Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Valsartan Protects in High Fat Diet During Ischemic Reperfusion Injury

Author(s): Simrat Kaur, Kuldeep Kumar, Nirmal Singh* and Amteshwar Singh Jaggi

Volume 20, Issue 1, 2023

Published on: 14 April, 2023

Page: [85 - 100] Pages: 16

DOI: 10.2174/1567202620666230330084654

Price: $65

Abstract

Aim: The study investigates the effect of Valsartan, an Angiotensin II type 1 receptor blocker (ARB), on the blunted neuroprotective response of ischemic post-conditioning (iPoCo) in rats subjected to High Fat Diet (HFD).

Background: The neuroprotective response of iPoCo is blunted in conditions of vascular endothelial dysfunction (ED) associated with hypercholesterolemia, diabetes, hypertension, etc.

Objectives: The study was undertaken to investigate the effect of Valsartan, an ARB, on the blunted neuroprotective response of iPoCo in rats subjected to HFD.

Methods: Wistar rats were subjected to HFD for 56 days. The cerebral ischemic injury was induced by bilateral common carotid artery occlusion (BCCAO) for 12 min followed by reperfusion of 24 hrs. iPoCo was induced by three preceding cycles of ischemia and reperfusion lasting 1 min each given immediately after BCCAO at the onset of prolonged reperfusion. The extent of the injury was assessed in terms of memory impairment using the Morris Water Maze test (MWM), sensorimotor disturbance using the neurological severity score (NSS), and cerebral infarct size using triphenyl tetrazolium chloride staining. Series of biochemical estimations including brain thiobarbituric acid reactive species (TBARS); reduced glutathione (GSH); myeloperoxidase (MPO); tumor necrosis factor-α (TNF-α); Nrf-2 and serum cholesterol, serum nitrite levels were performed.

Results: BCCAO produced significant cerebral injury indicated by increased cerebral infarct size, memory impairment, increased NSS, and various biochemical alterations (increased cholesterol, TBARS, MPO, TNF-α, Nrf-2, and decreased nitrite and GSH levels). Significant neutrophil infiltration was also observed. iPoCo attenuated BCCAO-induced injury with respect to the above parameters in normal rats. The protective response of iPoCo was lost in HFD-treated rats. Treatment of Valsartan attenuated cerebral injury, potentiated the neuroprotective response of iPoCo in normal rats, and also restored the blunted neuroprotective effect of iPoCo in HFD-treated rats along with enhanced Nrf-2 levels.

Conclusion: Valsartan exerted a neuroprotective effect by virtue of its multiple actions with a crucial role of Nrf2 activation.

[1]
Feuerstein GZ, Wang X. Animal models of stroke. Mol Med Today 2000; 6(3): 133-5.
[http://dx.doi.org/10.1016/S1357-4310(99)01643-3] [PMID: 10689317]
[2]
Sacco RL, Kasner SE, Broderick JP, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013; 44(7): 2064-89.
[http://dx.doi.org/10.1161/STR.0b013e318296aeca] [PMID: 23652265]
[3]
Sharma D, Maslov LN, Singh N, Jaggi AS. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: Preclinical evidence and mechanisms. Eur J Pharmacol 2020; 883: 173380.
[http://dx.doi.org/10.1016/j.ejphar.2020.173380] [PMID: 32693098]
[4]
Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int J Stroke 2022; 17(1): 18-29.
[http://dx.doi.org/10.1177/17474930211065917] [PMID: 34986727]
[5]
Mohamed Mokhtarudin MJ, Payne SJ. Mathematical model of the effect of ischemia–reperfusion on brain capillary collapse and tissue swelling. Math Biosci 2015; 263: 111-20.
[http://dx.doi.org/10.1016/j.mbs.2015.02.011] [PMID: 25749185]
[6]
Schaller B, Graf R. Cerebral ischemia and reperfusion: The pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 2004; 24(4): 351-71.
[http://dx.doi.org/10.1097/00004647-200404000-00001] [PMID: 15087705]
[7]
Kirino T. Delayed neuronal death. Neuropathology 2000; 20(S1): 95-7.
[http://dx.doi.org/10.1046/j.1440-1789.2000.00306.x] [PMID: 11037198]
[8]
Cowled P, Fitridge R. Pathophysiology of reperfusion injury. Mech Vas Dis 2020; 415-40.
[9]
Pluta R, Salínska E, Puka M, Stafiej A, Łazarewicz JW. Early changes in extracellular amino acids and calcium concentrations in rabbit hippocampus following complete 15-min cerebral ischemia. Resuscitation 1988; 16(3): 193-210.
[http://dx.doi.org/10.1016/0300-9572(88)90046-9] [PMID: 2845543]
[10]
Guo ZH, Li F, Wang WZ. The mechanisms of brain ischemic insult and potential protective interventions. Neurosci Bull 2009; 25(3): 139-52.
[http://dx.doi.org/10.1007/s12264-009-0104-3] [PMID: 19448688]
[11]
Robledinos-Antón N, Fernández-Ginés R, Manda G, Cuadrado A. Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid Med Cell Longev 2019; 2019: 9372182.
[http://dx.doi.org/10.1155/2019/9372182]
[12]
Mei Z, Du L, Liu X, et al. Diosmetin alleviated cerebral ischemia/reperfusion injury in vivo and in vitro by inhibiting oxidative stress via the SIRT1/Nrf2 signaling pathway. Food Funct 2022; 13(1): 198-212.
[http://dx.doi.org/10.1039/D1FO02579A] [PMID: 34881386]
[13]
Yang Y, He B, Zhang X, et al. Geraniin Protects against Cerebral ischemia/reperfusion injury by suppressing oxidative stress and neuronal apoptosis via regulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/2152746] [PMID: 35222793]
[14]
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986; 74(5): 1124-36.
[http://dx.doi.org/10.1161/01.CIR.74.5.1124] [PMID: 3769170]
[15]
Kitagawa K. Ischemic tolerance in the brain: Endogenous adaptive machinery against ischemic stress. J Neurosci Res 2012; 90(5): 1043-54.
[http://dx.doi.org/10.1002/jnr.23005] [PMID: 22302606]
[16]
Jivraj N, Liew F, Marber M. Ischaemic postconditioning: Cardiac protection after the event. Anaesthesia 2015; 70(5): 598-612.
[http://dx.doi.org/10.1111/anae.12974] [PMID: 25682886]
[17]
Zhao ZQ, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol 2003; 285(2): H579-88.
[http://dx.doi.org/10.1152/ajpheart.01064.2002] [PMID: 12860564]
[18]
Zhao JJ, Xiao H, Zhao WB, et al. Remote ischemic postconditioning for ischemic stroke: A systematic review and meta-analysis of randomized controlled trials. Chin Med J (Engl) 2018; 131(8): 956-65.
[http://dx.doi.org/10.4103/0366-6999.229892] [PMID: 29664057]
[19]
Zheng Z, Yang M, Zhang F, et al. Gender-related difference of sevoflurane postconditioning in isolated rat hearts: Focus on phosphatidylinositol-3-kinase/Akt signaling. J Surg Res 2011; 170(1): e3-9.
[http://dx.doi.org/10.1016/j.jss.2011.04.035] [PMID: 21704330]
[20]
Rehni AK, Singh N. Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol Rep 2007; 59(2): 192-8.
[PMID: 17556797]
[21]
Kaur H, Kumar A, Jaggi AS, Singh N. Pharmacologic investigations on the role of Sirt-1 in neuroprotective mechanism of postconditioning in mice. J Surg Res 2015; 197(1): 191-200.
[http://dx.doi.org/10.1016/j.jss.2015.03.010] [PMID: 25930168]
[22]
Serviddio G, Romano AD, Gesualdo L, et al. Postconditioning is an effective strategy to reduce renal ischaemia/reperfusion injury. Nephrol Dial Transplant 2008; 23(5): 1504-12.
[http://dx.doi.org/10.1093/ndt/gfm779] [PMID: 18285396]
[23]
Lin HC, Lee TK, Tsai CC, Lai IR, Lu KS. Ischemic postconditioning protects liver from ischemia-reperfusion injury by modulating mitochondrial permeability transition. Transplantation 2012; 93(3): 265-71.
[http://dx.doi.org/10.1097/TP.0b013e31823ef335] [PMID: 22198494]
[24]
Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190(3): 255-66.
[http://dx.doi.org/10.1002/(SICI)1096-9896(200002)190:3<255::AID-PATH526>3.0.CO;2-6] [PMID: 10685060]
[25]
Singh N, Gulati P. Pharmacological evidence for connection of nitric oxide-mediated pathways in neuroprotective mechanism of ischemic postconditioning in mice. J Pharm Bioallied Sci 2014; 6(4): 233-40.
[http://dx.doi.org/10.4103/0975-7406.142951] [PMID: 25400405]
[26]
Mehta V, Kumar A, Jaggi AS, Singh N. Restoration of the attenuated neuroprotective effect of ischemic postconditioning in diabetic mice by SGLT inhibitor phlorizin. Curr Neurovasc Res 2021; 17(5): 706-18.
[http://dx.doi.org/10.2174/1567202617666201214112016] [PMID: 33319687]
[27]
Gao X, Ren C, Zhao H. Protective effects of ischemic postconditioning compared with gradual reperfusion or preconditioning. J Neurosci Res 2008; 86(11): 2505-11.
[http://dx.doi.org/10.1002/jnr.21703] [PMID: 18438944]
[28]
Wu N, Zhang X, Jia P, Jia D. Hypercholesterolemia abrogates the protective effect of ischemic postconditioning by induction of apoptosis and impairment of activation of reperfusion injury salvage kinase pathway. Biochem Biophys Res Commun 2015; 458(1): 148-53.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.084] [PMID: 25637532]
[29]
Gomolak JR, Didion SP. Angiotensin II-induced endothelial dysfunction is temporally linked with increases in interleukin-6 and vascular macrophage accumulation. Front Physiol 2014; 5: 396.
[http://dx.doi.org/10.3389/fphys.2014.00396] [PMID: 25400581]
[30]
Enseleit F, Lüscher TF, Ruschitzka F. Angiotensin-converting enzyme inhibition and endothelial dysfunction: Focus on ramipril. Eur Heart J Suppl 2003; 5: A31-6.
[http://dx.doi.org/10.1016/S1520-765X(03)90061-7]
[31]
Bots ML, Remme WJ, Lüscher TF, et al. ACE inhibition and endothelial function: Main findings of PERFECT, a sub-study of the EUROPA trial. Cardiovasc Drugs Ther 2007; 21(4): 269-79.
[http://dx.doi.org/10.1007/s10557-007-6041-3] [PMID: 17657599]
[32]
Aggarwal S, Randhawa PK, Singh N, Jaggi AS. Preconditioning at a distance: Involvement of endothelial vasoactive substances in cardioprotection against ischemia-reperfusion injury. Life Sci 2016; 151: 250-8.
[http://dx.doi.org/10.1016/j.lfs.2016.03.021] [PMID: 26979771]
[33]
Wang ZF, Wang NP, Harmouche S, et al. Postconditioning attenuates coronary perivascular and interstitial fibrosis through modulating angiotensin II receptors and angiotensin-converting enzyme 2 after myocardial infarction. J Surg Res 2017; 211: 178-90.
[http://dx.doi.org/10.1016/j.jss.2016.11.046] [PMID: 28501115]
[34]
Criscione L, Gasparo M, Bühlmayer P, Whitebread S, Ramjoué HR, Wood J. Pharmacological profile of valsartan: A potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br J Pharmacol 1993; 110(2): 761-71.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13877.x] [PMID: 8242249]
[35]
Abdel-Latif GA, Elwahab AHA, Hasan RA, et al. A novel protective role of sacubitril/valsartan in cyclophosphamide induced lung injury in rats: Impact of miRNA-150-3p on NF-κB/MAPK signaling trajectories. Sci Rep 2020; 10(1): 13045.
[http://dx.doi.org/10.1038/s41598-020-69810-5] [PMID: 31913322]
[36]
Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation 2001; 103(1): 148-54.
[http://dx.doi.org/10.1161/01.CIR.103.1.148] [PMID: 11136700]
[37]
Arjmand Abbassi Y, Mohammadi MT, Sarami Foroshani M, Raouf Sarshoori J. Captopril and valsartan may improve cognitive function through potentiation of the brain antioxidant defense system and attenuation of oxidative/nitrosative damage in STZ-induced dementia in rat. Adv Pharm Bull 2016; 6(4): 531-9.
[http://dx.doi.org/10.15171/apb.2016.067] [PMID: 28101460]
[38]
García-Prieto CF, Hernández-Nuño F, Rio DD, et al. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway. Mol Nutr Food Res 2015; 59(3): 520-32.
[http://dx.doi.org/10.1002/mnfr.201400539] [PMID: 25421217]
[39]
Bochelen D, Rudin M, Sauter A. Calcineurin inhibitors FK506 and SDZ ASM 981 alleviate the outcome of focal cerebral ischemic/reperfusion injury. J Pharmacol Exp Ther 1999; 288(2): 653-9.
[PMID: 9918571]
[40]
Joshi CN, Jain SK, Murthy PSR. An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts. Brain Res Brain Res Protoc 2004; 13(1): 11-7.
[http://dx.doi.org/10.1016/j.brainresprot.2003.12.001] [PMID: 15063836]
[41]
Neha , Kumar A, Jaggi AS, Sodhi RK, Singh N. Silymarin ameliorates memory deficits and neuropathological changes in mouse model of high-fat-diet-induced experimental dementia. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(8): 777-87.
[http://dx.doi.org/10.1007/s00210-014-0990-4] [PMID: 24866499]
[42]
Türeyen K, Vemuganti R, Sailor KA, Dempsey RJ. Infarct volume quantification in mouse focal cerebral ischemia: A comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods 2004; 139(2): 203-7.
[http://dx.doi.org/10.1016/j.jneumeth.2004.04.029] [PMID: 15488233]
[43]
Nunez J. Morris water maze experiment. J Vis Exp 2008; 897(19)
[http://dx.doi.org/10.3791/897-v] [PMID: 19066539]
[44]
Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116] [PMID: 17406317]
[45]
Germanò AF, Dixon CE, d’AVELLA DOMENICO , Hayes RL, Tomasello F. Behavioral deficits following experimental subarachnoid hemorrhage in the rat. J Neurotrauma 1994; 11(3): 345-53.
[http://dx.doi.org/10.1089/neu.1994.11.345] [PMID: 7996588]
[46]
Sastry KVH, Moudgal RP, Mohan J, Tyagi JS, Rao GS. Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 2002; 306(1): 79-82.
[http://dx.doi.org/10.1006/abio.2002.5676] [PMID: 12069417]
[47]
Ohkawa H, Ohishi W, Yagi K. Colorimetric method for determination of MDA activity. Biochem 1979; 95: 351.
[48]
Beutler E, Kelly BM. The effect of sodium nitrite on red cell GSH. Experientia 1963; 19(2): 96-7.
[http://dx.doi.org/10.1007/BF02148042] [PMID: 13967892]
[49]
Grisham MB, Benoit JN, Neil Granger D. Assessment of leukocyte involvement during ischemia and reperfusion of intestine. Methods Enzymol 1990; 186: 729-42.
[http://dx.doi.org/10.1016/0076-6879(90)86172-R] [PMID: 2172726]
[50]
Lowry O, Rosebrough N, Farr AL, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[51]
Lakshminarayanashastry Viswanatha G, Venkatanarasappa Venkataranganna M, Lingeswara Prasad NB. Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms. Iran J Basic Med Sci 2019; 22(2): 187-96.
[PMID: 30834085]
[52]
de Leciñana MA, Díez-Tejedor E, Carceller F, Roda JM. Cerebral ischemia: from animal studies to clinical practice. Should the methods be reviewed? Cerebrovasc Dis 2001; 11(1) (Suppl. 1): 20-30.
[http://dx.doi.org/10.1159/000049122] [PMID: 11244197]
[53]
Zhang R, Xu M, Wang Y, Xie F, Zhang G, Qin X. Nrf2—a promising therapeutic target for defensing against oxidative stress in stroke. Mol Neurobiol 2017; 54(8): 6006-17.
[http://dx.doi.org/10.1007/s12035-016-0111-0] [PMID: 27696223]
[54]
Tiwari N, Bhatia P, Kumar A, Jaggi AS, Singh N. Potential of carnosine, a histamine precursor in rat model of bilateral common carotid artery occlusion-induced vascular dementia. Fundam Clin Pharmacol 2018; 32(5): 516-31.
[http://dx.doi.org/10.1111/fcp.12376] [PMID: 29676814]
[55]
Virdi JK, Bhanot A, Jaggi AS, Agarwal N. Investigation on beneficial role of l -carnosine in neuroprotective mechanism of ischemic postconditioning in mice: possible role of histidine histamine pathway. Int J Neurosci 2020; 130(10): 983-98.
[http://dx.doi.org/10.1080/00207454.2020.1715393] [PMID: 31951767]
[56]
Wei D, Xiong X, Zhao H. Tim-3 cell signaling and iNOS are involved in the protective effects of ischemic postconditioning against focal ischemia in rats. Metab Brain Dis 2015; 30(2): 483-90.
[http://dx.doi.org/10.1007/s11011-014-9543-2] [PMID: 24771108]
[57]
Grewal AK, Singh N, Singh TG. Effects of resveratrol postconditioning on cerebral ischemia in mice: Role of the sirtuin-1 pathway. Can J Physiol Pharmacol 2019; 97(11): 1094-101.
[http://dx.doi.org/10.1139/cjpp-2019-0188] [PMID: 31340128]
[58]
Zhang Y, Ma L, Ren C, et al. Immediate remote ischemic postconditioning reduces cerebral damage in ischemic stroke mice by enhancing leptomeningeal collateral circulation. J Cell Physiol 2019; 234(8): 12637-45.
[http://dx.doi.org/10.1002/jcp.27858] [PMID: 30536714]
[59]
Kaur G, Jaggi AS, Singh N. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. J Brachial Plex Peripher Nerve Inj 2010; 5(01): 3.
[PMID: 20181005]
[60]
Burda J, Danielisová V, Némethová M, et al. Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell Mol Neurobiol 2006; 26(7-8): 1139-49.
[http://dx.doi.org/10.1007/s10571-006-9036-x] [PMID: 16612578]
[61]
Xue H, Zhang YH, Gao QS, et al. Sevoflurane post-conditioning ameliorates neuronal deficits and axon demyelination after neonatal hypoxic ischemic brain injury: role of microglia/macrophage. Cell Mol Neurobiol 2021; 41(8): 1801-16.
[http://dx.doi.org/10.1007/s10571-020-00949-5] [PMID: 32880098]
[62]
Meng QT, Cao C, Wu Y, et al. Ischemic post-conditioning attenuates acute lung injury induced by intestinal ischemia–reperfusion in mice: Role of Nrf2. Lab Invest 2016; 96(10): 1087-104.
[http://dx.doi.org/10.1038/labinvest.2016.87] [PMID: 27501050]
[63]
Jin S, Song C, Li S, et al. Preventive effects of turmeric on the high-fat diet-induced hyperlipidaemia in mice associated with a targeted metabolomic approach for the analysis of serum lysophosphatidylcholine using LC-MS/MS. J Funct Foods 2014; 11: 130-41.
[http://dx.doi.org/10.1016/j.jff.2014.09.016]
[64]
Cao XL, Du J, Zhang Y, Yan JT, Hu XM. Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats. Exp Brain Res 2015; 233(10): 2753-65.
[http://dx.doi.org/10.1007/s00221-015-4269-x] [PMID: 26238404]
[65]
ElAli A, Doeppner TR, Zechariah A, Hermann DM. Increased blood-brain barrier permeability and brain edema after focal cerebral ischemia induced by hyperlipidemia: Role of lipid peroxidation and calpain-1/2, matrix metalloproteinase-2/9, and RhoA overactivation. Stroke 2011; 42(11): 3238-44.
[http://dx.doi.org/10.1161/STROKEAHA.111.615559] [PMID: 21836084]
[66]
Deng J, Zhang J, Feng C, Xiong L, Zuo Z. Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice. Cardiovasc Res 2014; 103(4): 473-84.
[http://dx.doi.org/10.1093/cvr/cvu154] [PMID: 24935427]
[67]
Menet R, Bernard M, ElAli A. Hyperlipidemia in stroke pathobiology and therapy: Insights and perspectives. Front Physiol 2018; 9: 488.
[http://dx.doi.org/10.3389/fphys.2018.00488] [PMID: 29867540]
[68]
Sivasinprasasn S, Wikan N, Tocharus J, et al. Synergistic effects of the capsaicinoid nonivamide and rosuvastatin on obesity‐related endothelial dysfunction in rat fed a high‐fat diet. Phytother Res 2019; 33(7): 1815-26.
[http://dx.doi.org/10.1002/ptr.6369] [PMID: 31141276]
[69]
Takechi R, Galloway S, Pallebage-Gamarallage MM, Lam V, Dhaliwal SS, Mamo JC. Probucol prevents blood-brain barrier dysfunction in wild-type mice induced by saturated fat or cholesterol feeding. Clin Exp Pharmacol Physiol 2013; 40(1): 45-52.
[http://dx.doi.org/10.1111/1440-1681.12032] [PMID: 23167559]
[70]
Kagiyama T, Kagiyama S, Phillips MI. Expression of angiotensin type 1 and 2 receptors in brain after transient middle cerebral artery occlusion in rats. Regul Pept 2003; 110(3): 241-7.
[http://dx.doi.org/10.1016/S0167-0115(02)00223-9] [PMID: 12573806]
[71]
Fouda AY, Ahmed HA, Pillai B, et al. Contralesional angiotensin type 2 receptor activation contributes to recovery in experimental stroke. Neurochem Int 2022; 158: 105375.
[http://dx.doi.org/10.1016/j.neuint.2022.105375] [PMID: 35688299]
[72]
Nickenig G, Bäumer AT, Temur Y, Kebben D, Jockenhövel F, Böhm M. Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 1999; 100(21): 2131-4.
[http://dx.doi.org/10.1161/01.CIR.100.21.2131] [PMID: 10571970]
[73]
Villapol S, Saavedra JM. Neuroprotective effects of angiotensin receptor blockers. Am J Hypertens 2015; 28(3): 289-99.
[http://dx.doi.org/10.1093/ajh/hpu197] [PMID: 25362113]
[74]
Ray B, Ramesh G, Verma SR, et al. Effects of Telmisartan, an AT1 receptor antagonist, on mitochondria-specific genes expression in a mouse MPTP model of Parkinsonism. Frontiers in Bioscience-Landmark 2021; 26(8): 262-71.
[http://dx.doi.org/10.52586/4942] [PMID: 34455758]
[75]
Ozcelik D, Tuncdemir M. Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker on oxidative stress and metabolism of elements in kidney of STZ-induced diabetic rats. Res Sq 2022; 2022: 1-19.
[http://dx.doi.org/10.21203/rs.3.rs-1746678/v1]
[76]
Meng K, Zeng Q, Lu Q, et al. Valsartan attenuates atherosclerosis via upregulating the Th2 immune response in prolonged angiotensin II-treated ApoE−/− mice. Mol Med 2015; 21(1): 143-53.
[http://dx.doi.org/10.2119/molmed.2014.00195] [PMID: 25685964]
[77]
Oyake T, Itoh K, Motohashi H, et al. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol Cell Biol 1996; 16(11): 6083-95.
[http://dx.doi.org/10.1128/MCB.16.11.6083] [PMID: 8887638]
[78]
Liu L, Locascio LM, Doré S. Critical role of Nrf2 in experimental ischemic stroke. Front Pharmacol 2019; 10: 153.
[http://dx.doi.org/10.3389/fphar.2019.00153] [PMID: 30890934]
[79]
Gugliandolo A, Bramanti P, Mazzon E. Activation of Nrf2 by natural bioactive compounds: A promising approach for stroke? Int J Mol Sci 2020; 21(14): 4875.
[http://dx.doi.org/10.3390/ijms21144875] [PMID: 32664226]
[80]
Sivandzade F, Prasad S, Bhalerao A, Cucullo L. NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches. Redox Biol 2019; 21: 101059.
[http://dx.doi.org/10.1016/j.redox.2018.11.017] [PMID: 30576920]
[81]
Hanisch UK, Johnson TV, Kipnis J. Toll-like receptors: Roles in neuroprotection? Trends Neurosci 2008; 31(4): 176-82.
[http://dx.doi.org/10.1016/j.tins.2008.01.005] [PMID: 18329736]
[82]
Wu X, He L, Cai Y, et al. Induction of autophagy contributes to the myocardial protection of valsartan against ischemia-reperfusion injury. Mol Med Rep 2013; 8(6): 1824-30.
[http://dx.doi.org/10.3892/mmr.2013.1708] [PMID: 24084854]
[83]
Kumar K, Singh N, Jaggi AS, Maslov L. Clinical applicability of conditioning techniques in ischemia-reperfusion injury: A review of the literature. Curr Cardiol Rev 2021; 17(3): 306-18.
[http://dx.doi.org/10.2174/1573403X16999200817170619] [PMID: 33109063]
[84]
Ucar BI, Ucar G, Saha S, Buttari B, Profumo E, Saso L. Pharmacological protection against ischemia-reperfusion injury by regulating the Nrf2-Keap1-ARE signaling pathway. Antioxidants 2021; 10(6): 823.
[http://dx.doi.org/10.3390/antiox10060823] [PMID: 34063933]
[85]
Sadrkhanloo M, Entezari M, Orouei S, et al. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300: 120561.
[http://dx.doi.org/10.1016/j.lfs.2022.120561] [PMID: 35460707]
[86]
Takagi T, Kitashoji A, Iwawaki T, et al. Temporal activation of Nrf2 in the penumbra and Nrf2 activator-mediated neuroprotection in ischemia–reperfusion injury. Free Radic Biol Med 2014; 72: 124-33.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.04.009] [PMID: 24746614]
[87]
Chen R, Zhang YY, Lan JN, et al. Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3β/Nrf2 pathway in mice. Oxid Med Cell Longev 2020; 2020

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy