistance. Clin. Phytosci., 2020, 6(1), 74.
[http://dx.doi.org/10.1186/s40816-020-00224-6]
[151]
Omari-Siaw, E.; Zhu, Y.; Wang, H.; Peng, W.; Firempong, C.K.; Wang, Y.W.; Cao, X.; Deng, W.; Yu, J.; Xu, X. Hypolipidemic potential of perillaldehyde-loaded self-nanoemulsifying delivery system in high-fat diet induced hyperlipidemic mice: Formulation, in vitro and in vivo evaluation. Eur. J. Pharm. Sci., 2016, 85, 112-122.
[http://dx.doi.org/10.1016/j.ejps.2016.02.003] [PMID: 26851382]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy