Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Peripheral Neuropathy: An Early Indication of Systemic Disease that Involves the Mechanistic Target of Rapamycin (mTOR)

Author(s): Kenneth Maiese*

Volume 20, Issue 1, 2023

Published on: 20 February, 2023

Page: [1 - 4] Pages: 4

DOI: 10.2174/1567202620999230220094137

Price: $65

Next »
[1]
Ajiboye BO, Shonibare MT, Oyinloye BE. Antidiabetic activity of watermelon (Citrullus lanatus) juice in alloxan-induced diabetic rats. J Diabetes Metabol Disorders 2020; 19(1): 343-52.
[2]
Alves HR, Lomba GSB, Gonçalves-de-Albuquerque CF, Burth P. Irisin, Exercise, and COVID-19. Front Endocrinol 2022; I: 879066.
[3]
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer’s Disease. Cells 2021; 10(5)
[4]
Fadini GP, Morieri ML, Longato E, Avogaro A. Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Investigat 2020 (March 28);
[5]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regenerat Res 2015; 10(4): 518-28.
[6]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[7]
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutrit 2023; 1-26.
[8]
Centers for Disease Control and Prevention. National Diabetes Statistics Report 2020. 2020;CS 314227-A:1-30.
[9]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[10]
Bayaraa O, Inman CK, Thomas SA, et al. Hyperglycemic conditions induce rapid cell dysfunction-promoting transcriptional alterations in human aortic endothelial cells. Scientif Reports 2022; 12(1): 20912.
[11]
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102(3): 1449-94.
[12]
Hajibabaie F, Abedpoor N, Safavi K, Taghian F. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 2022; e14480.
[13]
Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 2022; 175: 106014.
[14]
Orkaby AR, Dushkes R, Ward R, et al. Effect of Vitamin D3 and Omega-3 Fatty Acid Supplementation on Risk of Frailty: An Ancillary Study of a Randomized Clinical Trial. JAMA Network Open 2022; 5(9): e2231206.
[15]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance. Mol Cell Biochem 2022.
[16]
Wang Z, Wu Q, Wang H, Gao Y, Nie K, Tang Y, et al. Diosgenin protects against podocyte injury in early phase of diabetic nephropathy through regulating SIRT6. Phytomedicine: Int J Phytother Phytopharmacol 2022; 104: 154276.
[17]
Zuo J, Zhang Z, Luo M, et al. Redox signaling at the crossroads of human health and disease. MedComm 2022; 3(2): e127.
[18]
Maiese K. New Insights for Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev 2015; 2015: 875961.
[19]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[20]
Chong ZZ, Hou J, Shang YC, Wang S, Maiese K. EPO Relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-catenin to foster vascular integrity during experimental diabetes. Curr Neurovasc Res 2011; I(2): 103-20.
[21]
El-Beltagy A, Saleh AMB, Attaallah A, Gahnem RA. Therapeutic role of Azadirachta indica leaves ethanolic extract against diabetic nephropathy in rats neonatally induced by streptozotocin. Ultrastruct Pathol 2021; 1-16.
[22]
Geng K, Ma X, Jiang Z, et al. Innate immunity in diabetic wound healing: Focus on the mastermind hidden in chronic inflammatory. Front Pharmacol 2021; 12: 653940.
[23]
Hou J, Chong ZZ, Shang YC, Maiese K. FoxO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Mol Cell Endocrinol 2010; 321(2): 194-206.
[24]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. (4th edition.). Autophagy 2021; pp. 1-382.
[25]
Maiese K. New insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci (Landmark edition) 2020; 25: 1925-73.
[26]
Maiese K. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[27]
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199: 105595.
[28]
Rotllan N, Camacho M, Tondo M, et al. Therapeutic potential of emerging NAD+-increasing strategies for cardiovascular diseases. Antioxidants (Basel, Switzerland) 2021; 10(12)
[29]
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol 2021; e12932.
[30]
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 Neuronal invasion and complications: Potential mechanisms and therapeutic approaches. J Neurosci 2021; 41(25): 5338-49.
[31]
Wasserfurth P, Nebl J, Rühling MR, et al. Impact of dietary modifications on plasma sirtuins 1, 3 and 5 in older overweight individuals undergoing 12-weeks of circuit training. Nutrients 2021; 13(11)
[32]
Liu JJ, Shentu LM, Ma N, et al. Inhibition of NF-kappaB and Wnt/beta-catenin/GSK3beta signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced Type 1 diabetic rats. Curr Med Sci 2020; 40(1): 35-47.
[33]
Maiese K. Triple play: Promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62(4): 218-32.
[34]
Maiese K. mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus. World J Diabetes 2015; 6(2): 217-24.
[35]
Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 Inhibitors and their mode of action in heart failure-has the mystery been unravelled? Curr Heart Fail Rep 2021.
[36]
Gong Q, Wang H, Yu P, Qian T, Xu X. Protective or harmful: The dual roles of autophagy in diabetic retinopathy. Front Med (Lausanne) 2021; 8: 644121.
[37]
Li J, Lin FH, Zhu XM, Lv ZM. Impact of diabetic hyperglycaemia and insulin therapy on autophagy and impairment in rat epididymis. Andrologia 2020; 52(11): e13889.
[38]
Liu L, Cao Q, Gao W, et al. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway. FASEB J 2021; 35(12): e22040.
[39]
Rashidi S, Mansouri R, Ali-Hassanzadeh M, et al. The host mTOR pathway and parasitic diseases pathogenesis. Parasitol Res 2021; 120(4): 1151-66.
[40]
Ren L. Circular RNA PIP5K1A act as microRNA-552-3p sponge to regulates inflammation, oxidative damage in glucolipotoxicity-induced pancreatic INS-1 β-cells via Janus kinase 1. Bioengineered 2022; 13(3): 5724-36.
[41]
Tian Y, Xiao YH, Geng T, et al. Clusterin suppresses spermatogenic cell apoptosis to alleviate diabetes-induced testicular damage by inhibiting autophagy via the PI3K/AKT/mTOR axis. Biol Cell 2020.
[42]
Yamashima T, Ota T, Mizukoshi E, et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases. Adv Nutr 2020; 11(6)
[43]
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 20: 1-19.
[44]
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: A novel therapeutic strategy for human diseases. J Drug Target 2021; 1-44.
[45]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regeneration research 2014; 9(15): 1413-7.
[46]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[47]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[48]
Maiese K. Neurodegeneration, memory loss, and dementia: The impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition) 2021; 26(9): 614-27.
[49]
Mishra M, Duraisamy AJ, Kowluru RA. Sirt1- A guardian of the development of diabetic retinopathy. Diabetes 2018; 67(4): 745-54.
[50]
Qi X, Mitter SK, Yan Y, Busik JV, Grant MB, Boulton ME. Diurnal rhythmicity of autophagy is impaired in the diabetic retina. Cells 2020; 9(4): 905.
[51]
Tomita Y, Lee D, Tsubota K, Kurihara T. PPARα agonist oral therapy in diabetic retinopathy. Biomedicines 2020; 8(10)
[52]
Albiero M, Poncina N, Tjwa M, et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 2014; 63(4): 1353-65.
[53]
Gomes MB, Negrato CA. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metabol Syndrome 2014; 6(1): 80.
[54]
Atef MM, El-Sayed NM, Ahmed AAM, Mostafa YM. Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem Pharmacol 2019; 159: 1-10.
[55]
Li R, Wang B, Wu C, et al. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Disease 2021; 12(1): 107.
[56]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regenerat Res 2016; 11(3): 372-85.
[57]
Coelho T, Waddington Cruz M, Chao CC, et al. Characteristics of patients with hereditary transthyretin amyloidosis-polyneuropathy (ATTRv-PN) in NEURO-TTRansform, an Open-label phase 3 study of eplontersen. Neurol Ther 2023; 12(1): 267-87.
[58]
Engin AB, Engin A. Alzheimer’s disease and protein kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[59]
Gu X, Zhu J. Roles of exosomes and exosomal MicroRNAs in postoperative sleep disturbance. Nat Sci Sleep 2021; 13: 1363-75.
[60]
Kaur D, Behl T, Sehgal A, et al. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 2021.
[61]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[62]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and Alzheimer’s disease: Probing therapeutic potential. Neurochem Res 2021.
[63]
Adhikari UK, Khan R, Mikhael M, et al. Therapeutic anti-amyloid β antibodies cause neuronal disturbances. Alzheimer's & Dementia : J Alzheimer's Associat 2022.
[64]
Lio CT, Kacprowski T, Klaedtke M, et al. Small RNA sequencing in the Tg4-42 mouse model suggests the involvement of snoRNAs in the etiology of Alzheimer’s disease. J Alzheimers Dis 2022; 87(4): 1671-81.
[65]
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer’s disease. Experiment Therapeut Med 2022; 23(3): 241.
[66]
Mavroidi B, Kaminari A, Matiadis D, et al. The prophylactic and multimodal activity of two isatin thiosemicarbazones against Alzheimer’s disease in vitro. Brain Sci 2022; 12(6)
[67]
Orekhova K, Centelleghe C, Di Guardo G, et al. Systematic validation and assessment of immunohistochemical markers for central nervous system pathology in cetaceans, with emphasis on auditory pathways. PLoS One 2022; 17(6): e0269090.
[68]
Tang B, Zeng W, Song LL, et al. Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an Alzheimer’s disease mouse model. Pharmaceuticals (Basel, Switzerland) 2022; 15(1)
[69]
Ullah H, Hussain A, Asif M, Nawaz F, Rasool M. Natural products as bioactive agents in the prevention of dementia. CNS Neurol Disord Drug Targets 2022.
[70]
Xu P, Wu Z, Peng Y, et al. Neuroprotection of Triptolide against Amyloid-Beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated Autophagy Pathway. An Acad Bras Cienc 2022; 94(2): e20210938.
[71]
Maiese K. Apolipoprotein-ε4 allele (APOE-ε4) as a mediator of cognitive loss and dementia in long COVID-19. Curr Neurovasc Res 2022.
[72]
Maiese K. Wnt signaling and WISP1 (CCN4): Critical components in neurovascular disease, blood brain barrier regulation, and cerebral hemorrhage. Curr Neurovasc Res 2022.
[73]
Hua K, Li T, He Y, et al. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 2171636.
[74]
Li JB, Hu XY, Chen MW, et al. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer’s disease. Translat Neurodegenerat 2023; 12(1): 1.
[75]
Ali ES, Mitra K, Akter S, et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22(1): 284.
[76]
Casciano F, Zauli E, Rimondi E, et al. The role of the mTOR pathway in diabetic retinopathy. Front Med (Lausanne) 2022; 9: 973856.
[77]
Liu M, Jiang L, Cao W, Wu J, Chen X. Identification of inhibitors and drug targets for human adenovirus infections. Viruses 2022; 14(5)
[78]
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22(1): 105.
[79]
Temiz-Resitoglu M, Guden DS, Senol SP, et al. Pharmacological inhibition of mammalian target of rapamycin attenuates deoxycorticosterone acetate salt-induced hypertension and related pathophysiology: Regulation of oxidative stress, inflammation, and cardiovascular hypertrophy in male rats. J Cardiovasc Pharmacol 2022; 79(3): 355-67.
[80]
Wu Z, Li H, Zhang Y, Ding C, et al. Liver transcriptome analyses of acute poisoning and recovery of male ICR mice exposed to the mushroom toxin α-amanitin. Arch Toxicol 2022.
[81]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[82]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[83]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regenerat Res 2021; 16(3): 448-55.
[84]
Wang N, Luo Z, Jin M, et al. Exploration of age-related mitochondrial dysfunction and the anti-aging effects of resveratrol in zebrafish retina. Aging (Albany NY) 2019; 11(10): 3117-37.
[85]
Xu T, Liu J, Li XR, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 2021.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy