Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Herbal Therapies for Weight Gain and Metabolic Abnormalities Induced by Atypical Antipsychotics: A Review Article

Author(s): Hamideh Naghibi, Roshanak Salari, Mahdi Yousefi, Majid Khadem-Rezaiyan, Mohammad Reza Ghanbarzadeh and Mohammad Reza Fayyazi Bordbar*

Volume 20, Issue 5, 2023

Published on: 05 June, 2023

Article ID: e110423215660 Pages: 17

DOI: 10.2174/1570163820666230411111343

Price: $65

Abstract

Psychosis is a state of mind that makes it difficult to determine what is real and what is not. Psychosis can have serious negative effects. Like many psychiatric phenomena, psychosis has a variety of causes, such as schizophrenia, bipolar disorder, and psychotic depression. Antipsychotic medications, psychotherapy, and social support are the most common treatments. Antipsychotic drugs reduce the symptoms of psychosis by changing brain chemistry. Based on the mechanism of action, antipsychotics have two groups, typical and atypical. Most people who take antipsychotics experience side effects. People taking typical antipsychotics tend to have higher rates of extrapyramidal side effects, but some atypical drugs, especially olanzapine, are associated with the risk of significant weight gain, diabetes, and metabolic syndrome, which, in turn, increases the risk of atherosclerotic cardiovascular disease and premature death. Physical exercise, diet regimen, psychoeducation, monotherapy, or switching to an alternative antipsychotic are strategies to correct metabolic aberrates in atypical antipsychotic users. In light of several successful studies on the use of medicinal plants to control metabolic syndrome, this article briefly reviews the studies on some herbal medications for the management of metabolic disorders associated with atypical antipsychotics and discusses probable mechanisms. Therefore, we searched the Cochrane, Scopus, PubMed, and Google Scholar databases for works published before July, 2022, on the effect of herbal medications on antipsychotic-related metabolic abnormalities in animals or humans. We recommend that some herbal medicines may be efficient for regulating the metabolic changes related to atypical antipsychotics due to their multipotential action, and more efforts should be made to make herbal drug treatments more effective. We hope this review will be a reference for research on developing herbal therapeutics for metabolic alterations in antipsychotic customers.

Graphical Abstract

[1]
Gonçalves P, Araújo JR, Martel F. Antipsychotics-induced metabolic alterations: Focus on adipose tissue and molecular mechanisms. Eur Neuropsychopharmacol 2015; 25(1): 1-16.
[http://dx.doi.org/10.1016/j.euroneuro.2014.11.008] [PMID: 25523882]
[2]
Abou-Setta AM, Mousavi SS, Spooner C, Schouten JR, Pasichnyk D, Armijo-Olivo S. First-Generation Versus Second-Generation Antipsychotics in Adults: Comparative Effectiveness Rockville (MD). Agency for Healthcare Research and Quality US 2012; Vol.63.
[3]
Dazzan P, Morgan KD, Orr K, et al. Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacology 2005; 30(4): 765-74.
[http://dx.doi.org/10.1038/sj.npp.1300603] [PMID: 15702141]
[4]
Dolder CR, Lacro JP, Dunn LB, Jeste DV. Antipsychotic medication adherence: Is there a difference between typical and atypical agents? Am J Psychiatry 2002; 159(1): 103-8.
[http://dx.doi.org/10.1176/appi.ajp.159.1.103] [PMID: 11772697]
[5]
Tandon R, Belmaker RH, Gattaz WF, et al. World psychiatric association pharmacopsychiatry section statement on comparative effectiveness of antipsychotics in the treatment of schizophrenia. Schizophr Res 2008; 100(1-3): 20-38.
[http://dx.doi.org/10.1016/j.schres.2007.11.033] [PMID: 18243663]
[6]
Xu H, Zhuang X. Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: A critical review. Neuropsychiatr Dis Treat 2019; 15: 2087-99.
[http://dx.doi.org/10.2147/NDT.S208061] [PMID: 31413575]
[7]
Prestwood TR, Asgariroozbehani R, Wu S, et al. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res 2021; 402: 113101.
[http://dx.doi.org/10.1016/j.bbr.2020.113101] [PMID: 33453341]
[8]
Marvanova M. Strategies for prevention and management of second generation antipsychotic-induced metabolic side effects. Ment Health Clin 2013; 3(3): 154-61.
[http://dx.doi.org/10.9740/mhc.n166832]
[9]
Faulkner G, Cohn TA. Pharmacologic and nonpharmacologic strategies for weight gain and metabolic disturbance in patients treated with antipsychotic medications. Can J Psychiatry 2006; 51(8): 502-11.
[http://dx.doi.org/10.1177/070674370605100805] [PMID: 16933587]
[10]
Stroup TS, Gray N. Management of common adverse effects of antipsychotic medications. World Psychiatry 2018; 17(3): 341-56.
[http://dx.doi.org/10.1002/wps.20567] [PMID: 30192094]
[11]
Graf BL, Raskin I, Cefalu WT, Ribnicky DM. Plant-derived therapeutics for the treatment of metabolic syndrome. Curr Opin Investig Drugs 2010; 11(10): 1107-15.
[PMID: 20872313]
[12]
Hu Y, Young AJ, Ehli EA, et al. Metformin and berberine prevent olanzapine-induced weight gain in rats. PLoS One 2014; 9(3): e93310.
[http://dx.doi.org/10.1371/journal.pone.0093310] [PMID: 24667776]
[13]
Al-Naimi MS, Rasheed HA, Al-Kuraishy HM, Al-Gareeb AI. Berberine attenuates olanzapine induced-metabolic syndrome. J Pak Med Assoc 2019; 69(S8): S88-92.
[PMID: 31603885]
[14]
Singh R, Bansal Y, Sodhi RK, et al. Berberine attenuated olanzapine-induced metabolic alterations in mice: Targeting transient receptor potential vanilloid type 1 and 3 channels. Life Sci 2020; 247: 117442.
[http://dx.doi.org/10.1016/j.lfs.2020.117442] [PMID: 32081663]
[15]
Chan M, Qin Z, Man SC, et al. Adjunctive berberine reduces antipsychotic‐associated weight gain and metabolic syndrome in patients with schizophrenia: A randomized controlled trial. Psychiatry Clin Neurosci 2022; 76(3): 77-85.
[http://dx.doi.org/10.1111/pcn.13323] [PMID: 34931749]
[16]
Qiu Y, Li M, Zhang Y, et al. Berberine treatment for weight gain in patients with schizophrenia by regulating leptin rather than adiponectin. Asian J Psychiatr 2022; 67: 102896.
[http://dx.doi.org/10.1016/j.ajp.2021.102896] [PMID: 34773803]
[17]
Li M, Liu Y, Qiu Y, et al. The effect of berberine adjunctive treatment on glycolipid metabolism in patients with schizophrenia: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry Res 2021; 300: 113899.
[http://dx.doi.org/10.1016/j.psychres.2021.113899] [PMID: 33812218]
[18]
Pu Z, Sun Y, Jiang H, et al. Effects of berberine on gut microbiota in patients with mild metabolic disorders induced by olanzapine. Am J Chin Med 2021; 49(8): 1949-63.
[http://dx.doi.org/10.1142/S0192415X21500920] [PMID: 34961418]
[19]
Fadai F, Mousavi B, Ashtari Z, Farhang S, Hashempour S, Shahhamzei N. Saffron aqueous extract prevents metabolic syndrome in patients with schizophrenia on olanzapine treatment: A randomized triple blind placebo controlled study. Pharmacopsychiatry 2014; 47(04/05): 156-61.
[http://dx.doi.org/10.1055/s-0034-1382001]
[20]
Malekzadeh S, Heidari MR, Razavi BM, Rameshrad M, Hosseinzadeh H. Effect of safranal, a constituent of saffron, on olanzapine (an atypical antipsychotic) induced metabolic disorders in rat. Iran J Basic Med Sci 2019; 22(12): 1476-82.
[PMID: 32133067]
[21]
Razavi BM, Lookian F, Hosseinzadeh H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats. Biomed Pharmacother 2017; 92: 726-31.
[http://dx.doi.org/10.1016/j.biopha.2017.05.113] [PMID: 28586744]
[22]
Bilgic S, Tastemir Korkmaz D, Azirak S, Guvenc AN, Kocaman N, Ozer MK. The protective effect of thymoquinone over olanzapine-induced side effects in liver, and metabolic side effects. Bratisl Lek Listy 2017; 118(10): 618-25.
[PMID: 29198130]
[23]
Parasuraman S, Zhen K, Banik U, Christapher P. Ameliorative effect of curcumin on olanzapine-induced obesity in Sprague-Dawley rats. Pharmacognosy Res 2017; 9(3): 247-52.
[http://dx.doi.org/10.4103/pr.pr_8_17] [PMID: 28827965]
[24]
Auger F, Martin F, Pétrault O, et al. Risperidone-induced metabolic dysfunction is attenuated by Curcuma longa extract administration in mice. Metab Brain Dis 2018; 33(1): 63-77.
[http://dx.doi.org/10.1007/s11011-017-0133-y] [PMID: 29034440]
[25]
Sontakke SD, Thawani VR, Saoji A, Goswami VSS, Agnihotri AP. Effects of Withania somnifera in patients of schizophrenia: A randomized, double blind, placebo controlled pilot trial study. Indian J Pharmacol 2013; 45(4): 417-8.
[http://dx.doi.org/10.4103/0253-7613.115012] [PMID: 24014929]
[26]
Ullagaddi MB, Patil BM, Khanal P. Beneficial effect of Zingiber officinale on olanzapine-induced weight gain and metabolic changes. J Diabetes Metab Disord 2021; 20(1): 41-8.
[http://dx.doi.org/10.1007/s40200-020-00695-x] [PMID: 34178822]
[27]
Razavi BM, Abazari AR, Rameshrad M, Hosseinzadeh H. Carnosic acid prevented olanzapine-induced metabolic disorders through AMPK activation. Mol Biol Rep 2020; 47(10): 7583-92.
[http://dx.doi.org/10.1007/s11033-020-05825-5] [PMID: 32929650]
[28]
Lee JY, Liao WL, Liu YH, Kuo CL, Lung FW, Hsieh CL. Oral administration of processed Cassia obtusifolia L. seed powder May reduce body weight and cholesterol in overweight patients with schizophrenia: A 36-week randomized, double-blind, controlled trial of high and low doses. J Ethnopharmacol 2022; 292: 115111.
[http://dx.doi.org/10.1016/j.jep.2022.115111] [PMID: 35304275]
[29]
Jang S, Jang B-H, Ko Y, Sasaki Y, Park J-S, Hwang E-H. Herbal medicines for treating metabolic syndrome: A systematic review of randomized controlled trials. Evid Based Complement Alternat Med 2016; 2016: 5936402.
[http://dx.doi.org/10.1155/2016/5936402]
[30]
Payab M, Hasani-Ranjbar S, Shahbal N, et al. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta‐analysis of clinical trials. Phytother Res 2020; 34(3): 526-45.
[http://dx.doi.org/10.1002/ptr.6547] [PMID: 31793087]
[31]
Cicero AF, Baggioni A. Berberine and its role in chronic disease. Adv Exp Med Biol 2016; 928: 27-45.
[http://dx.doi.org/10.1007/978-3-319-41334-1_2] [PMID: 27671811]
[32]
Hu Y, Ehli EA, Hudziak JJ, Davies GE. Berberine and evodiamine influence serotonin transporter (5-HTT) expression via the 5-HTT-linked polymorphic region. Pharmacogenomics J 2012; 12(5): 372-8.
[http://dx.doi.org/10.1038/tpj.2011.24] [PMID: 21647174]
[33]
Kulkarni SK, Dhir A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res 2010; 24(3): 317-24.
[http://dx.doi.org/10.1002/ptr.2968] [PMID: 19998323]
[34]
Hu Y, Davies GE. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 2010; 81(5): 358-66.
[http://dx.doi.org/10.1016/j.fitote.2009.10.010] [PMID: 19861153]
[35]
Zhang Y, Li X, Zou D, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008; 93(7): 2559-65.
[http://dx.doi.org/10.1210/jc.2007-2404] [PMID: 18397984]
[36]
Cicero AFG, Ferroni A, Ertek S. Tolerability and safety of commonly used dietary supplements and nutraceuticals with lipid-lowering effects. Expert Opin Drug Saf 2012; 11(5): 753-66.
[http://dx.doi.org/10.1517/14740338.2012.705827] [PMID: 22788832]
[37]
Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit 2011; 17(7): RA164-7.
[http://dx.doi.org/10.12659/MSM.881842] [PMID: 21709646]
[38]
Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: From in vitro evidence to clinical studies. Atherosclerosis 2015; 243(2): 449-61.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.09.032] [PMID: 26520899]
[39]
Wu L, Xia M, Duan Y, et al. Berberine promotes the recruitment and activation of brown adipose tissue in mice and humans. Cell Death Dis 2019; 10(6): 468.
[http://dx.doi.org/10.1038/s41419-019-1706-y] [PMID: 31197160]
[40]
Ilyas Z, Perna S, Al-thawadi S, et al. The effect of Berberine on weight loss in order to prevent obesity: A systematic review. Biomed Pharmacother 2020; 127: 110137.
[http://dx.doi.org/10.1016/j.biopha.2020.110137] [PMID: 32353823]
[41]
Neag MA, Mocan A, Echeverría J, et al. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 2018; 9: 557.
[http://dx.doi.org/10.3389/fphar.2018.00557] [PMID: 30186157]
[42]
Cao RY, Zheng Y, Zhang Y, et al. Berberine on the prevention and management of cardiometabolic disease: Clinical applications and mechanisms of action. Am J Chin Med 2021; 49(7): 1645-66.
[http://dx.doi.org/10.1142/S0192415X21500762] [PMID: 34488551]
[43]
Fan J, Zhang K, Jin Y, et al. Pharmacological effects of berberine on mood disorders. J Cell Mol Med 2019; 23(1): 21-8.
[http://dx.doi.org/10.1111/jcmm.13930] [PMID: 30450823]
[44]
Wang X, Wang R, Xing D, et al. Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract. Life Sci 2005; 77(24): 3058-67.
[http://dx.doi.org/10.1016/j.lfs.2005.02.033] [PMID: 15996686]
[45]
Jiang W, Li S, Li X. Therapeutic potential of berberine against neurodegenerative diseases. Sci China Life Sci 2015; 58(6): 564-9.
[http://dx.doi.org/10.1007/s11427-015-4829-0] [PMID: 25749423]
[46]
Lin X, Zhang N. Berberine: Pathways to protect neurons. Phytother Res 2018; 32(8): 1501-10.
[http://dx.doi.org/10.1002/ptr.6107] [PMID: 29732634]
[47]
Zhu WQ, Wu HY, Sun ZH, et al. Current evidence and future directions of berberine intervention in depression. Front Pharmacol 2022; 13: 824420.
[http://dx.doi.org/10.3389/fphar.2022.824420] [PMID: 35677435]
[48]
Li M, Qiu Y, Zhang J, et al. Improvement of adjunctive berberine treatment on negative symptoms in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2022; 272(4): 633-42.
[http://dx.doi.org/10.1007/s00406-021-01359-4] [PMID: 35037116]
[49]
Giannoulaki P, Kotzakioulafi E, Chourdakis M, Hatzitolios A, Didangelos T. Impact of Crocus sativus L. on metabolic profile in patients with diabetes mellitus or metabolic syndrome: A systematic review. Nutrients 2020; 12(5): 1424.
[http://dx.doi.org/10.3390/nu12051424] [PMID: 32423173]
[50]
Razavi BM, Hosseinzadeh H. Saffron: A promising natural medicine in the treatment of metabolic syndrome. J Sci Food Agric 2017; 97(6): 1679-85.
[http://dx.doi.org/10.1002/jsfa.8134] [PMID: 27861946]
[51]
Arasteh A, Aliyev A, Khamnei S, Delazar A, Mesgari M, Mehmannavaz Y. Crocus sativus on serum glucose, insulin and cholesterol levels in healthy male rats. J Med Plants Res 2010; 4(5): 397-402.
[52]
Shirali S, Zahra Bathaie S, Nakhjavani M. Effect of crocin on the insulin resistance and lipid profile of streptozotocin-induced diabetic rats. Phytother Res 2013; 27(7): 1042-7.
[http://dx.doi.org/10.1002/ptr.4836] [PMID: 22948795]
[53]
Rajaei Z, Hadjzadeh MAR, Nemati H, Hosseini M, Ahmadi M, Shafiee S. Antihyperglycemic and antioxidant activity of crocin in streptozotocin-induced diabetic rats. J Med Food 2013; 16(3): 206-10.
[http://dx.doi.org/10.1089/jmf.2012.2407] [PMID: 23437790]
[54]
Asri-Rezaei S, Tamaddonfard E, Ghasemsoltani-Momtaz B, Erfanparast A, Gholamalipour S. Effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in streptozotocin-induced diabetic rats. Avicenna J Phytomed 2015; 5(5): 403-12.
[PMID: 26468459]
[55]
Kianbakht S, Hajiaghaee R. Anti-hyperglycemic effects of saffron and its active constituents, crocin and safranal, in alloxan-induced diabetic rats. Faslnamah-i Giyahan-i Daruyi 2011; 10(39): 82-9.
[56]
Mohajeri D, Mousavi G, Doustar Y. Antihyperglycemic and pancreas-protective effects of Crocus sativus L.(Saffron) stigma ethanolic extract on rats with alloxan-induced diabetes. J Biol Sci 2009; 9(4): 302-10.
[http://dx.doi.org/10.3923/jbs.2009.302.310]
[57]
Kang C, Lee H, Jung ES, et al. Saffron (Crocus sativus L.) increases glucose uptake and insulin sensitivity in muscle cells via multipathway mechanisms. Food Chem 2012; 135(4): 2350-8.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.092] [PMID: 22980812]
[58]
Maeda A, Kai K, Ishii M, Ishii T, Akagawa M. Safranal, a novel protein tyrosine phosphatase 1B inhibitor, activates insulin signaling in C2C12 myotubes and improves glucose tolerance in diabetic KK- A y mice. Mol Nutr Food Res 2014; 58(6): 1177-89.
[http://dx.doi.org/10.1002/mnfr.201300675] [PMID: 24668740]
[59]
Xi L, Qian Z, Xu G, et al. Beneficial impact of crocetin, a carotenoid from saffron, on insulin sensitivity in fructose-fed rats. J Nutr Biochem 2007; 18(1): 64-72.
[http://dx.doi.org/10.1016/j.jnutbio.2006.03.010] [PMID: 16713230]
[60]
Sheng L, Qian Z, Zheng S, Xi L. Mechanism of hypolipidemic effect of crocin in rats: Crocin inhibits pancreatic lipase. Eur J Pharmacol 2006; 543(1-3): 116-22.
[http://dx.doi.org/10.1016/j.ejphar.2006.05.038] [PMID: 16828739]
[61]
Xu GL, Yu SQ, Gong ZN, Zhang SQ. Study of the effect of crocin on rat experimental hyperlipemia and the underlying mechanisms. Zhongguo Zhongyao Zazhi 2005; 30(5): 369-72.
[PMID: 15806972]
[62]
Lee I-A, Min S-W, Kim D-H. Lactic acid bacteria increases hypolipidemic effect of crocin isolated from fructus of Gardenia jasminoides. J Microbiol Biotechnol 2006; 16(7): 1084-9.
[63]
Mashmoul M, Azlan A, Yusof BNM, Khaza’ai H, Mohtarrudin N, Boroushaki MT. Effects of saffron extract and crocin on anthropometrical, nutritional and lipid profile parameters of rats fed a high fat diet. J Funct Foods 2014; 8: 180-7.
[http://dx.doi.org/10.1016/j.jff.2014.03.017]
[64]
Samarghandian S, Azimi-Nezhad M, Samini F. Ameliorative effect of saffron aqueous extract on hyperglycemia, hyperlipidemia, and oxidative stress on diabetic encephalopathy in streptozotocin induced experimental diabetes mellitus. Biomed Res Int 2014; 2014: 920857.
[http://dx.doi.org/10.1155/2014/920857]
[65]
Abe K, Saito H. Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 2000; 14(3): 149-52.
[http://dx.doi.org/10.1002/(SICI)1099-1573(200005)14:3<149:AID-PTR665>3.0.CO;2-5] [PMID: 10815004]
[66]
Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM, Hosseinzadeh H. Effects of chronic crocin treatment on desoxycorticosterone acetate (doca)-salt hypertensive rats. Iran J Basic Med Sci 2014; 17(1): 9-13.
[PMID: 24592301]
[67]
Imenshahidi M, Razavi BM, Faal A, Gholampoor A, Mousavi SM, Hosseinzadeh H. The effect of chronic administration of saffron (Crocus sativus) stigma aqueous extract on systolic blood pressure in rats. Jundishapur J Nat Pharm Prod 2013; 8(4): 175-9.
[http://dx.doi.org/10.17795/jjnpp-12475] [PMID: 24624210]
[68]
Bian Y, Zhao C, Lee SMY. Neuroprotective potency of saffron against neuropsychiatric diseases, neurodegenerative diseases, and other brain disorders: From bench to bedside. Front Pharmacol 2020; 11: 579052.
[http://dx.doi.org/10.3389/fphar.2020.579052] [PMID: 33117172]
[69]
Namgyal D, Sarwat M. Chapter 8 - Saffron as a Neuroprotective Agent. In: Saffron. Amsterdam: Elsevier 2020; pp. 93-102.

[70]
Khan N, Mukhtar H. Tea and health: Studies in humans. Curr Pharm Des 2013; 19(34): 6141-7.
[http://dx.doi.org/10.2174/1381612811319340008] [PMID: 23448443]
[71]
Chacko SM, Thambi PT, Kuttan R, Nishigaki I. Beneficial effects of green tea: A literature review. Chin Med 2010; 5(1): 13.
[http://dx.doi.org/10.1186/1749-8546-5-13] [PMID: 20370896]
[72]
Sánchez M, González-Burgos E, Iglesias I, Lozano R, Gómez-Serranillos MP. The pharmacological activity of Camellia sinensis (L.) Kuntze on metabolic and endocrine disorders: A systematic review. Biomolecules 2020; 10(4): 603.
[http://dx.doi.org/10.3390/biom10040603] [PMID: 32294991]
[73]
Hibi M, Takase H, Iwasaki M, Osaki N, Katsuragi Y. Efficacy of tea catechin-rich beverages to reduce abdominal adiposity and metabolic syndrome risks in obese and overweight subjects: A pooled analysis of 6 human trials. Nutr Res 2018; 55: 1-10.
[http://dx.doi.org/10.1016/j.nutres.2018.03.012] [PMID: 29914623]
[74]
Samavat H, Newman AR, Wang R, Yuan JM, Wu AH, Kurzer MS. Effects of green tea catechin extract on serum lipids in postmenopausal women: A randomized, placebo-controlled clinical trial1. Am J Clin Nutr 2016; 104(6): 1671-82.
[http://dx.doi.org/10.3945/ajcn.116.137075] [PMID: 27806972]
[75]
Kobayashi M, Ikeda I. Mechanisms of inhibition of cholesterol absorption by green tea catechins. Food Sci Technol Res 2017; 23(5): 627-36.
[http://dx.doi.org/10.3136/fstr.23.627]
[76]
Meng JM, Cao SY, Wei XL, et al. Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants 2019; 8(6): 170.
[http://dx.doi.org/10.3390/antiox8060170] [PMID: 31185622]
[77]
Xu R, Yang K, Ding J, Chen G. Effect of green tea supplementation on blood pressure. Medicine 2020; 99(6): e19047.
[http://dx.doi.org/10.1097/MD.0000000000019047] [PMID: 32028419]
[78]
Quezada-Fernández P, Trujillo-Quiros J, Pascoe-González S, et al. Effect of green tea extract on arterial stiffness, lipid profile and sRAGE in patients with type 2 diabetes mellitus: a randomised, double-blind, placebo-controlled trial. Int J Food Sci Nutr 2019; 70(8): 977-85.
[http://dx.doi.org/10.1080/09637486.2019.1589430] [PMID: 31084381]
[79]
Lardner AL. Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr Neurosci 2014; 17(4): 145-55.
[http://dx.doi.org/10.1179/1476830513Y.0000000079] [PMID: 23883567]
[80]
Ahmad A, Husain A, Mujeeb M, et al. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013; 3(5): 337-52.
[http://dx.doi.org/10.1016/S2221-1691(13)60075-1] [PMID: 23646296]
[81]
Namazi N, Larijani B, Ayati MH, Abdollahi M. The effects of Nigella sativa L. on obesity: A systematic review and meta-analysis. J Ethnopharmacol 2018; 219: 173-81.
[http://dx.doi.org/10.1016/j.jep.2018.03.001] [PMID: 29559374]
[82]
Mohtashami A. Effects of bread with Nigella Sativa on blood glucose, blood pressure and anthropometric indices in patients with metabolic syndrome. Clin Nutr Res 2019; 8(2): 138-47.
[http://dx.doi.org/10.7762/cnr.2019.8.2.138] [PMID: 31089467]
[83]
Mollazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine 2019; 53: 43-52.
[http://dx.doi.org/10.1016/j.phymed.2018.09.024] [PMID: 30668411]
[84]
Ahmad S, Beg ZH. Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia. Lipids Health Dis 2013; 12(1): 86.
[http://dx.doi.org/10.1186/1476-511X-12-86] [PMID: 23758650]
[85]
Ismail M, Al-Naqeep G, Chan KW. Nigella sativa thymoquinone-rich fraction greatly improves plasma antioxidant capacity and expression of antioxidant genes in hypercholesterolemic rats. Free Radic Biol Med 2010; 48(5): 664-72.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.002] [PMID: 20005291]
[86]
Khan MA, Younus H. Thymoquinone shows the diverse therapeutic actions by modulating multiple cell signaling pathways: Single drug for multiple targets. Curr Pharm Biotechnol 2019; 19(12): 934-45.
[http://dx.doi.org/10.2174/1389201019666181113122009] [PMID: 30421672]
[87]
Heshmati J, Namazi N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement Ther Med 2015; 23(2): 275-82.
[http://dx.doi.org/10.1016/j.ctim.2015.01.013] [PMID: 25847566]
[88]
Dehkordi FR, Kamkhah AF. Antihypertensive effect of Nigella sativa seed extract in patients with mild hypertension. Fundam Clin Pharmacol 2008; 22(4): 447-52.
[http://dx.doi.org/10.1111/j.1472-8206.2008.00607.x] [PMID: 18705755]
[89]
Razavi BM, Hosseinzadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37(11): 1031-40.
[http://dx.doi.org/10.1007/s40618-014-0150-1] [PMID: 25125023]
[90]
Ajebli M, Eddouks M. Phytotherapy of hypertension: An updated overview. Endocr Metab Immune Disord Drug Targets 2020; 20(6): 812-39.
[http://dx.doi.org/10.2174/1871530320666191227104648] [PMID: 31880255]
[91]
Samarghandian S, Farkhondeh T, Samini F. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS Neurol Disord Drug Targets 2018; 17(6): 412-20.
[http://dx.doi.org/10.2174/1871527317666180702101455] [PMID: 29962349]
[92]
Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J. Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Front Aging Neurosci 2017; 9: 168.
[http://dx.doi.org/10.3389/fnagi.2017.00168] [PMID: 28611658]
[93]
Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: A short review. Life Sci 2006; 78(18): 2081-7.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[94]
Akbari M, Lankarani KB, Tabrizi R, et al. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2019; 10: 649.
[http://dx.doi.org/10.3389/fphar.2019.00649] [PMID: 31249528]
[95]
Jabczyk M, Nowak J, Hudzik B, Zubelewicz-Szkodzińska B. Curcumin in metabolic health and disease. Nutrients 2021; 13(12): 4440.
[http://dx.doi.org/10.3390/nu13124440] [PMID: 34959992]
[96]
Bateni Z, Rahimi HR, Hedayati M, Afsharian S, Goudarzi R, Sohrab G. The effects of nano‐curcumin supplementation on glycemic control, blood pressure, lipid profile, and insulin resistance in patients with the metabolic syndrome: A randomized, double‐blind clinical trial. Phytother Res 2021; 35(7): 3945-53.
[http://dx.doi.org/10.1002/ptr.7109] [PMID: 33851448]
[97]
Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C. Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: A double-blind, placebo-controlled clinical trial. Eur J Nutr 2020; 59(2): 477-83.
[http://dx.doi.org/10.1007/s00394-019-01916-7] [PMID: 30796508]
[98]
Di Pierro F, Bressan A, Ranaldi D, Rapacioli G, Giacomelli L, Bertuccioli A. Potential role of bioavailable curcumin in weight loss and omental adipose tissue decrease: Preliminary data of a randomized, controlled trial in overweight people with metabolic syndrome. Preliminary study. Eur Rev Med Pharmacol Sci 2015; 19(21): 4195-202.
[PMID: 26592847]
[99]
Azhdari M, Karandish M, Mansoori A. Metabolic benefits of curcumin supplementation in patients with metabolic syndrome: A systematic review and meta‐analysis of randomized controlled trials. Phytother Res 2019; 33(5): 1289-301.
[http://dx.doi.org/10.1002/ptr.6323] [PMID: 30941814]
[100]
Yuan F, Wu W, Ma L, et al. Turmeric and curcuminiods ameliorate disorders of glycometabolism among subjects with metabolic diseases: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2022; 177: 106121.
[http://dx.doi.org/10.1016/j.phrs.2022.106121] [PMID: 35143971]
[101]
Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J Cell Physiol 2018; 233(1): 141-52.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[102]
Dinakaran D, Sreeraj VS, Venkatasubramanian G. Role of curcumin in the management of schizophrenia: A narrative review. Indian J Psychol Med 2022; 44(2): 107-13.
[http://dx.doi.org/10.1177/02537176211033331] [PMID: 35655971]
[103]
Tandon N, Yadav SS. Safety and clinical effectiveness of Withania Somnifera (Linn.) Dunal root in human ailments. J Ethnopharmacol 2020; 255: 112768.
[http://dx.doi.org/10.1016/j.jep.2020.112768] [PMID: 32201301]
[104]
Santhekadur PK. Is Withaferin A, a magic bullet for metabolic syndrome? Biomed Pharmacother 2017; 92: 1135-7.
[http://dx.doi.org/10.1016/j.biopha.2017.04.002] [PMID: 28413154]
[105]
Durg S, Bavage S, Shivaram SB. Withania somnifera (Indian ginseng) in diabetes mellitus: A systematic review and meta‐analysis of scientific evidence from experimental research to clinical application. Phytother Res 2020; 34(5): 1041-59.
[http://dx.doi.org/10.1002/ptr.6589] [PMID: 31975514]
[106]
Abu Bakar MH, Azmi MN, Shariff KA, Tan JS. Withaferin A protects against high-fat diet–induced obesity via attenuation of oxidative stress, inflammation, and insulin resistance. Appl Biochem Biotechnol 2019; 188(1): 241-59.
[http://dx.doi.org/10.1007/s12010-018-2920-2] [PMID: 30417321]
[107]
Mishra L-C, Singh BB, Dagenais S. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern Med Rev 2000; 5(4): 334-46.
[PMID: 10956379]
[108]
Lee DH, Ahn J, Jang YJ, et al. Withania somnifera extract enhances energy expenditure via improving mitochondrial function in adipose tissue and skeletal muscle. Nutrients 2020; 12(2): 431.
[http://dx.doi.org/10.3390/nu12020431] [PMID: 32046183]
[109]
Halim MA, Rosli IM, Jaafar SSM, Ooi H-M, Leong P-W, Shamsuddin S. Withania somnifera showed neuroprotective effect and increase longevity in Drosophila Alzheimer’s disease model. BioRxiv 2020; 2020; 063107.
[http://dx.doi.org/10.1101/2020.04.27.063107]
[110]
Chengappa KR, Brar JS, Gannon JM, Schlicht PJ. Adjunctive use of a standardized extract of Withania somnifera (Ashwagandha) to treat symptom exacerbation in schizophrenia: A randomized, double-blind, placebo-controlled study J Clin Psychiat 2018; 79(5): 17m11826.
[http://dx.doi.org/10.4088/JCP.17m11826] [PMID: 29995356]
[111]
Gannon JM, Brar J, Rai A, Chengappa KNR. Effects of a standardized extract of Withania somnifera (Ashwagandha) on depression and anxiety symptoms in persons with schizophrenia participating in a randomized, placebo-controlled clinical trial. Ann Clin Psychiatry 2019; 31(2): 123-9.
[PMID: 31046033]
[112]
Mbaveng AT, Kuete V. Zingiber officinale. In: Kuete V, EdMedicinal spices and vegetables from Africa. Cambridge, USA: Academic Press 2017; pp. 627-39.
[http://dx.doi.org/10.1016/B978-0-12-809286-6.00030-3]
[113]
Ma RH, Ni ZJ, Zhu YY, et al. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct 2021; 12(2): 519-42.
[http://dx.doi.org/10.1039/D0FO02834G] [PMID: 33367423]
[114]
Wang J, Ke W, Bao R, Hu X, Chen F. Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: A review. Ann N Y Acad Sci 2017; 1398(1): 83-98.
[http://dx.doi.org/10.1111/nyas.13375] [PMID: 28505392]
[115]
Ebrahimzadeh Attari V, Malek Mahdavi A, Javadivala Z, Mahluji S, Zununi Vahed S, Ostadrahimi A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother Res 2018; 32(4): 577-85.
[http://dx.doi.org/10.1002/ptr.5986] [PMID: 29193411]
[116]
Zhu J, Chen H, Song Z, Wang X, Sun Z. Effects of ginger (Zingiber officinale Roscoe) on type 2 diabetes mellitus and components of the metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/5692962] [PMID: 29541142]
[117]
Roufogalis BD. Zingiber officinale (Ginger): A future outlook on its potential in prevention and treatment of diabetes and prediabetic states. New J Sci 2014; 2014: 1-15.
[http://dx.doi.org/10.1155/2014/674684]
[118]
Hasani H, Arab A, Hadi A, Pourmasoumi M, Ghavami A, Miraghajani M. Does ginger supplementation lower blood pressure? A systematic review and meta‐analysis of clinical trials. Phytother Res 2019; 33(6): 1639-47.
[http://dx.doi.org/10.1002/ptr.6362] [PMID: 30972845]
[119]
Fakhri S, Patra JK, Das SK, Das G, Majnooni MB, Farzaei MH. Ginger and heart health: From mechanisms to therapeutics. Curr Mol Pharmacol 2021; 14(6): 943-59.
[http://dx.doi.org/10.2174/1874467213666201209105005] [PMID: 33297926]
[120]
Nieto G, Ros G, Castillo J. Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines 2018; 5(3): 98.
[http://dx.doi.org/10.3390/medicines5030098] [PMID: 30181448]
[121]
Zhao Y, Sedighi R, Wang P, Chen H, Zhu Y, Sang S. Carnosic acid as a major bioactive component in rosemary extract ameliorates high-fat-diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem 2015; 63(19): 4843-52.
[http://dx.doi.org/10.1021/acs.jafc.5b01246] [PMID: 25929334]
[122]
Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: A review. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(9): 931-49.
[http://dx.doi.org/10.1007/s00210-016-1256-0] [PMID: 27178264]
[123]
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci 2020; 23(9): 1100-12.
[PMID: 32963731]
[124]
Moss M, Smith E, Milner M, McCready J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J Psychopharmacol 2018; 32(12): 1319-29.
[http://dx.doi.org/10.1177/0269881118798339] [PMID: 30318972]
[125]
Araki R, Sasaki K, Onda H, et al. Effects of continuous intake of rosemary extracts on mental health in working generation healthy japanese men: Post-hoc testing of a randomized controlled trial. Nutrients 2020; 12(11): 3551.
[http://dx.doi.org/10.3390/nu12113551] [PMID: 33233510]
[126]
Moss M. Half way to Scarborough fair? The cognitive and mood effects of rosemary and sage aromas. Phytotherapie 2017; 15(1): 38-43.
[http://dx.doi.org/10.1007/s10298-016-1092-x]
[127]
Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR. Short-term study on the effects of rosemary on cognitive function in an elderly population. J Med Food 2012; 15(1): 10-7.
[http://dx.doi.org/10.1089/jmf.2011.0005] [PMID: 21877951]
[128]
Ali MY, Park S, Chang M. Phytochemistry, ethnopharmacological uses, biological activities, and therapeutic applications of cassia obtusifolia l.: A comprehensive review. Molecules 2021; 26(20): 6252.
[http://dx.doi.org/10.3390/molecules26206252] [PMID: 34684833]
[129]
Nam J, Seol DW, Lee CG, Wee G, Yang S, Pan CH. Obtusifolin, an anthraquinone extracted from Senna obtusifolia (L.) H.S.Irwin & barneby, reduces inflammation in a mouse osteoarthritis model. Pharmaceuticals 2021; 14(3): 249.
[http://dx.doi.org/10.3390/ph14030249] [PMID: 33802005]
[130]
Tang Y, Zhong Z. Obtusifolin treatment improves hyperlipidemia and hyperglycemia: Possible mechanism involving oxidative stress. Cell Biochem Biophys 2014; 70(3): 1751-7.
[http://dx.doi.org/10.1007/s12013-014-0124-0] [PMID: 25015065]
[131]
Zhuang SY, Wu ML, Wei PJ, Cao ZP, Xiao P, Li CH. Changes in plasma lipid levels and antioxidant activities in rats after supplementation of obtusifolin. Planta Med 2016; 82(6): 539-43.
[http://dx.doi.org/10.1055/s-0042-102458] [PMID: 27002399]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy