Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Moisturizer and COVID-19: Are We Missing a Trick?

Author(s): Chenna R. Galiveti and Srinivasan Tantravahi*

Volume 4, Issue 1, 2023

Published on: 27 April, 2023

Article ID: e300323215157 Pages: 9

DOI: 10.2174/2666796704666230330083413

Price: $65

Abstract

Corona Virus Disease 2019 (COVID-19) is reported to be transmitted predominantly by respiratory droplets and fomites. The regular use of a mask can mitigate the airborne transmission of the Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2), but comprehensive prevention of the virus is possible only when the contact spread of the virus is also addressed. The recommended use of soap and hand sanitizer (alcoholic hand rub) is effective only until subsequent contact with the virus. Furthermore, regular and repeated application of these disinfectants is impractical and harmful to the skin. The damage to the outermost epidermal layers of the skin exposes the Angiotensin-converting enzyme 2 (ACE2) receptor rich keratinocytes, enhancing the scope for percutaneous transmission of virus. Moisturizers, composed of fatty acids, fatty alcohols, mineral oils, petrolatum, etc., are generally considered cosmetics used to maintain and enhance skin condition. At very low concentrations, several of these components are found to neutralize enveloped viruses, indicating their potential antiviral activity. Soaps also generally contain many of these constituents, making them effective against viruses. Petrolatum, a key component of occlusive moisturizers, is also said to enhance innate immunity. Additionally, moisturizers also alleviate inflammation and prevent skin dryness and damage. The periodic and regular application of an appropriate moisturizer on hand and palm can play a significant role in curtailing the transmission of infectious agents, including (SARS-CoV-2), and could act as an extra line of defense against microbial infections.

Graphical Abstract

[1]
Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 2020, 176, 104742.
[http://dx.doi.org/10.1016/j.antiviral.2020.104742] [PMID: 32057769]
[2]
Zhu, N.; Zhang, D.; Wang, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[3]
Wrapp, D.; Wang, N.; Corbett, K.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[4]
Kutter, J.S.; Spronken, M.I.; Fraaij, P.L.; Fouchier, R.A.M.; Herfst, S. Transmission routes of respiratory viruses among humans. Curr. Opin. Virol., 2018, 28, 142-151.
[http://dx.doi.org/10.1016/j.coviro.2018.01.001] [PMID: 29452994]
[5]
World Health Organization (WHO). Transmission of SARS-CoV-2: Implications for infection prevention precautions. 2020. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
[6]
World Health Organization WHO. Modes of transmission of virus causing COVID-19: Implications for IPC precaution recommendations. 2020. Available from: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-COVID-19-implications-for-ipc-precaution-recommendations
[7]
Conly, J.; Seto, W.H.; Pittet, D.; Holmes, A.; Chu, M.; Hunter, P.R. Use of medical face masks versus particulate respirators as a component of personal protective equipment for health care workers in the context of the COVID-19 pandemic. Antimicrob. Resist. Infect. Control, 2020, 9(1), 1-7.
[PMID: 31908772]
[8]
Meiksin, A. Dynamics of COVID-19 transmission including indirect transmission mechanisms: A mathematical analysis. Epidemiol. Infect., 2020, 148, e257.
[http://dx.doi.org/10.1017/S0950268820002563] [PMID: 33092672]
[9]
Behzadinasab, S.; Chin, A.W.H.; Hosseini, M.; Poon, L.L.M.; Ducker, W.A. SARS-CoV-2 virus transfers to skin through contact with contaminated solids. Sci. Rep., 2021, 11(1), 22868.
[http://dx.doi.org/10.1038/s41598-021-00843-0] [PMID: 34819522]
[10]
Rosenke, K.; Meade-White, K.; Letko, M. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect., 2020, 9(1), 2673-2684.
[http://dx.doi.org/10.1080/22221751.2020.1858177] [PMID: 33251966]
[11]
Kwok, Y.L.A.; Gralton, J.; McLaws, M.L. Face touching: A frequent habit that has implications for hand hygiene. Am. J. Infect. Control, 2015, 43(2), 112-114.
[http://dx.doi.org/10.1016/j.ajic.2014.10.015] [PMID: 25637115]
[12]
van Doremalen, N.; Bushmaker, T.; Morris, D.H. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[13]
Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect., 2020, 104(3), 246-251.
[http://dx.doi.org/10.1016/j.jhin.2020.01.022] [PMID: 32035997]
[14]
Riddell, S.; Goldie, S.; Hill, A.; Eagles, D.; Drew, T.W. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol. J., 2020, 17(1), 145.
[http://dx.doi.org/10.1186/s12985-020-01418-7] [PMID: 33028356]
[15]
Rusin, P.; Maxwell, S.; Gerba, C. Comparative surface-to-hand and fingertip-to-mouth transfer efficiency of gram-positive bacteria, gram-negative bacteria, and phage. J. Appl. Microbiol., 2002, 93(4), 585-592.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01734.x] [PMID: 12234341]
[16]
Woo, P.C.; Huang, Y.; Lau, S.K.; Yuen, K.Y. Coronavirus genomics and bioinformatics analysis. Viruses, 2010, 2(8), 1804-1820.
[17]
Horowitz, B.; Wiebe, M.E.; Lippin, A.; Stryker, M.H. Inactivation of viruses in labile blood derivatives. I. Disruption of lipid-enveloped viruses by tri(n-butyl)phosphate detergent combinations. Transfusion, 1985, 25(6), 516-522.
[http://dx.doi.org/10.1046/j.1537-2995.1985.25686071422.x] [PMID: 3934801]
[18]
Korneyeva, M.; Hotta, J.; Lebing, W.; Rosenthal, R.S.; Franks, L.; Petteway, S.R., Jr Enveloped virus inactivation by caprylate: A robust alternative to solvent-detergent treatment in plasma derived intermediates. Biologicals, 2002, 30(2), 153-162.
[http://dx.doi.org/10.1006/biol.2002.0334] [PMID: 12127317]
[19]
Lavelle, G.C.; Gubbe, S.L.; Neveaux, J.L.; Bowden, B.J. Evaluation of an antimicrobial soap formula for virucidal efficacy in vitro against human immunodeficiency virus in a blood-virus mixture. Antimicrob. Agents Chemother., 1989, 33(12), 2034-2036.
[http://dx.doi.org/10.1128/AAC.33.12.2034] [PMID: 2619271]
[20]
Grayson, M.L.; Melvani, S.; Druce, J. Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers. Clin. Infect. Dis., 2009, 48(3), 285-291.
[http://dx.doi.org/10.1086/595845] [PMID: 19115974]
[21]
Liu, P.; Yuen, Y.; Hsiao, H.M.; Jaykus, L.A.; Moe, C. Effectiveness of liquid soap and hand sanitizer against Norwalk virus on contaminated hands. Appl. Environ. Microbiol., 2010, 76(2), 394-399.
[http://dx.doi.org/10.1128/AEM.01729-09] [PMID: 19933337]
[22]
Recommendations to Member States to improve hand hygiene practices to help prevent the transmission of the COVID-19 virus: Interim guidance World Health Organization 2020.
[23]
Lodén, M. The clinical benefit of moisturizers. J. Eur. Acad. Dermatol. Venereol., 2005, 19(6), 672-688.
[http://dx.doi.org/10.1111/j.1468-3083.2005.01326.x] [PMID: 16268870]
[24]
Lodén, M. Effect of moisturizers on epidermal barrier function. Clin. Dermatol., 2012, 30(3), 286-296.
[http://dx.doi.org/10.1016/j.clindermatol.2011.08.015] [PMID: 22507043]
[25]
Elias, P.M.; Wakefield, J.S.; Man, M.Q. Moisturizers versus current and next-generation barrier repair therapy for the management of atopic dermatitis. Skin Pharmacol. Physiol., 2019, 32(1), 1-7.
[http://dx.doi.org/10.1159/000493641] [PMID: 30336483]
[26]
Purnamawati, S.; Indrastuti, N.; Danarti, R.; Saefudin, T. The role of moisturizers in addressing various kinds of dermatitis: A review. Clin. Med. Res., 2017, 15(3-4), 75-87.
[http://dx.doi.org/10.3121/cmr.2017.1363] [PMID: 29229630]
[27]
Sarkar, N.H.; Charney, J.; Dion, A.S.; Moore, D.H. Effect of human milk on the mouse mammary tumor virus. Cancer Res., 1973, 33(3), 626-629.
[PMID: 4120354]
[28]
Thormar, H.; Isaacs, C.E.; Brown, H.R.; Barshatzky, M.R.; Pessolano, T. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides. Antimicrob. Agents Chemother., 1987, 31(1), 27-31.
[http://dx.doi.org/10.1128/AAC.31.1.27] [PMID: 3032090]
[29]
Cameron, P.U.; Pagnon, J.C.; van Baare, J.; Reece, J.C.; Vardaxis, N.J.; Crowe, S.M. Efficacy and kinetics of glycerol inactivation of HIV-1 in split skin grafts. J. Med. Virol., 2000, 60(2), 182-188.
[http://dx.doi.org/10.1002/(SICI)1096-9071(200002)60:2<182:AID-JMV13>3.0.CO;2-Y] [PMID: 10596019]
[30]
Tuyama, A.C.G.; Cheshenko, N.; Carlucci, M.J. ACIDFORM inactivates herpes simplex virus and prevents genital herpes in a mouse model: Optimal candidate for microbicide combinations. J. Infect. Dis., 2006, 194(6), 795-803.
[http://dx.doi.org/10.1086/506948] [PMID: 16941346]
[31]
Hilmarsson, H.; Traustason, B.S.; Kristmundsdóttir, T.; Thormar, H. Virucidal activities of medium and long-chain fatty alcohols and lipids against respiratory syncytial virus and parainfluenza virus type 2: Comparison at different pH levels. Arch. Virol., 2007, 152(12), 2225-2236.
[http://dx.doi.org/10.1007/s00705-007-1063-5] [PMID: 17891329]
[32]
Conti, C.; Malacrino, C.; Mastromarino, P. Inhibition of herpes simplex virus type 2 by vaginal lactobacilli. J. Physiol. Pharmacol., 2009, 60(Suppl. 6), 19-26.
[PMID: 20224147]
[33]
Czarnowicki, T.; Malajian, D.; Khattri, S. Petrolatum: Barrier repair and antimicrobial responses underlying this “inert” moisturizer. J. Allergy Clin. Immunol., 2016, 137(4), 1091-1102.e7.
[http://dx.doi.org/10.1016/j.jaci.2015.08.013] [PMID: 26431582]
[34]
Flasiński, M.; Gawryś, M.; Broniatowski, M.; Wydro, P. Studies on the interactions between parabens and lipid membrane components in monolayers at the air/aqueous solution interface. Biochim. Biophys. Acta Biomembr., 2016, 1858(4), 836-844.
[http://dx.doi.org/10.1016/j.bbamem.2016.01.002] [PMID: 26777770]
[35]
Dréno, B.; Zuberbier, T.; Gelmetti, C.; Gontijo, G.; Marinovich, M. Safety review of phenoxyethanol when used as a preservative in cosmetics. J. Eur. Acad. Dermatol. Venereol., 2019, 33(Suppl. 7), 15-24.
[http://dx.doi.org/10.1111/jdv.15944] [PMID: 31588615]
[36]
Fransway, A.F.; Fransway, P.J.; Belsito, D.V. Parabens. Dermatitis, 2019, 30(1), 3-31.
[http://dx.doi.org/10.1097/DER.0000000000000429] [PMID: 30570578]
[37]
Snipes, W.; Person, S.; Keller, G.; Taylor, W.; Keith, A. Inactivation of lipid-containing viruses by long-chain alcohols. Antimicrob. Agents Chemother., 1977, 11(1), 98-104.
[http://dx.doi.org/10.1128/AAC.11.1.98] [PMID: 189684]
[38]
Rey, F.A.; Lok, S.M. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell, 2018, 172(6), 1319-1334.
[http://dx.doi.org/10.1016/j.cell.2018.02.054] [PMID: 29522750]
[39]
Kwon, T.; Gaudreault, N.N.; Richt, J.A. Environmental stability of SARS-CoV-2 on different types of surfaces under indoor and seasonal climate conditions. Pathogens, 2021, 10(2), 227.
[http://dx.doi.org/10.3390/pathogens10020227] [PMID: 33670736]
[40]
Harbourt, D.E.; Haddow, A.D.; Piper, A.E. Modeling the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on skin, currency, and clothing. PLoS Negl. Trop. Dis., 2020, 14(11), e0008831.
[http://dx.doi.org/10.1371/journal.pntd.0008831] [PMID: 33166294]
[41]
Hirose, R.; Itoh, Y.; Ikegaya, H. Differences in environmental stability among SARS-CoV-2 variants of concern: Omicron has higher stability. bioRxiv, , 2022.01.18.476607.
[http://dx.doi.org/10.1101/2022.01.18.476607]
[42]
Ijaz, M.K.; Nims, R.W.; de Szalay, S.; Rubino, J.R. Soap, water, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an ancient handwashing strategy for preventing dissemination of a novel virus. PeerJ, 2021, 9, e12041.
[http://dx.doi.org/10.7717/peerj.12041] [PMID: 34616601]
[43]
Xue, X.; Mi, Z.; Wang, Z.; Pang, Z.; Liu, H.; Zhang, F. High expression of ACE2 on keratinocytes reveals skin as a potential target for SARS-CoV-2. J. Invest. Dermatol., 2021, 141(1), 206-209.e1.
[http://dx.doi.org/10.1016/j.jid.2020.05.087] [PMID: 32454066]
[44]
Yan, Y.; Chen, H.; Chen, L. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health-care workers fighting against coronavirus disease 2019. Dermatol. Ther., 2020, 33(4), e13310.
[http://dx.doi.org/10.1111/dth.13310] [PMID: 32170800]
[45]
Ghadially, R.; Halkier-Sorensen, L.; Elias, P.M. Effects of petrolatum on stratum corneum structure and function. J. Am. Acad. Dermatol., 1992, 26(3), 387-396.
[http://dx.doi.org/10.1016/0190-9622(92)70060-S] [PMID: 1564142]
[46]
Rawlings, A.; Sabin, R.; Harding, C.; Watkinson, A.; Banks, J.; Ackerman, C. The effect of glycerol and humidity on desmosome degradation in stratum corneum. Arch. Dermatol. Res., 1995, 287(5), 457-464.
[http://dx.doi.org/10.1007/BF00373429] [PMID: 7625857]
[47]
Froebe, C.L. Prevention of stratum corneum lipid phase transitions in vitro by glycerol-An alternative mechanism for skin moisturization. J. Soc. Cosmet. Chem., 1990, 41, 51-65.
[48]
Mattai, J.; Froebe, C.L.; Rhein, L.D.; Simion, F.A.; Ohlmeyer, H.; Su, D.T. Prevention of model stratum corneum lipid phase transitions in vitro by cosmetic additives: Differential scanning calorimetry, optical microscopy, and water evaporation studies. J. Soc. Cosmet. Chem., 1993, 44(2), 89-100.
[49]
Furrer, P. The central role of excipients in drug formulation. Eur Pharmaceut Rev, 2013, 18(2), 67-70.
[50]
Juncan, A.M.; Rus, L.L.; Craciun, V.I.; Tincu, A.L.V.; Morgovan, C. Application of a multifunctional additive in cosmetic preparations for safe preservation. Revis Chim, 2019, 70(7), 2429-2433.
[http://dx.doi.org/10.37358/RC.19.7.7355]
[51]
Hart, J.R. EDTA-type chelating agents in everyday consumer products: Some medicinal and personal care products. J. Chem. Educ., 1984, 61(12), 1060.
[http://dx.doi.org/10.1021/ed061p1060]
[52]
Kleinlein, E.F.; Hauser, M.; Stetten, O.; Biehl, P. Cosmetic and pharmaceutical compositions and their use. US Patent 0052826A1, 2004.
[53]
Nahas, R.; Chadwick, L.; Berdahl, D. Compositions and methods for enhancing the stability of foods, beverages, nutritional supplements and cosmetics. US Patent 0197812A1, 2010.
[54]
Siegert, W. Boosting the antimicrobial efficiency of multifunctional additives by chelating agents. Int J Appl Sci, 2014, 140, 1-6.
[55]
Sands, J.; Auperin, D.; Snipes, W. Extreme sensitivity of enveloped viruses, including herpes simplex, to long-chain unsaturated monoglycerides and alcohols. Antimicrob. Agents Chemother., 1979, 15(1), 67-73.
[http://dx.doi.org/10.1128/AAC.15.1.67] [PMID: 218499]
[56]
Sands, J.A.; Landin, P.; Auperin, D.; Reinhardt, A. Enveloped virus inactivation by fatty acid derivatives. Antimicrob. Agents Chemother., 1979, 15(1), 134-136.
[http://dx.doi.org/10.1128/AAC.15.1.134] [PMID: 218498]
[57]
Fletcher, N.F.; Meredith, L.W.; Tidswell, E.L. A novel antiviral formulation inhibits a range of enveloped viruses. J. Gen. Virol., 2020, 101(10), 1090-1102.
[http://dx.doi.org/10.1099/jgv.0.001472] [PMID: 32692647]
[58]
Das, U.N. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch. Med. Res., 2020, 51(3), 282-286.
[http://dx.doi.org/10.1016/j.arcmed.2020.03.004] [PMID: 32229155]
[59]
Juers, J.A.; Rogers, R.M.; McCurdy, J.B.; Cook, W.W. Enhancement of bactericidal capacity of alveolar macrophages by human alveolar lining material. J. Clin. Invest., 1976, 58(2), 271-275.
[http://dx.doi.org/10.1172/JCI108468] [PMID: 956366]
[60]
Hilmarsson, H.; Kristmundsdóttir, T.; Thormar, H. Virucidal activities of medium- and long-chain fatty alcohols, fatty acids and monoglycerides against herpes simplex virus types 1 and 2: Comparison at different pH levels. Acta Pathol Microbiol Scand Suppl, 2005, 113(1), 58-65.
[http://dx.doi.org/10.1111/j.1600-0463.2005.apm1130109.x] [PMID: 15676016]
[61]
Goc, A.; Niedzwiecki, A.; Rath, M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci. Rep., 2021, 11(1), 5207.
[http://dx.doi.org/10.1038/s41598-021-84850-1] [PMID: 33664446]
[62]
Toelzer, C.; Gupta, K.; Yadav, S.K.N. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, 2020, 370(6517), 725-730.
[http://dx.doi.org/10.1126/science.abd3255] [PMID: 32958580]
[63]
Vivar-Sierra, A.; Araiza-Macías, M.J.; Hernández-Contreras, J.P. In silico study of polyunsaturated fatty acids as potential SARS-CoV-2 spike protein closed conformation stabilizers: Epidemiological and computational approaches. Molecules, 2021, 26(3), 711.
[http://dx.doi.org/10.3390/molecules26030711] [PMID: 33573088]
[64]
van Baare, J.; Buitenwerf, J.; Hoekstra, M.J.; du Pont, J.S. Virucidal effect of glycerol as used in donor skin preservation. Burns, 1994, 20(Suppl. 1), S77-S80.
[http://dx.doi.org/10.1016/0305-4179(94)90096-5] [PMID: 8198750]
[65]
Marshall, L.; Ghosh, M.M.; Boyce, S.G.; MacNeil, S.; Freedlander, E.; Kudesia, G. Effect of glycerol on intracellular virus survival: Implications for the clinical use of glycerol-preserved cadaver skin. Burns, 1995, 21(5), 356-361.
[http://dx.doi.org/10.1016/0305-4179(95)00006-2] [PMID: 7546258]
[66]
Takeda, Y.; Jamsransuren, D.; Makita, Y. Inactivation of SARS-CoV-2 by ozonated glycerol. Food Environ. Virol., 2021, 13(3), 316-321.
[http://dx.doi.org/10.1007/s12560-021-09485-x] [PMID: 34173934]
[67]
Martin, L.S.; McDougal, J.S.; Loskoski, S.L. Disinfection and inactivation of the human T lymphotropic virus type III/Lymphadenopathy-associated virus. J. Infect. Dis., 1985, 152(2), 400-403.
[http://dx.doi.org/10.1093/infdis/152.2.400] [PMID: 2993438]
[68]
Fox, P.S.; Pedersen, D.E.; Rolando, J.J.; Staub, R.K. Compositions having a high antiviral efficacy. US Patent 8034844B2, 2011.
[69]
Lowe, I.; Southern, J. The antimicrobial activity of phenoxyethanol in vaccines. Lett. Appl. Microbiol., 1994, 18(2), 115-116.
[http://dx.doi.org/10.1111/j.1472-765X.1994.tb00820.x] [PMID: 7764595]
[70]
Furuya, A.; Uozaki, M.; Yamasaki, H.; Arakawa, T.; Arita, M.; Koyama, A.H. Antiviral effects of ascorbic and dehydroascorbic acids in vitro. Int. J. Mol. Med., 2008, 22(4), 541-545.
[PMID: 18813862]
[71]
Uozaki, M.; Ikeda, K.; Tsujimoto, K. Antiviral effects of dehydroascorbic acid. Exp. Ther. Med., 2010, 1(6), 983-986.
[http://dx.doi.org/10.3892/etm.2010.139] [PMID: 22993629]
[72]
Jawad, M.A.; Kadhim, A.J. Ascorbic Acid as an inhibitor for SARS-CoV-2 virus reproduction: A theoretical approach. J. Commun. Dis., 2021, 53(3), 181-185.
[73]
Drannik, A.G.; Nag, K.; Yao, X.D. Anti-HIV-1 activity of elafin depends on its nuclear localization and altered innate immune activation in female genital epithelial cells. PLoS One, 2012, 7(12), e52738.
[http://dx.doi.org/10.1371/journal.pone.0052738] [PMID: 23300756]
[74]
Drannik, A.G.; Nag, K.; Sallenave, J.M.; Rosenthal, K.L. Antiviral activity of trappin-2 and elafin in vitro and in vivo against genital herpes. J. Virol., 2013, 87(13), 7526-7538.
[http://dx.doi.org/10.1128/JVI.02243-12] [PMID: 23637403]
[75]
Sun, L.; Finnegan, C.M.; Kish-Catalone, T. Human β-defensins suppress human immunodeficiency virus infection: Potential role in mucosal protection. J. Virol., 2005, 79(22), 14318-14329.
[http://dx.doi.org/10.1128/JVI.79.22.14318-14329.2005] [PMID: 16254366]
[76]
Kim, J.; Yang, Y.L.; Jang, S.H.; Jang, Y.S. Human β-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol. J., 2018, 15(1), 124.
[http://dx.doi.org/10.1186/s12985-018-1035-2] [PMID: 30089512]
[77]
Kota, S.; Sabbah, A.; Chang, T.H. Role of human β-defensin-2 during tumor necrosis factor-α/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus. J. Biol. Chem., 2008, 283(33), 22417-22429.
[http://dx.doi.org/10.1074/jbc.M710415200] [PMID: 18567888]
[78]
Kim, J.; Yang, Y.L.; Jang, Y.S. Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages. Immunobiology, 2019, 224(4), 502-510.
[http://dx.doi.org/10.1016/j.imbio.2019.05.004] [PMID: 31126693]
[79]
Yaghmouri, P.; Abdolahi, A.; Sedighiani, F. Petroleum jelly and COVID-19 prevention. Bratisl. Lek Listy, 2022, 123(6), 455-456.
[PMID: 35576549]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy