Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

In silico Evaluation and Neuroprotective Effect of Jasmonic Acid on Sleep Deprivation Induced Alzheimer’s in Zebrafish

Author(s): Tamilanban Thamaraikani*, Vijay Babu Anandan, Manasa Karnam, Manimaran Vasanthan and Gayathiri Kichenamurthy

Volume 19, Issue 7, 2023

Published on: 20 April, 2023

Article ID: e270323215019 Pages: 12

DOI: 10.2174/1573407219666230327164431

Price: $65

Abstract

Background: Disturbances in the sleep cycle have been often associated with the depletion of oxidant enzymes and deposition of beta-amyloid plaques leading to neurodegeneration in Alzheimer's disease (AD). Healthy sleep time and sleep cycles were proven to clear the betaamyloid out of the brain and also promote the synthesis and functions of anti-oxidant enzymes.

Objective: Jasmonic acid was evaluated to enhance the cognition and acetylcholine enzyme in the sleep deprivation-induced Alzheimer's by using the zebrafish model.

Methods: The molecular properties, bioactivity score, and pharmacokinetic parameters of jasmonic acid were predicted using Molinspiration, SwissADME, and PreADMET tools. Jasmonic acid obeys Lipinski's rule and has significant bioavailability and blood-brain barrier penetration. The prediction of binding energy and interactions of jasmonic acid with six selected receptors was performed using AutoDock 4.2 software. It has significant binding affinity and interactions with different receptors which predict a multi-target potential using in-silico studies. In vivo neurobehavioral analysis of jasmonic acid was performed with zebrafish by using T-maze, Y-maze, and inhibitory avoidance apparatus and the results reveal Jasmonic acid produces more memory retention in zebrafish. In vitro assays of jasmonic acid on acetylcholinesterase enzyme level, glucose level, catalase activity, and lipid peroxidation activity were performed. Jasmonic acid shows cholinesterase inhibition, it acts as a good anti-oxidant and increases glucose metabolism on zebra fish brain homogenate using various assays. Jasmonic acid decreases neurodegeneration, and amyloid deposits in zebrafish brains using histopathological studies.

Results: In silico molecular docking studies, in vitro assays, in vivo neurobehavioral analysis and histopathological studies reveal that jasmonic acid showed significant activity against sleep deprivation- induced AD in the zebrafish model.

Conclusion: Hence, jasmonic acid will be carried out for further preclinical and clinical studies in order to prove the same for the management of Alzheimer's disease.

Graphical Abstract

[1]
Kurz, A.; Perneczky, R. Novel insights for the treatment of Alzheimer’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(2), 373-379.
[http://dx.doi.org/10.1016/j.pnpbp.2010.07.018] [PMID: 20655969]
[2]
Gouras, G.K.; Almeida, C.G.; Takahashi, R.H. Intraneuronal Aβ accumulation and origin of plaques in Alzheimer’s disease. Neurobiol. Aging, 2005, 26(9), 1235-1244.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.022] [PMID: 16023263]
[3]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[4]
Müller, U.; Winter, P.; Graeber, M.B. A presenilin 1 mutation in the first case of Alzheimer’s disease. Lancet Neurol., 2013, 12(2), 129-130.
[http://dx.doi.org/10.1016/S1474-4422(12)70307-1] [PMID: 23246540]
[5]
Law, L.L.; Sprecher, K.E.; Dougherty, R.J.; Edwards, D.F.; Koscik, R.L.; Gallagher, C.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Asthana, S.; Sager, M.A.; Hermann, B.P.; Johnson, S.C.; Cook, D.B.; Bendlin, B.B.; Okonkwo, O.C. Cardiorespiratory fitness modifies influence of sleep problems on CSF biomarkers in an at-risk cohort. J. Alzheimers Dis., 2019, 69(1), 111-121.
[http://dx.doi.org/10.3233/JAD-180291] [PMID: 30958346]
[6]
Sprecher, K.E.; Koscik, R.L.; Carlsson, C.M.; Zetterberg, H.; Blennow, K.; Okonkwo, O.C.; Sager, M.A.; Asthana, S.; Johnson, S.C.; Benca, R.M.; Bendlin, B.B. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology, 2017, 89(5), 445-453.
[http://dx.doi.org/10.1212/WNL.0000000000004171] [PMID: 28679595]
[7]
Umukoro, S.; Akinyinka, A.O.; Aladeokin, A.C. Antidepressant activity of methyl jasmonate, a plant stress hormone in mice. Pharmacol. Biochem. Behav., 2011, 98(1), 8-11.
[http://dx.doi.org/10.1016/j.pbb.2010.12.001] [PMID: 21145342]
[8]
Alexiades, M. Jasmonates and tetrahydrojasmonic acid: A novel class of anti-aging molecules. J. Drugs Dermatol., 2016, 15(2), 206-207.
[PMID: 26885789]
[9]
Hossain, S.J.; Aoshima, H.; Koda, H.; Kiso, Y. Fragrances in oolong tea that enhance the response of GABAA receptors. Biosci. Biotechnol. Biochem., 2004, 68(9), 1842-1848.
[http://dx.doi.org/10.1271/bbb.68.1842] [PMID: 15388958]
[10]
Khare, N.; Maheshwari, S.K.; Jha, A.K. Screening and identification of secondary metabolites in the bark of Bauhinia variegata to treat Alzheimer’s disease by using molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn., 2021, 39(16), 5988-5998.
[http://dx.doi.org/10.1080/07391102.2020.1796798] [PMID: 32720564]
[11]
Divyashri, G.; Krishna Murthy, T.P.; Sundareshan, S.; Kamath, P.; Murahari, M.; Saraswathy, G.R.; Sadanandan, B. In silico approach towards the identification of potential inhibitors from Curcuma amada Roxb against H. pylori: ADMET screening and molecular docking studies. Bioimpacts, 2020, 11(2), 119-127.
[http://dx.doi.org/10.34172/bi.2021.19] [PMID: 33842282]
[12]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[13]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[14]
Khamkar, T.; Abhyankar, M.; Tendulkar, G.; Khanna, G.; Krishnan, K. In silico molecular docking of marine drugs against cancer proteins. Adv. Chem. Sci., 2013, 1(3), 28-31.
[15]
Costa, A.; Pereira, T. The effects of sleep deprivation on cognitive performance. Eur. J. Public Health, 2019, 29(1)(Suppl. 1)
[http://dx.doi.org/10.1093/eurpub/ckz034.096]
[16]
Bailey, J.M.; Oliveri, A.N.; Levin, E.D. Pharmacological analyses of learning and memory in zebrafish (Danio rerio). Pharmacol. Biochem. Behav., 2015, 139(0 0), 103-111.
[http://dx.doi.org/10.1016/j.pbb.2015.03.006] [PMID: 25792292]
[17]
Cole, G.J.; Zhang, C.; Ojiaku, P.; Bell, V.; Devkota, S.; Mukhopadhyay, S. Effects of ethanol exposure on nervous system development in zebrafish. Int. Rev. Cell Mol. Biol., 2012, 299, 255-315.
[http://dx.doi.org/10.1016/B978-0-12-394310-1.00007-2] [PMID: 22959306]
[18]
Collier, A.D.; Echevarria, D.J. The utility of the zebrafish model in conditioned place preference to assess the rewarding effects of drugs. Behav. Pharmacol., 2013, 24(5 and 6), 375-383.
[http://dx.doi.org/10.1097/FBP.0b013e328363d14a] [PMID: 23811781]
[19]
Pohanka, M.; Hrabinova, M.; Kuca, K.; Simonato, J.P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman’s method. Int. J. Mol. Sci., 2011, 12(4), 2631-2640.
[http://dx.doi.org/10.3390/ijms12042631] [PMID: 21731462]
[20]
Kumar, V.P.; Shashidhara, S.; Kumar, M.M.; Sridhara, B.Y. Effect of Luffa echinata on lipid peroxidation and free radical scavenging activity. J. Pharm. Pharmacol., 2010, 52(7), 891-894.
[http://dx.doi.org/10.1211/0022357001774589] [PMID: 10933141]
[21]
Polydoro, M.; Schröder, N.; Lima, M.N.M.; Caldana, F.; Laranja, D.C.; Bromberg, E.; Roesler, R.; Quevedo, J.; Moreira, J.C.F.; Dal-Pizzol, F. Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol. Biochem. Behav., 2004, 78(4), 751-756.
[http://dx.doi.org/10.1016/j.pbb.2004.05.018] [PMID: 15301931]
[22]
Tranah, G.J.; Blackwell, T.; Stone, K.L.; Ancoli-Israel, S.; Paudel, M.L.; Ensrud, K.E. Circadian activity rhythms and risk of incident dementia and MCI in older women. Ann. Neurol., 2011, 70(5), 722-732.
[http://dx.doi.org/10.1002/ana.22468] [PMID: 22162057]
[23]
Kang, J.E.; Lim, M.M.; Bateman, R.J.; Lee, J.J.; Smyth, L.P.; Cirrito, J.R.; Fujiki, N.; Nishino, S.; Holtzman, D.M. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science, 2009, 326(5955), 1005-1007.
[http://dx.doi.org/10.1126/science.1180962] [PMID: 19779148]
[24]
Fagan, A.M.; Mintun, M.A.; Mach, R.H.; Lee, S.Y.; Dence, C.S.; Shah, A.R.; LaRossa, G.N.; Spinner, M.L.; Klunk, W.E.; Mathis, C.A.; DeKosky, S.T.; Morris, J.C.; Holtzman, D.M. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann. Neurol., 2006, 59(3), 512-519.
[http://dx.doi.org/10.1002/ana.20730] [PMID: 16372280]
[25]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[26]
Spira, A.P.; Gamaldo, A.A.; An, Y.; Wu, M.N.; Simonsick, E.M.; Bilgel, M.; Zhou, Y.; Wong, D.F.; Ferrucci, L.; Resnick, S.M. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurol., 2013, 70(12), 1537-1543.
[http://dx.doi.org/10.1001/jamaneurol.2013.4258] [PMID: 24145859]
[27]
Cesari, I.M.; Carvalho, E.; Figueiredo Rodrigues, M.; Mendonça, B.S.; Amôedo, N.D.; Rumjanek, F.D. Methyl jasmonate: Putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int. J. Cell Biol., 2014, 2014, 1-25.
[http://dx.doi.org/10.1155/2014/572097] [PMID: 24648844]
[28]
Kuroda, K.; Inoue, N.; Ito, Y.; Kubota, K.; Sugimoto, A.; Kakuda, T.; Fushiki, T. Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its major odor components, on autonomic nerve activity and mood states. Eur. J. Appl. Physiol., 2005, 95(2-3), 107-114.
[http://dx.doi.org/10.1007/s00421-005-1402-8] [PMID: 15976995]
[29]
Fingrut, O.; Flescher, E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia, 2002, 16(4), 608-616.
[http://dx.doi.org/10.1038/sj.leu.2402419] [PMID: 11960340]
[30]
Raviv, Z.; Zilberberg, A.; Cohen, S.; Reischer-Pelech, D.; Horrix, C.; Berger, M.R.; Rosin-Arbesfeld, R.; Flescher, E. Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity. Br. J. Pharmacol., 2011, 164(5), 1433-1444.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01419.x] [PMID: 21486277]
[31]
Solomon, U.; Taghogho, E.A. Methyl jasmonate attenuates memory dysfunction and decreases brain levels of biomarkers of neuroinflammation induced by lipopolysaccharide in mice. Brain Res. Bull., 2017, 131, 133-141.
[http://dx.doi.org/10.1016/j.brainresbull.2017.04.002] [PMID: 28411132]
[32]
Umukoro, S.; Aluko, O.M.; Eduviere, A.T.; Owoeye, O. Evaluation of adaptogenic-like property of methyl jasmonate in mice exposed to unpredictable chronic mild stress. Brain Res. Bull., 2016, 121, 105-114.
[http://dx.doi.org/10.1016/j.brainresbull.2015.11.016] [PMID: 26592471]
[33]
Spira, A.P.; Chen-Edinboro, L.P.; Wu, M.N.; Yaffe, K. Impact of sleep on the risk of cognitive decline and dementia. Curr. Opin. Psychiatry, 2014, 27(6), 478-483.
[http://dx.doi.org/10.1097/YCO.0000000000000106] [PMID: 25188896]
[34]
Petit, J.M.; Gyger, J.; Burlet-Godinot, S.; Fiumelli, H.; Martin, J.L.; Magistretti, P.J. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice. Sleep, 2013, 36(10), 1445-1458.
[http://dx.doi.org/10.5665/sleep.3034] [PMID: 24082304]
[35]
Dash, M.B.; Douglas, C.L.; Vyazovskiy, V.V.; Cirelli, C.; Tononi, G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J. Neurosci., 2009, 29(3), 620-629.
[http://dx.doi.org/10.1523/JNEUROSCI.5486-08.2009] [PMID: 19158289]
[36]
Schneider, J.A.; Arvanitakis, Z.; Leurgans, S.E.; Bennett, D.A. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann. Neurol., 2009, 66(2), 200-208.
[http://dx.doi.org/10.1002/ana.21706] [PMID: 19743450]
[37]
Solito, R.; Chen, C-H.; Mochly-Rosen, D.; Giachetti, A.; Ziche, M.; Donnini, S.; Donnini, S. Mitochondrial aldehyde dehydrogenase- 2 activation prevents β-amyloids induced endothelial cell dysfunction and restores angiogenesis. J. Cell Sci., 2013, 126(Pt 9), jcs.117184.
[http://dx.doi.org/10.1242/jcs.117184] [PMID: 23447675]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy