Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Perspective

Bioactive Vitamins and Epigenetic Modifications in Diabetes: A Perspective

Author(s): Mihnea-Alexandru Găman*, Elena-Codruța Cozma, Bahadar S. Srichawla, Matei-Alexandru Cozma, Hamed Kord Varkaneh, Yongfeng Chen, Amelia Maria Găman* and Camelia Cristina Diaconu

Volume 20, Issue 1, 2024

Published on: 15 May, 2023

Article ID: e300323215239 Pages: 5

DOI: 10.2174/1573399819666230330124035

Price: $65

Abstract

Diabetes is a complex metabolic disease that has been associated with epigenetic changes. External factors such as dietary patterns can induce an imbalance in the pools of micronutrients and macronutrients in the body. Consequently, bioactive vitamins may influence epigenetic mechanisms via several pathways: involvement in the control of gene expression, and in protein synthesis, by acting as coenzymes and co-factors in the metabolism of methyl groups or methylation of DNA and histones. Herein, we present a perspective on the relevance of bioactive vitamins in the epigenetic modifications that occur in diabetes.

[1]
[2]
Dupont C, Armant D, Brenner C. Epigenetics: Definition, mechanisms and clinical perspective. Semin Reprod Med 2009; 27(5): 351-7.
[http://dx.doi.org/10.1055/s-0029-1237423] [PMID: 19711245]
[3]
Al-Haddad R, Karnib N, Assaad RA, et al. Epigenetic changes in diabetes. Neurosci Lett 2016; 625: 64-9.
[http://dx.doi.org/10.1016/j.neulet.2016.04.046] [PMID: 27130819]
[4]
Kyrou I, Tsigos C, Mavrogianni C, et al. Sociodemographic and lifestyle-related risk factors for identifying vulnerable groups for type 2 diabetes: A narrative review with emphasis on data from Europe. BMC Endocr Disord 2020; 20(S1): 134.
[http://dx.doi.org/10.1186/s12902-019-0463-3] [PMID: 32164656]
[5]
Rosen ED, Kaestner KH, Natarajan R, et al. Epigenetics and epigenomics: Implications for diabetes and obesity. Diabetes 2018; 67(10): 1923-31.
[http://dx.doi.org/10.2337/db18-0537] [PMID: 30237160]
[6]
Friso SSD, Pizzolo F, Udali S. Vitamins and Epigenetics Molecular Nutrition. Elsevier 2020; pp. 633-50.
[7]
Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics: Figure 1. Genes Dev 2009; 23(7): 781-3.
[http://dx.doi.org/10.1101/gad.1787609] [PMID: 19339683]
[8]
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381-95.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[9]
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci 2006; 103(5): 1412-7.
[http://dx.doi.org/10.1073/pnas.0510310103] [PMID: 16432200]
[10]
Wei JW, Huang K, Yang C, Kang CS. Non-coding RNAs as regulators in epigenetics. Oncol Rep 2017; 37(1): 3-9.
[http://dx.doi.org/10.3892/or.2016.5236] [PMID: 27841002]
[11]
Zhou Q, Shi C, Lv Y, Zhao C, Jiao Z, Wang T. Circulating microRNAs in response to exercise training in healthy adults. Front Genet 2020; 11: 256.
[http://dx.doi.org/10.3389/fgene.2020.00256] [PMID: 32256529]
[12]
Zhang Y, Shi J, Rassoulzadegan M, Tuorto F, Chen Q. Sperm RNA code programmes the metabolic health of offspring. Nat Rev Endocrinol 2019; 15(8): 489-98.
[http://dx.doi.org/10.1038/s41574-019-0226-2] [PMID: 31235802]
[13]
Kadamkode V, Banerjee G. Micro RNA: An epigenetic regulator of type 2 diabetes. MicroRNA 2015; 3(2): 86-97.
[http://dx.doi.org/10.2174/2211536603666141118232514] [PMID: 25412860]
[14]
Liu M, Li L, Chu J, et al. Serum N1-methylnicotinamide is associated with obesity and diabetes in chinese. J Clin Endocrinol Metab 2015; 100(8): 3112-7.
[http://dx.doi.org/10.1210/jc.2015-1732] [PMID: 26066674]
[15]
Kraus D, Yang Q, Kong D, et al. Nicotinamide N-methyltransfer ase knockdown protects against diet-induced obesity. Nature 2014; 508(7495): 258-62.
[http://dx.doi.org/10.1038/nature13198] [PMID: 24717514]
[16]
Li D, Tian YJ, Guo J, et al. Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr 2013; 110(12): 2156-64.
[http://dx.doi.org/10.1017/S0007114513001815] [PMID: 23768418]
[17]
Ollikainen M, Ismail K, Gervin K, et al. Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat. Clin Epigenetics 2015; 7(1): 39.
[http://dx.doi.org/10.1186/s13148-015-0073-5] [PMID: 25866590]
[18]
Hemmati M, Babaei H, Abdolsalehei M. Survey of the effect of biotin on glycemic control and plasma lipid concentrations in type 1 diabetic patients in kermanshah in iran (2008-2009). Oman Med J 2013; 28(3): 195-8.
[http://dx.doi.org/10.5001/omj.2013.53] [PMID: 23772286]
[19]
Valdés-Ramos R, Laura G-L, Elina M-C, Donaji B-A. Vitamins and type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets 2015; 15(1): 54-63.
[http://dx.doi.org/10.2174/1871530314666141111103217] [PMID: 25388747]
[20]
Azzi S, Sas TCJ, Koudou Y, et al. Degree of methylation of ZAC1 (PLAGL1) is associated with prenatal and post-natal growth in healthy infants of the EDEN mother child cohort. Epigenetics 2014; 9(3): 338-45.
[http://dx.doi.org/10.4161/epi.27387] [PMID: 24316753]
[21]
Cooper WN, Khulan B, Owens S, et al. DNA methylation profiling at imprinted loci after periconceptional micronutrient supplementation in humans: Results of a pilot randomized controlled trial. FASEB J 2012; 26(5): 1782-90.
[http://dx.doi.org/10.1096/fj.11-192708] [PMID: 22267336]
[22]
Zappe K, Pointner A, Switzeny OJ, et al. Counteraction of oxidative stress by vitamin e affects epigenetic regulation by increasing global methylation and gene expression of MLH1 and DNMT1 dose dependently in caco-2 cells. Oxid Med Cell Longev 2018; 2018: 1-13.
[http://dx.doi.org/10.1155/2018/3734250] [PMID: 29854080]
[23]
Switzeny OJ, Müllner E, Wagner KH, Brath H, Aumüller E, Haslberger AG. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects. Clin Epigenet 2012; 4(1): 19.
[http://dx.doi.org/10.1186/1868-7083-4-19] [PMID: 23025454]
[24]
Nilsson E, Matte A, Perfilyev A, et al. Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 2015; 100(11): E1491-501.
[http://dx.doi.org/10.1210/jc.2015-3204] [PMID: 26418287]
[25]
Hardikar AA, Satoor SN, Karandikar MS, et al. Multigenerational undernutrition increases susceptibility to obesity and diabetes that is not reversed after dietary recuperation. Cell Metab 2015; 22(2): 312-9.
[http://dx.doi.org/10.1016/j.cmet.2015.06.008] [PMID: 26166746]
[26]
Altobelli G, Bogdarina IG, Stupka E, Clark AJL, Langley-Evans S. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid. PLoS One 2013; 8(12): e82989.
[http://dx.doi.org/10.1371/journal.pone.0082989] [PMID: 24391732]
[27]
Lambrot R, Xu C, Saint-Phar S, et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat Commun 2013; 4(1): 2889.
[http://dx.doi.org/10.1038/ncomms3889] [PMID: 24326934]
[28]
Yadav DK, Shrestha S, Lillycrop KA, et al. Vitamin B12 supplementation influences methylation of genes associated with Type 2 diabetes and its intermediate traits. Epigenomics 2018; 10(1): 71-90.
[http://dx.doi.org/10.2217/epi-2017-0102] [PMID: 29135286]
[29]
Ackermann AM, Wang Z, Schug J, Naji A, Kaestner KH. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol Metab 2016; 5(3): 233-44.
[http://dx.doi.org/10.1016/j.molmet.2016.01.002] [PMID: 26977395]
[30]
Kuo T, Damle M, González BJ, Egli D, Lazar MA, Accili D. Induction of α cell–restricted Gc in dedifferentiating β cells contributes to stress-induced β cell dysfunction. JCI Insight 2019; 4(13): e128351.
[http://dx.doi.org/10.1172/jci.insight.128351] [PMID: 31120862]
[31]
Kang S, Tsai LT, Zhou Y, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol 2015; 17(1): 44-56.
[http://dx.doi.org/10.1038/ncb3080] [PMID: 25503565]
[32]
Barzilay E, Moon A, Plumptre L, et al. Fetal one-carbon nutrient concentrations may be affected by gestational diabetes. Nutr Res 2018; 55: 57-64.
[http://dx.doi.org/10.1016/j.nutres.2018.04.010] [PMID: 29914628]
[33]
Adaikalakoteswari A, Vatish M, Alam MT, Ott S, Kumar S, Saravanan P. Low vitamin B12 in pregnancy is associated with adipose-derived circulating mirs targeting pparγ and insulin resistance. J Clin Endocrinol Metab 2017; 102(11): 4200-9.
[http://dx.doi.org/10.1210/jc.2017-01155] [PMID: 28938471]
[34]
Hepp P, Hutter S, Knabl J, et al. Histone H3 lysine 9 acetylation is downregulated in GDM placentas and calcitriol supplementation enhanced this effect. Int J Mol Sci 2018; 19(12): 4061.
[http://dx.doi.org/10.3390/ijms19124061] [PMID: 30558244]
[35]
Guillemette L, Allard C, Lacroix M, et al. Genetics of glucose regulation in gestation and growth (Gen3G): A prospective prebirth cohort of mother–child pairs in Sherbrooke, Canada. BMJ Open 2016; 6(2): e010031.
[http://dx.doi.org/10.1136/bmjopen-2015-010031] [PMID: 26842272]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy