Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

An Overview on Sources, Biosynthesis and Bioactivities of Osthole: A Potential Bioactive Compound

Author(s): Gurdeep Singh* and Mukesh Kr. Singh

Volume 19, Issue 8, 2023

Published on: 04 May, 2023

Article ID: e210323214828 Pages: 15

DOI: 10.2174/1573407219666230321144827

Price: $65

Abstract

Different plants are rich in medicinal properties, which nature has provided in abundance for the living beings of this earth. Since the dawn of time, nature has proven to be a rich source of bioactive scaffolds that have been exploited in the creation of pharmaceuticals. Osthole is a natural coumarin derivative and potential bioactive compound found in plants. Herein, we aimed to review the origins, biology and pharmacological profiles of osthole, a plant-derived coumarin that is found in a variety of therapeutic plants, including Cnidium monnieri. Osthole, also called 7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one, is a naturally occurring coumarin found to be present in different plants of the Apiaceae family, i.e., Cnidium monnieri and Angelica pubescens. The biological potential of the osthole in medicine has been investigated using a variety of literature databases. This study gathered diverse scientific research data on osthole from various literature sources and analysed, including Scopus, Google Scholar, Web of Science and PubMed. From the collected data, it was found that osthole have potential pharmacological activities, such as anticancer, antioxidant, osteogenic, cardioprotective, antimicrobial, antiparasitic, anti-hyperglycaemic, neuroprotective, and antiplatelet. The data in this review paper supports the pharmacological potential of osthole, but to completely appreciate the pharmacological potential of this therapeutically powerful chemical, researchers must focus their efforts on further experimentation, biosafety profiling and synergistic effects of this compound. The purpose of this study was to learn more about the origins, biology, and therapeutic benefits of osthole in medicine in order to develop better treatments for human diseases.

Graphical Abstract

[1]
Kingston, D.G.I. Modern natural products drug discovery and its relevance to biodiversity conservation. J. Nat. Prod., 2011, 74(3), 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[2]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[3]
Hoult, J.R.S.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol., 1996, 27(4), 713-722.
[http://dx.doi.org/10.1016/0306-3623(95)02112-4] [PMID: 8853310]
[4]
You, L.; Feng, S.; An, R.; Wang, X. Osthole: a promising lead compound for drug discovery from a traditional Chinese medicine (TCM). Nat. Prod. Commun., 2009, 4(2), 1934578X0900400.
[http://dx.doi.org/10.1177/1934578X0900400227] [PMID: 19370943]
[5]
Liu, G.L.; Hao, B.; Liu, S.P.; Wang, G.X. Synthesis and anthelmintic activity of osthol analogs against Dactylogyrus intermedius in goldfish. Eur. J. Med. Chem., 2012, 54, 582-590.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.009] [PMID: 22749191]
[6]
Zheng, H.; Chen, Y.; Guo, Q.; Wei, H.; Yue, J.; Zhou, H.; Zhao, M. Inhibitory effect of osthole from Cnidium monnieri (L.) Cusson on Fusarium oxysporum, a common fungal pathogen of potato. Molecules, 2021, 26(13), 3818.
[http://dx.doi.org/10.3390/molecules26133818] [PMID: 34201482]
[7]
Shu, G.Z.; Chao, G.L.; Yue, Q.S.; Peng, T.; Jia, Q.W.; Wei, H.Z. Design, synthesis and antifungal activities of novel pyrrole and pyrazole-substituted coumarin derivatives. Mol. Divers., 2019, 23(4), 915-925.
[http://dx.doi.org/10.1007/s11030-019-09920-z]
[8]
Fan, H.; Gao, Z.; Ji, K.; Li, X.; Wu, J.; Liu, Y.; Wang, X.; Liang, H.; Liu, Y.; Li, X.; Liu, P.; Chen, D.; Zhao, F. The in vitro and in vivo anti-inflammatory effect of osthole, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-κB and MAPK/p38 pathways. Phytomedicine, 2019, 58, 152864.
[http://dx.doi.org/10.1016/j.phymed.2019.152864] [PMID: 30878874]
[9]
Luszczki, J.J.; Andres-Mach, M.; Cisowski, W.; Mazol, I.; Glowniak, K.; Czuczwar, S.J. Osthole suppresses seizures in the mouse maximal electroshock seizure model. Eur. J. Pharmacol., 2009, 607(1-3), 107-109.
[http://dx.doi.org/10.1016/j.ejphar.2009.02.022] [PMID: 19236860]
[10]
Callahan, B.N.; Kammala, A.K.; Syed, M.; Yang, C.; Occhiuto, C.J.; Nellutla, R.; Chumanevich, A.P.; Oskeritzian, C.A.; Das, R.; Subramanian, H. Osthole, a natural plant derivative inhibits MRGPRX2 induced mast cell responses. Front. Immunol., 2020, 11(11), 703.
[http://dx.doi.org/10.3389/fimmu.2020.00703]
[11]
Chiang, C.Y.; Lee, C.C.; Fan, C.K.; Huang, H.M.; Chiang, B.L.; Lee, Y.L. Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell. Mol. Immunol., 2017, 14(11), 935-947.
[http://dx.doi.org/10.1038/cmi.2017.71] [PMID: 28782757]
[12]
Wang, J.; Fu, Y.; Wei, Z.; He, X.; Shi, M.; Kou, J.; Zhou, E.; Liu, W.; Yang, Z.; Guo, C. Anti-asthmatic activity of osthole in an ovalbumin-induced asthma murine model. Respir. Physiol. Neurobiol., 2017, 239, 64-69.
[http://dx.doi.org/10.1016/j.resp.2017.01.011] [PMID: 28143779]
[13]
Li, R.; Song, P.; Tang, G.; Wei, J.; Rao, L.; Ma, L.; Jiang, M.; Huang, J.; Xu, Q.; Wu, J.; Lv, Q.; Yao, D.; Xiao, B.; Huang, H.; Lei, L.; Feng, J.; Mo, B. Osthole attenuates macrophage activation in experimental asthma by inhibiting the NF-ĸB/MIF signaling pathway. Front. Pharmacol., 2021, 12, 572463.
[http://dx.doi.org/10.3389/fphar.2021.572463] [PMID: 33828480]
[14]
Li, Y.; Wang, Y.; Li, Y.; Qian, Z.; Zhu, L.; Yang, D. Osthole attenuates pulmonary arterial hypertension in monocrotaline-treated rats. Mol. Med. Rep., 2017, 16(3), 2823-2829.
[http://dx.doi.org/10.3892/mmr.2017.6876] [PMID: 28677726]
[15]
Yao, L.; Yang, Y.X.; Cao, H.; Ren, H.H.; Niu, Z.; Shi, L. Osthole attenuates pulmonary arterial hypertension by the regulation of sphingosine 1-phosphate in rats. Chin. J. Nat. Med., 2020, 18(4), 308-320.
[http://dx.doi.org/10.1016/S1875-5364(20)30038-8] [PMID: 32402408]
[16]
Jiao, Y.; Kong, L.; Yao, Y.; Li, S.; Tao, Z.; Yan, Y.; Yang, J. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease. Neuropharmacology, 2016, 108, 332-344.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.046] [PMID: 27143098]
[17]
Yilei, S.; Xiangyu, W.; Xingrong, W.; Jianze, W.; Qiulian, H.; Jifu, H.; Xueqin, H. Osthole-Loaded nanoemulsion enhances brain target in the treatment of Alzheimer’s disease via intranasal administration. Oxid. Med. Cell. Long., 2021, 8844455, 1-16.
[http://dx.doi.org/10.1155/2021/8844455]
[18]
Guo, Y.; Liu, Z.; Hou, E.; Ma, N.; Gen, Y.; Che, P.; Yang, R. Application of natural products as insecticide candidates: Semisynthesis and biological evaluation of some novel osthole-based esters. Bioorg. Med. Chem. Lett., 2020, 30(15), 127260.
[http://dx.doi.org/10.1016/j.bmcl.2020.127260] [PMID: 32527454]
[19]
Khairy, H.; Saleh, H.; Badr, A.M.; Marie, M.A.S. Therapeutic efficacy of osthole against dinitrobenzene sulphonic acid induced-colitis in rats. Biomed. Pharmacother., 2018, 100, 42-51.
[http://dx.doi.org/10.1016/j.biopha.2018.01.104] [PMID: 29421581]
[20]
Lovedeep, S.; Anudeep, K.; Saweta, G.; Rajbir, B. Skimmetin/osthole mitigates pain-depression dyad via inhibiting inflammatory and oxidative stress-mediated neurotransmitter dysregulation. Metab. Brain Dis., 2021, 36(1), 111-121.
[http://dx.doi.org/10.1007/s11011-020-00604-4] [PMID: 32870425]
[21]
Lee, Y.Y.; Lee, S.; Jin, J.L.; Yun-Choi, H.S. Platelet anti-aggregatory effects of coumarins from the roots of Angelica genuflexa and A. gigas. Arch. Pharm. Res., 2003, 26(9), 723-726.
[http://dx.doi.org/10.1007/BF02976681] [PMID: 14560920]
[22]
Fujioka, T.; Furumi, K.; Fujii, H.; Okabe, H.; Mihashi, K.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproliferative constituents from umbelliferae plants. V. A new furanocoumarin and falcarindiol furanocoumarin ethers from the root of Angelica japonica. Chem. Pharm. Bull., 1999, 47(1), 96-100.
[http://dx.doi.org/10.1248/cpb.47.96] [PMID: 9987830]
[23]
Thanh, P.N.; Jin, W.; Song, G.; Bae, K.; Kang, S.S. Cytotoxic coumarins from the root of Angelica dahurica. Arch. Pharm. Res., 2004, 27(12), 1211-1215.
[http://dx.doi.org/10.1007/BF02975883] [PMID: 15646793]
[24]
Figueroa, M.; Rivero-Cruz, I.; Rivero-Cruz, B.; Bye, R.; Navarrete, A.; Mata, R. Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. J. Ethnopharmacol., 2007, 113(1), 125-131.
[http://dx.doi.org/10.1016/j.jep.2007.05.015] [PMID: 17582715]
[25]
Resch, M.; Steigel, A.; Chen, Z.; Bauer, R. 5-Lipoxygenase and cyclooxygenase-1 inhibitory active compounds from Atractylodes lancea. J. Nat. Prod., 1998, 61(3), 347-350.
[http://dx.doi.org/10.1021/np970430b] [PMID: 9544564]
[26]
Siskos, E.P.; Mazomenos, B.E.; Konstantopoulou, M.A. Isolation and identification of insecticidal components from Citrus aurantium fruit peel extract. J. Agric. Food Chem., 2008, 56(14), 5577-5581.
[http://dx.doi.org/10.1021/jf800446t] [PMID: 18578532]
[27]
Abosharaf, H.A.; Diab, T.; Atlam, F.M.; Mohamed, T.M. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition. Biotechnol. Reports., 2020, 28, 531.
[28]
Nakamura, T.; Kodama, N.; Arai, Y.; Kumamoto, T.; Higuchi, Y.; Chaichantipyuth, C.; Ishikawa, T.; Ueno, K.; Yano, S. Inhibitory effect of oxycoumarins isolated from the Thai medicinal plant Clausena guillauminii on the inflammation mediators, iNOS, TNF-α, and COX-2 expression in mouse macrophage RAW 264.7. J. Nat. Med., 2009, 63(1), 21-27.
[http://dx.doi.org/10.1007/s11418-008-0277-5] [PMID: 18636311]
[29]
Shen, D.Y.; Chan, Y.Y.; Hwang, T.L.; Juang, S.H.; Huang, S.C.; Kuo, P.C.; Thang, T.D.; Lee, E.J.; Damu, A.G.; Wu, T.S. Constituents of the roots of Clausena lansium and their potential anti-inflammatory activity. J. Nat. Prod., 2014, 77(5), 1215-1223.
[http://dx.doi.org/10.1021/np500088u] [PMID: 24798144]
[30]
Li, Y.; Liu, X.L.; Cai, Z.G.; Zhang, S.X. LC-ESI-MS/MS analysis and pharmacokinetics of jolkinolide B, a potential antitumor active component isolated from Euphorbia fischeriana, in rat plasma. Biomed. Chromatogr., 2014, 28(2), 193-196.
[http://dx.doi.org/10.1002/bmc.3000] [PMID: 23868721]
[31]
Jiménez, B.; Grande, M.C.; Anaya, J.; Torres, P.; Grande, M. Coumarins from Ferulago capillaris and F. brachyloba. Phytochemistry, 2000, 53(8), 1025-1031.
[http://dx.doi.org/10.1016/S0031-9422(99)00524-5] [PMID: 10820825]
[32]
Basile, A.; Sorbo, S.; Spadaro, V.; Bruno, M.; Maggio, A.; Faraone, N.; Rosselli, S. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules, 2009, 14(3), 939-952.
[http://dx.doi.org/10.3390/molecules14030939] [PMID: 19255552]
[33]
Zimecki, M.; Artym, J.; Cisowski, W.; Mażol, I.; Włodarczyk, M.; Glenśk, M. Immunomodulatory and anti-inflammatory activity of selected osthole derivatives. Z. Naturforsch. C J. Biosci., 2009, 64(5-6), 361-368.
[http://dx.doi.org/10.1515/znc-2009-5-610] [PMID: 19678539]
[34]
Sajjadi, S.E.; Zeinvand, H.; Shokoohinia, Y. Isolation and identification of osthol from the fruits and essential oil composition of the leaves of Prangos asperula Boiss. Res. Pharm. Sci., 2009, 4(1), 19-23.
[35]
Dissanayake, A.A.; Ameen, B.A.H.; Nair, M.G. Lipid peroxidation and cyclooxygenase enzyme inhibitory compounds from Prangos haussknechtii. J. Nat. Prod., 2017, 80(9), 2472-2477.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00322] [PMID: 28885836]
[36]
Sheng, L.; Wu, C.Y.; Chen, X.F. Inhibitory acting mechanism of psoralen-osthole on bone metastasis of breast cancer-an expatiation viewing from OPG/RANKL/RANK system. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih, 2011, 31(5), 684-689.
[PMID: 21812275]
[37]
Liu, Y.Y.; Zhang, C.; Li, L.; Xiao, Y.Q. Studies on chemical constituents in roots of Heracleum rapula. Zhongguo Zhongyao Zazhi, 2006, 31(4), 309-311.
[PMID: 16706022]
[38]
Shi, J.; Fu, Q.; Chen, W.; Yang, H.P.; Liu, J.; Wang, X.M.; He, X. Comparative study of pharmacokinetics and tissue distribution of osthole in rats after oral administration of pure osthole and Libanotis buchtormensis supercritical extract. J. Ethnopharmacol., 2013, 145(1), 25-31.
[http://dx.doi.org/10.1016/j.jep.2012.10.028] [PMID: 23142197]
[39]
Vogl, S.; Zehl, M.; Picker, P.; Urban, E.; Wawrosch, C.; Reznicek, G.; Saukel, J.; Kopp, B. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS. J. Agric. Food Chem., 2011, 59(9), 4371-4377.
[http://dx.doi.org/10.1021/jf104772x] [PMID: 21425828]
[40]
Chang, Y.; Zhang, Q.H.; Li, J.; Zhang, L.; Guo, X.; He, J.; Zhang, P.; Ma, L.; Deng, Y.; Zhang, B.; Gao, X. Simultaneous determination of scopoletin, psoralen, bergapten, xanthotoxin, columbianetin acetate, imperatorin, osthole and isoimperatorin in rat plasma by LC–MS/MS for pharmacokinetic studies following oral administration of Radix Angelicae pubescentis extract. J. Pharm. Biomed. Anal., 2013, 77, 71-75.
[http://dx.doi.org/10.1016/j.jpba.2012.12.031] [PMID: 23384552]
[41]
Chen, Y.F.; Tsai, H.Y.; Wu, T.S. Anti-inflammatory and analgesic activities from roots of Angelica pubescens. Planta Med., 1995, 61(1), 2-8.
[http://dx.doi.org/10.1055/s-2006-957987] [PMID: 7700984]
[42]
Li, R.Z.; He, Y.Q.; Chiao, M.; Xu, Y.; Zhang, Q.B.; Meng, J.R.; Gu, Y.; Ge, L.P. Studies of the active constituents of the Chinese drug “duhuo” Angelica pubescents. Yao Xue Xue Bao, 1989, 24(7), 546-551.
[PMID: 2618698]
[43]
Liu, J.; Zschocke, S.; Reininger, E.; Bauer, R. Inhibitory effects of Angelica pubescens f. biserrata on 5-lipoxygenase and cyclooxygenase. Planta Med., 1998, 64(6), 525-529.
[http://dx.doi.org/10.1055/s-2006-957507] [PMID: 9741298]
[44]
Luo, Q.; Wang, C.; Li, J.; Ma, W.; Bai, Y.; Ma, L.; Gao, X.; Zhang, B.; Chang, Y. The pharmacokinetics and oral bioavailability studies of columbianetin in rats after oral and intravenous administration. J. Ethnopharmacol., 2013, 150(1), 175-180.
[http://dx.doi.org/10.1016/j.jep.2013.08.030] [PMID: 23994338]
[45]
Wang, K.; Yao, L.; Du, Y.; Xie, J.; Huang, J.; Yin, Z. Anthelmintic activity of the crude extracts, fractions, and osthole from Radix angelicae pubescentis against Dactylogyrus intermedius in goldfish (Carassius auratus) in vivo. Parasitol. Res., 2011, 108(1), 195-200.
[http://dx.doi.org/10.1007/s00436-010-2058-9] [PMID: 20878184]
[46]
Yao, L.; Lu, P.; Li, Y.; Yang, L.; Feng, H.; Huang, Y.; Zhang, D.; Chen, J.; Zhu, D. Osthole relaxes pulmonary arteries through endothelial phosphatidylinositol 3-kinase/Akt-eNOS-NO signaling pathway in rats. Eur. J. Pharmacol., 2013, 699(1-3), 23-32.
[http://dx.doi.org/10.1016/j.ejphar.2012.11.056] [PMID: 23220709]
[47]
Rao, G.X.; Gao, Y.L.; Lin, Y.P.; Xiao, Y.L.; Li, S.H.; Sun, H.D. Chemical constituents of Selinum cryptotaenium. J. Asian Nat. Prod. Res., 2006, 8(3), 273-275.
[http://dx.doi.org/10.1080/1028602042000325555] [PMID: 16864434]
[48]
Huo, L.; Jiang, Z.; Lei, M.; Wang, X.; Guo, X. Simultaneous quantification of Kirenol and ent-16β,17-dihydroxy-kauran-19-oic acid from Herba Siegesbeckiae in rat plasma by liquid chromatography–tandem mass spectrometry and its application to pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2013, 937, 18-24.
[http://dx.doi.org/10.1016/j.jchromb.2013.08.019] [PMID: 24008120]
[49]
Tosun, A.; Akkol, E.K.; Yeşilada, E. Anti-inflammatory and antinociceptive activity of coumarins from Seseli gummiferum subsp. corymbosum (Apiaceae). Z. Naturforsch. C J. Biosci., 2009, 64(1-2), 56-62.
[http://dx.doi.org/10.1515/znc-2009-1-210] [PMID: 19323267]
[50]
Sharma, R.; Negi, D.; Gibbons, S.; Otsuka, H. Chemical and antibacterial constituents of Skimmia anquetelia. Planta Med., 2008, 74(2), 175-177.
[http://dx.doi.org/10.1055/s-2008-1034281] [PMID: 18240101]
[51]
Yang, S.M.; Shim, G.Y.; Kim, B.G.; Ahn, J.H. Biological synthesis of coumarins in Escherichia coli. Microb. Cell Fact., 2015, 14(1), 65-73.
[http://dx.doi.org/10.1186/s12934-015-0248-y] [PMID: 25927349]
[52]
Shi, Y.; Zhang, S.; Peng, D.; Shan, C.; Zhao, L.; Wang, B.; Wu, J. De novo transcriptome analysis of Cnidium monnieri (L.) Cuss and detection of genes related to coumarin biosynthesis. PeerJ, 2020, 8, e10157.
[http://dx.doi.org/10.7717/peerj.10157] [PMID: 33194397]
[53]
Yao, R.; Zhao, Y.; Liu, T.; Huang, C.; Xu, S.; Sui, Z.; Luo, J.; Kong, L. Identification and functional characterization of a p-coumaroyl CoA 2′-hydroxylase involved in the biosynthesis of coumarin skeleton from Peucedanum praeruptorum Dunn. Plant Mol. Biol., 2017, 95(1-2), 199-213.
[http://dx.doi.org/10.1007/s11103-017-0650-4] [PMID: 28822035]
[54]
Karamat, F.; Olry, A.; Munakata, R.; Koeduka, T.; Sugiyama, A.; Paris, C.; Hehn, A.; Bourgaud, F.; Yazaki, K. A coumarin-specific prenyltransferase catalyzes the crucial biosynthetic reaction for furanocoumarin formation in parsley. Plant J., 2014, 77(4), 627-638.
[http://dx.doi.org/10.1111/tpj.12409] [PMID: 24354545]
[55]
Hehmann, M.; Lukačin, R.; Ekiert, H.; Matern, U. Furanocoumarin biosynthesis in Ammi majus L. Eur. J. Biochem., 2004, 271(5), 932-940.
[http://dx.doi.org/10.1111/j.1432-1033.2004.03995.x] [PMID: 15009205]
[56]
Zhao, Y.; Wang, N.; Sui, Z.; Huang, C.; Zeng, Z.; Kong, L. The molecular and structural basis of O-methylation reaction in coumarin biosynthesis in Peucedanum praeruptorum Dunn. Int. J. Mol. Sci., 2019, 20(7), 1533-1548.
[http://dx.doi.org/10.3390/ijms20071533] [PMID: 30934718]
[57]
Wang, L.; Yang, L.; Lu, Y.; Chen, Y.; Liu, T.; Peng, Y.; Zhou, Y.; Cao, Y.; Bi, Z.; Liu, T.; Liu, Z.; Shan, H. Osthole induces cell cycle arrest and inhibits migration and invasion via PTEN/Akt pathways in osteosarcoma. Cell. Physiol. Biochem., 2016, 38(6), 2173-2182.
[http://dx.doi.org/10.1159/000445573] [PMID: 27185245]
[58]
Karaboğa Arslan, A.K.; Uzunhı̇sarcikli, E.; Ökçesı̇z, A.; Eken, A.; Yerer, M.B. Anticancer effects of coumarin compounds osthole and imperatorın alone and in combination with 5-fluorouracil in colon carcinoma cells. Acta Pol. Pharm., 2021, 78(2), 243-252.
[http://dx.doi.org/10.32383/appdr/135086]
[59]
Huang, S.M.; Tsai, C.F.; Chen, D.R.; Wang, M.Y.; Yeh, W.L. p53 is a key regulator for osthole-triggered cancer pathogenesis. BioMed Res. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/175247] [PMID: 25013761]
[60]
Sumorek-Wiadro, J.; Zając, A.; Langner, E.; Skalicka-Woźniak, K.; Maciejczyk, A.; Rzeski, W.; Jakubowicz-Gil, J. Antiglioma potential of coumarins combined with sorafenib. Molecules, 2020, 25(21), 5192-5203.
[http://dx.doi.org/10.3390/molecules25215192] [PMID: 33171577]
[61]
Huangfu, M.; Wei, R.; Wang, J.; Qin, J.; Yu, D.; Guan, X.; Li, X.; Fu, M.; Liu, H.; Chen, X. Osthole induces necroptosis via ROS overproduction in glioma cells. FEBS Open Bio, 2021, 11(2), 456-467.
[http://dx.doi.org/10.1002/2211-5463.13069] [PMID: 33350608]
[62]
Lin, V.C.H.; Chou, C.H.; Lin, Y.C.; Lin, J.N.; Yu, C.C.; Tang, C.H.; Lin, H.Y.; Way, T.D. Osthole suppresses fatty acid synthase expression in HER2-overexpressing breast cancer cells through modulating Akt/mTOR pathway. J. Agric. Food Chem., 2010, 58(8), 4786-4793.
[http://dx.doi.org/10.1021/jf100352c] [PMID: 20218616]
[63]
Dien, P.H.; Nhan, N.T.; Le Thuy, H.T.; Quang, D.N. Main constituents from the seeds of Vietnamese Cnidium monnieri and cytotoxic activity. Nat. Prod. Res., 2011, 26(22), 1-5.
[http://dx.doi.org/10.1080/14786419.2011.619186] [PMID: 22017625]
[64]
Han, X.H.; Ye, Y.Y.; Guo, B.F.; Liu, S. Effects of platycodin D in combination with different active ingredients of Chinese herbs on proliferation and invasion of 4T1 and MDA-MB-231 breast cancer cell lines. J. Chin. Integr. Med., 2012, 10(1), 67-75.
[http://dx.doi.org/10.3736/jcim20120111] [PMID: 22237277]
[65]
Ming, L.G.; Zhou, J.; Cheng, G.Z.; Ma, H.P.; Chen, K.M. Osthol, a coumarin isolated from common cnidium fruit, enhances the differentiation and maturation of osteoblasts in vitro. Pharmacology, 2011, 88(1-2), 33-43.
[http://dx.doi.org/10.1159/000328776] [PMID: 21734431]
[66]
Ye, Y.; Han, X.; Guo, B.; Sun, Z.; Liu, S. Combination treatment with platycodin D and osthole inhibits cell proliferation and invasion in mammary carcinoma cell lines. Environ. Toxicol. Pharmacol., 2013, 36(1), 115-124.
[http://dx.doi.org/10.1016/j.etap.2013.03.012] [PMID: 23603464]
[67]
Junttila, M.R.; Karnezis, A.N.; Garcia, D.; Madriles, F.; Kortlever, R.M.; Rostker, F.; Brown Swigart, L.; Pham, D.M.; Seo, Y.; Evan, G.I.; Martins, C.P. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature, 2010, 468(7323), 567-571.
[http://dx.doi.org/10.1038/nature09526] [PMID: 21107427]
[68]
Guo, B.F.; Liu, S.; Ye, Y.Y.; Han, X.H.J. Effects of osthole, psoralen, aconitine on breast cancer MDA-MB-231BO cell line inhibition in vitro. J. Chin. Integr. Med., 2011, 9(10), 1110-1117.
[http://dx.doi.org/10.3736/jcim20111012]
[69]
You, L.; An, R.; Wang, X.; Li, Y. Discovery of novel osthole derivatives as potential anti-breast cancer treatment. Bioorg. Med. Chem. Lett., 2010, 20(24), 7426-7428.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.027] [PMID: 21051232]
[70]
Hung, C.M.; Kuo, D.H.; Chou, C.H.; Su, Y.C.; Ho, C.T.; Way, T.D. Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J. Agric. Food Chem., 2011, 59(17), 9683-9690.
[http://dx.doi.org/10.1021/jf2021489] [PMID: 21806057]
[71]
Park, W.; Park, S.; Song, G.; Lim, W. Inhibitory effects of osthole on human breast cancercell progression via induction of cell cycle arrest, mitochondrial dysfunction and ER stress. Nutrients, 2019, 11(11), 2777.
[http://dx.doi.org/10.3390/nu11112777] [PMID: 31731635]
[72]
Wu, C.; Sun, Z.; Guo, B.; Ye, Y.; Han, X.; Qin, Y.; Liu, S. Osthole inhibits bone metastasis of breast cancer. Oncotarget, 2017, 8(35), 58480-58493.
[http://dx.doi.org/10.18632/oncotarget.17024] [PMID: 28938572]
[73]
Mei, J.; Wang, T.; Zhao, S.; Zhang, Y. Osthole inhibits breast cancer progression through upregulating tumor suppressor GNG7. J. Oncol., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/6610511]
[74]
Le Zou, T.; Wang, H.F.; Ren, T.; Shao, Z.Y.; Yuan, R.Y.; Gao, Y.; Zhang, Y.J.; Wang, X.A.; Liu, Y.B. Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo. Anticancer Drugs, 2019, 30(10), 1022-1030.
[http://dx.doi.org/10.1097/CAD.0000000000000812] [PMID: 31283543]
[75]
Liu, P.Y.; Chang, D.C.; Lo, Y.S.; Hsi, Y.T.; Lin, C.C.; Chuang, Y.C.; Lin, S.H.; Hsieh, M.J.; Chen, M.K. Osthole induces human nasopharyngeal cancer cells apoptosis through Fas-Fas ligand and mitochondrial pathway. Environ. Toxicol., 2018, 33(4), 446-453.
[http://dx.doi.org/10.1002/tox.22530]
[76]
Peng, L.; Huang, Y.T.; Chen, J.; Zhuang, Y.X.; Zhang, F.; Chen, J.Y.; Zhou, L.; Zhang, D.H. Osthole sensitizes with radiotherapy to suppress tumorigenesis of human nasopharyngeal carcinoma in vitro and in vivo. Cancer Manag. Res., 2018, 10, 5471-5477.
[http://dx.doi.org/10.2147/CMAR.S182798] [PMID: 30519095]
[77]
Hamed, A.A.; Thoria, D.; Tarek, M.M. Cytotoxic effect of citrus fruits osthole in lung cancer. Delta J. Sci., 2017, (38), 138-141.
[78]
Xu, X.M.; Zhang, Y.I.; Qu, D.A.N.; Feng, X.U.E.W.E.I.; Chen, Y.U.; Zhao, L.I. Osthole suppresses migration and invasion of A549 human lung cancer cells through inhibition of matrix metalloproteinase-2 and matrix metallopeptidase-9 in vitro. Mol. Med. Rep., 2012, 6(5), 1018-1022.
[http://dx.doi.org/10.3892/mmr.2012.1044] [PMID: 22923177]
[79]
Xu, X.M.; Zhang, Y.; Qu, D.; Liu, H.B.; Gu, X.; Jiao, G.Y.; Zhao, L. Combined anticancer activity of osthole and cisplatin in NCI-H460 lung cancer cells in vitro. Exp. Ther. Med., 2013, 5(3), 707-710.
[http://dx.doi.org/10.3892/etm.2013.889] [PMID: 23404433]
[80]
Zhu, X.; Song, X.; Xie, K.; Zhang, X.; He, W.; Liu, F. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int. J. Mol. Med., 2017, 40(4), 1143-1151.
[http://dx.doi.org/10.3892/ijmm.2017.3113] [PMID: 28902342]
[81]
Yang, J.; Zhu, X.J.; Jin, M.Z.; Cao, Z.W.; Ren, Y.Y.; Gu, Z.W. Osthole induces cell cycle arrest and apoptosis in head and neck squamous cell carcinoma by suppressing the PI3K/AKT signaling pathway. Chem. Biol. Interact., 2020, 3(19), 1754-1755.
[http://dx.doi.org/10.1016/j.cbi.2019.108934]
[82]
Zhang, L.; Jiang, G.; Yao, F.; He, Y.; Liang, G.; Zhang, Y.; Hu, B.; Wu, Y.; Li, Y.; Liu, H. Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS One, 2012, 7(5), e37865.
[http://dx.doi.org/10.1371/journal.pone.0037865] [PMID: 22662241]
[83]
Lin, Z.K.; Liu, J.; Jiang, G.Q.; Tan, G.; Gong, P.; Luo, H.F.; Li, H.M.; Du, J.; Ning, Z.; Xin, Y.; Wang, Z.Y. Osthole inhibits the tumorigenesis of hepatocellular carcinoma cells. Oncol. Rep., 2017, 37(3), 1611-1618.
[http://dx.doi.org/10.3892/or.2017.5403] [PMID: 28184928]
[84]
Mo, Y.; Wu, Y.; Li, X.; Rao, H.; Tian, X.; Wu, D.; Qiu, Z.; Zheng, G.; Hu, J. Osthole delays hepatocarcinogenesis in mice by suppressing AKT/FASN axis and ERK phosphorylation. Eur. J. Pharmacol., 2019, (19), 30740-X.
[http://dx.doi.org/10.1016/j.ejphar.2019.172788] [PMID: 31712058]
[85]
Jiang, G.; Liu, J.; Ren, B.; Tang, Y.; Owusu, L.; Li, M.; Zhang, J.; Liu, L.; Li, W. Anti-tumor effects of osthole on ovarian cancer cells in vitro. J. Ethnopharmacol., 2016, 193, 368-376.
[http://dx.doi.org/10.1016/j.jep.2016.08.045] [PMID: 27566206]
[86]
Liang, J.; Zhou, J.; Xu, Y.; Huang, X.; Wang, X.; Huang, W.; Li, H. Osthole inhibits ovarian carcinoma cells through LC3-mediated autophagy and GSDME-dependent pyroptosis except for apoptosis. Eur. J. Pharmacol., 2020, 874, 172990.
[http://dx.doi.org/10.1016/j.ejphar.2020.172990] [PMID: 32057718]
[87]
Wang, B.; Zheng, X.; Liu, J.; Zhang, Z.; Qiu, C.; Yang, L.; Zhang, L.; Zhang, Q.; Gao, H.; Wang, X. Osthole inhibits pancreatic cancer progression by directly exertingnegative effects on cancer cells and attenuating tumor-infiltrating M2 macrophages. J. Pharmacol. Sci., 2018, 137(3), 290-298.
[http://dx.doi.org/10.1016/j.jphs.2018.07.007]
[88]
Liu, L.; Mao, J.; Wang, Q.; Zhang, Z.; Wu, G.; Tang, Q.; Zhao, B.; Li, L.; Li, Q. In vitro anticancer activities of osthole against renal cell carcinoma cells. Biomed. Pharmacother., 2017, 94, 1020-1027.
[http://dx.doi.org/10.1016/j.biopha.2017.07.155] [PMID: 28810525]
[89]
Min, K.J.; Han, M.A.; Kim, S.; Park, J.W.; Kwon, T.K. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells. Oncol. Rep., 2017, 37(4), 2348-2354.
[http://dx.doi.org/10.3892/or.2017.5490] [PMID: 28350076]
[90]
Yin, S.; Liu, H.; Wang, J.; Feng, S.; Chen, Y.; Shang, Y.; Su, X.; Si, F. Osthole induces apoptosis and inhibits proliferation, invasion and migration of human cervical carcinoma HeLa cells. Evid. Based Complement. Alternat. Med., 2021, 2021, 8885093.
[http://dx.doi.org/10.1155/2021/8885093] [PMID: 34539807]
[91]
Xu, X.; Liu, X.; Zhang, Y. Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One, 2018, 13(3), e0193449.
[92]
Yang, Y.; Ren, F.; Tian, Z.; Song, W.; Cheng, B.; Feng, Z. Osthole synergizes with HER2 inhibitor, trastuzumab in HER2-overexpressed N87 gastric cancer by inducing apoptosis and inhibition of AKT-MAPK pathway. Front. Pharmacol., 2018, 9, 1392.
[http://dx.doi.org/10.3389/fphar.2018.01392] [PMID: 30538636]
[93]
Wang, H.; Jia, X.H.; Chen, J.R.; Wang, J.Y.; Li, Y.J. Osthole shows the potential to overcome P-glycoprotein-mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway. Oncol. Rep., 2016, 35(6), 3659-3668.
[http://dx.doi.org/10.3892/or.2016.4730] [PMID: 27109742]
[94]
Chou, S.Y.; Hsu, C.S.; Wang, K.T.; Wang, M.C.; Wang, C.C. Antitumor effects of Osthol from Cnidium monnieri: An in vitro and in vivo study. Phytother. Res., 2007, 21(3), 226-230.
[http://dx.doi.org/10.1002/ptr.2044] [PMID: 17154232]
[95]
Wyllie, A.H. “Where, O death, is thy sting?” A brief review of apoptosis biology. Mol. Neurobiol., 2010, 42(1), 4-9.
[http://dx.doi.org/10.1007/s12035-010-8125-5] [PMID: 20552413]
[96]
Rasul, A.; Yu, B.; Khan, M.; Zhang, K.; Iqbal, F.; Ma, T.; Yang, H. Magnolol, a natural compound, induces apoptosis of SGC-7901 human gastric adenocarcinoma cells via the mitochondrial and PI3K/Akt signaling pathways. Int. J. Oncol., 2012, 40(4), 1153-1161.
[97]
Jarząb, A.; Grabarska, A.; Kiełbus, M.; Jeleniewicz, W.; Dmoszyńska-Graniczka, M.; Skalicka-Woźniak, K.; Sieniawska, E.; Polberg, K.; Stepulak, A. Osthole induces apoptosis, suppresses cell-cycle progression and proliferation of cancer cells. Anticancer Res., 2014, 34(11), 6473-6480.
[PMID: 25368248]
[98]
Zhu, X.; Li, Z.; Li, T.; Long, F.; Lv, Y.; Liu, L.; Liu, X.; Zhan, Q. Osthole inhibits the PI3K/AKT signaling pathway via activation of PTEN and induces cell cycle arrest and apoptosis in esophageal squamous cell carcinoma. Biomed. Pharmacother., 2018, 102, 502-509.
[http://dx.doi.org/10.1016/j.biopha.2018.03.106] [PMID: 29579711]
[99]
Ding, Y.; Lu, X.; Hu, X.; Ma, J.; Ding, H. Osthole inhibits proliferation and induces apoptosis in human osteosarcoma cells. Int. J. Clin. Pharmacol. Ther., 2014, 52(2), 112-117.
[http://dx.doi.org/10.5414/CP201923] [PMID: 24219966]
[100]
Lin, Y.C.; Lin, J.C.; Hung, C.M.; Chen, Y.; Liu, L.C.; Chang, T.C.; Kao, J.Y.; Ho, C.T.; Way, T.D. Osthole inhibits insulin-like growth factor-1-induced epithelial to mesenchymal transition via the inhibition of PI3K/Akt signaling pathway in human brain cancer cells. J. Agric. Food Chem., 2014, 62(22), 5061-5071.
[http://dx.doi.org/10.1021/jf501047g] [PMID: 24828835]
[101]
Pai, J.T.; Hsu, C.Y.; Hua, K.T.; Yu, S.Y.; Huang, C.Y.; Chen, C.N.; Liao, C.H.; Weng, M.S. NBM-T-BBX-OS01, semi synthesized from osthole, induced G1 growth arrest through HDAC6 inhibition in lung cancer cells. Molecules, 2015, 20(5), 8000-8019.
[http://dx.doi.org/10.3390/molecules20058000] [PMID: 25946558]
[102]
Wang, L.; Peng, Y.; Shi, K.; Wang, H.; Lu, J.; Li, Y.; Ma, C. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis. J. Biomed. Res., 2015, 29(2), 132-138.
[http://dx.doi.org/10.7555/JBR.27.20120115] [PMID: 25859268]
[103]
Zhang, L.; Jiang, G.; Yao, F.; Liang, G.; Wang, F.; Xu, H.; Wu, Y.; Yu, X.; Liu, H. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma. Immunopharmacol. Immunotoxicol., 2015, 37(3), 301-307.
[http://dx.doi.org/10.3109/08923973.2015.1035391] [PMID: 25975579]
[104]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029]
[105]
Seibert, K.; Zhang, Y.; Leahy, K.; Hauser, S.; Masferrer, J.; Perkins, W.; Lee, L.; Isakson, P. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc. Natl. Acad. Sci. USA, 1994, 91(25), 12013-12017.
[http://dx.doi.org/10.1073/pnas.91.25.12013] [PMID: 7991575]
[106]
Pergola, C.; Werz, O. 5-Lipoxygenase inhibitors: A review of recent developments and patents. Expert Opin. Ther. Pat., 2010, 20(3), 355-375.
[http://dx.doi.org/10.1517/13543771003602012] [PMID: 20180620]
[107]
Xu, R.; Liu, Z.; Hou, J.; Huang, T.; Yang, M. Osthole improves collagen-induced arthritis in a rat model through inhibiting inflammation and cellular stress. Cell. Mol. Biol. Lett., 2018, 23(1), 19.
[http://dx.doi.org/10.1186/s11658-018-0086-0] [PMID: 29743895]
[108]
Kordulewska, N.K.; Kostyra, E.; Chwała, B.; Moszyńska, M.; Cieślińska, A.; Fiedorowicz, E.; Jarmołowska, B. A novel concept of immunological and allergy interactions in autism spectrum disorders: Molecular, anti-inflammatory effect of osthole. Int. Immunopharmacol., 2019, 72, 1-11.
[http://dx.doi.org/10.1016/j.intimp.2019.01.058] [PMID: 30953868]
[109]
Jin, Y.; Qian, J.; Ju, X.; Bao, X.; Li, L.; Zheng, S.; Chen, X.; Xiao, Z.; Chen, X.; Zhu, W.; Li, W.; Wu, W.; Liang, G. Osthole protects against acute lung injury by suppressing NF-κB dependent inflammation. Mediators Inflamm., 2018, 2018, 4934592.
[http://dx.doi.org/10.1155/2018/4934592] [PMID: 30057486]
[110]
Kordulewska, N.K.; Topa, J.; Tańska, M.; Cieślińska, A.; Fiedorowicz, E.; Savelkoul, H.F.J.; Jarmołowska, B. Modulatory effects of osthole on lipopolysaccharides-induced inflammation in CaCo-2 cell monolayer and cocultures with THP-1 and THP-1-derived macrophages. Nutrients, 2020, 13(1), 123.
[http://dx.doi.org/10.3390/nu13010123] [PMID: 33396265]
[111]
Wang, X.; Shang, X.; Cui, Y.; Zhao, X.; Zhang, Y.; Xie, M. Osthole inhibits inflammatory cytokine release through PPAR α / γ -mediated mechanisms in LPS-stimulated 3T3-L1 adipocytes. Immunopharmacol. Immunotoxicol., 2015, 37(2), 185-192.
[http://dx.doi.org/10.3109/08923973.2015.1009997] [PMID: 25689951]
[112]
Kordulewska, N.K.; Kostyra, E.; Cieślińska, A.; Matysiewicz, M.; Fiedorowicz, E.; Sienkiewicz-Szłapka, E. Changes in gene expression induced by histamine, fexofenadine and osthole: Expression of histamine H1 receptor, COX-2, NF-κB, CCR1, chemokine CCL5/RANTES and interleukin-1β in PBMC allergic and non-allergic patients. Immunobiology, 2017, 222(3), 571-581.
[http://dx.doi.org/10.1016/j.imbio.2016.11.004] [PMID: 27843000]
[113]
Bao, Y.; Meng, X.; Liu, F.; Wang, F.; Yang, J.; Wang, H.; Xie, G. Protective effects of osthole against inflammation induced by lipopolysaccharide in BV2 cells. Mol. Med. Rep., 2018, 17(3), 4561-4566.
[http://dx.doi.org/10.3892/mmr.2018.8447] [PMID: 29344655]
[114]
Cai, Y.; Sun, W.; Zhang, X.; Lin, Y.; Chen, H.; Li, H. Osthole prevents acetaminophen-induced liver injury in mice. Acta Pharmacol. Sin., 2018, 39(1), 74-84.
[http://dx.doi.org/10.1038/aps.2017.129] [PMID: 29022574]
[115]
Sun, W.; Cai, Y.; Zhang, X.; Chen, H.; Lin, Y.; Li, H. Osthole pretreatment alleviates TNBS-induced colitis in mice via both cAMP/PKA-dependent and independent pathways. Acta Pharmacol. Sin., 2017, 38(8), 1120-1128.
[http://dx.doi.org/10.1038/aps.2017.71] [PMID: 28603288]
[116]
Ang, X.; Zeng, X.J.; Fu, J. Protective effect of osthole on LPS-induced acute lung injury in mice and its mechanism. Pract. Pharm. Clin. Remed., 2015, 18, 893-896.
[117]
Kong, L.; Yao, Y.; Xia, Y.; Liang, X.; Ni, Y.; Yang, J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmcol. Immunotoxicol., 2019, 41, 349-360.
[118]
Fu, X.; Hong, C. Osthole attenuates mouse atopic dermatitis by inhibiting thymic stromal lymphopoietin production from keratinocytes. Exp. Dermatol., 2019, 28(5), 561-567.
[http://dx.doi.org/10.1111/exd.13910] [PMID: 30825337]
[119]
Singh, G.; Bhatti, R.; Mannan, R.; Singh, D.; Kesavan, A.; Singh, P. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. Inflammopharmacology, 2019, 27(5), 949-960.
[http://dx.doi.org/10.1007/s10787-018-0486-9] [PMID: 29736690]
[120]
Li, Z.; Ji, H.; Song, X.; Hu, J.; Han, N.; Chen, N. Osthole attenuates the development of carrageenan-induced lung inflammation in rats. Int. Immunopharmacol., 2014, 20(1), 33-36.
[http://dx.doi.org/10.1016/j.intimp.2014.02.013] [PMID: 24576740]
[121]
Liao, P.C.; Chien, S.C.; Ho, C.L.; Wang, E.I.C.; Lee, S.C.; Kuo, Y.H.; Jeyashoke, N.; Chen, J.; Dong, W.C.; Chao, L.K.; Hua, K.F. Osthole regulates inflammatory mediator expression through modulating NF-κB, mitogen-activated protein kinases, protein kinase C, and reactive oxygen species. J. Agric. Food Chem., 2010, 58(19), 10445-10451.
[http://dx.doi.org/10.1021/jf102812t] [PMID: 20839800]
[122]
Luo, L.N.; Xie, D.Q.; Zhang, X.G.; Jiang, R. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation. Exp. Ther. Med., 2016, 12(4), 2009-2014.
[http://dx.doi.org/10.3892/etm.2016.3603] [PMID: 27698686]
[123]
Hua, K.F.; Yang, S.M.; Kao, T.Y.; Chang, J.M.; Chen, H.L.; Tsai, Y.J.; Chen, A.; Yang, S.S.; Chao, L.K.; Ka, S.M. Osthole mitigates progressive IgA nephropathy by inhibiting reactive oxygen species generation and NF-κB/NLRP3 pathway. PLoS One, 2013, 8(10), e77794.
[http://dx.doi.org/10.1371/journal.pone.0077794] [PMID: 24204969]
[124]
Sun, F.; Xie, M.L.; Zhu, L.J.; Xue, J.; Gu, Z.L. Inhibitory effect of osthole on alcohol-induced fatty liver in mice. Dig. Liver Dis., 2009, 41(2), 127-133.
[http://dx.doi.org/10.1016/j.dld.2008.01.011] [PMID: 18339590]
[125]
Wei, M.; Zhang, J.J.; He, Q.L.; Wang, L.; Ren, Z.H.; Sun, L.B.; Liu, X.G. Effects and mechanisms of osthole on sciatica induced by lumber disc herniation. Zhong Yao Cai, 2011, 34(5), 746-750.
[PMID: 21954563]
[126]
Li, Y.; Li, Y.; Shi, F.; Wang, L.; Li, L.; Yang, D. Osthole attenuates right ventricular remodeling via decreased myocardial apoptosis and inflammation in monocrotaline-induced rats. Eur. J. Pharmacol., 2018, 818, 525-533.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.006] [PMID: 29146527]
[127]
Huang, W.C.; Liao, P.C.; Huang, C.H.; Hu, S.; Huang, S.C.; Wu, S.J. Osthole attenuates lipid accumulation, regulates the expression of inflammatory mediators, and increases antioxidants in FL83B cells. Biomed. Pharmacother., 2017, 91, 78-87.
[http://dx.doi.org/10.1016/j.biopha.2017.04.051] [PMID: 28448873]
[128]
Huang, T.; Dong, Z. Osthole protects against inflammation in a rat model of chronic kidney failure via suppression of nuclear factor-κB, transforming growth factor-β1 and activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor (erythroid-derived 2)-like 2 signaling. Mol. Med. Rep., 2017, 16(4), 4915-4921.
[http://dx.doi.org/10.3892/mmr.2017.7125] [PMID: 28765904]
[129]
Matsuda, H.; Tomohiro, N.; Ido, Y.; Kubo, M. Anti-allergic effects of Cnidii monnieri fructus (dried fruits of Cnidium monnieri) and its major component, osthol. Biol. Pharm. Bull., 2002, 25(6), 809-812.
[http://dx.doi.org/10.1248/bpb.25.809] [PMID: 12081154]
[130]
Xiao, H.; Wang, Y.; Wu, Y.; Li, H.; Liang, X.; Lin, Y.; Kong, L.; Ni, Y.; Deng, Y.; Li, Y.; Li, W. Osthole ameliorates cognitive impairments via augmenting neuronal population in APP/PS1 transgenic mice. Neurosci. Res., 2021, 164, 33-45.
[131]
Yao, Y.; Wang, Y.; Kong, L.; Chen, Y.; Yang, J. RETRACTED: Osthole decreases tau protein phosphorylation via PI3K/AKT/GSK-3β signaling pathway in Alzheimer’s disease. Life Sci., 2019, 217, 16-24.
[http://dx.doi.org/10.1016/j.lfs.2018.11.038] [PMID: 30471283]
[132]
Lin, Y.; Liang, X.; Yao, Y.; Xiao, H.; Shi, Y.; Yang, J. RETRACTED: Osthole attenuates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sci., 2019, 225, 117-131.
[http://dx.doi.org/10.1016/j.lfs.2019.04.004] [PMID: 30951743]
[133]
Li, S.; Yan, Y.; Jiao, Y.; Gao, Z.; Xia, Y.; Kong, L.; Yao, Y.; Tao, Z.; Song, J.; Yan, Y.; Zhang, G.; Yang, J. Neuroprotective effect of osthole on neuron synapses in an Alzheimer’s disease cell model via upregulation of microRNA-9. J. Mol. Neurosci., 2016, 60(1), 71-81.
[http://dx.doi.org/10.1007/s12031-016-0793-9] [PMID: 27394443]
[134]
Yao, Y.; Gao, Z.; Liang, W.; Kong, L.; Jiao, Y.; Li, S.; Tao, Z.; Yan, Y.; Yang, J. Osthole promotes neuronal differentiation and inhibits apoptosis via Wnt/β-catenin signaling in an Alzheimer’s disease model. Toxicol. Appl. Pharmacol., 2015, 289(3), 474-481.
[http://dx.doi.org/10.1016/j.taap.2015.10.013] [PMID: 26525509]
[135]
Chu, Q.; Zhu, Y.; Cao, T.; Zhang, Y.; Chang, Z.; Liu, Y.; Lu, J.; Zhang, Y. Studies on the neuro protection of osthole on glutamate-induced apoptotic cells and an Alzheimer’s disease mouse model via modulation oxidative stress. Appl. Biochem. Biotechnol., 2020, 190(2), 634-644.
[http://dx.doi.org/10.1007/s12010-019-03101-2] [PMID: 31407160]
[136]
Tao, Z.; Gao, P.; Yan, Y.; Li, H.; Song, J.; Yang, J. Osthole enhances the therapeutic efficiency of stem cell transplantation in neuroendoscopy caused traumatic brain injury. Biol. Pharm. Bull., 2017, 40(7), 1043-1054.
[http://dx.doi.org/10.1248/bpb.b17-00072] [PMID: 28674247]
[137]
Chao, X.; Zhou, J.; Chen, T.; Liu, W.; Dong, W.; Qu, Y.; Jiang, X.; Ji, X.; Zhen, H.; Fei, Z. Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats. Brain Res., 2010, 1363, 206-211.
[http://dx.doi.org/10.1016/j.brainres.2010.09.052] [PMID: 20869955]
[138]
Wang, Y.; Zhou, Y.; Wang, X.; Zhen, F.; Chen, R.; Geng, D.; Yao, R. Osthole alleviates MPTP-induced Parkinson’s disease mice by suppressing Notch signaling pathway. Int. J. Neurosci., 2019, 129(9), 833-841.
[http://dx.doi.org/10.1080/00207454.2019.1573171] [PMID: 30668212]
[139]
Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; Abete, P. Oxidative stress, aging, and diseases. Clin. Interv. Aging, 2018, 13, 757-772.
[http://dx.doi.org/10.2147/CIA.S158513] [PMID: 29731617]
[140]
Tsai, Y.F.; Yu, H.P.; Chung, P.J.; Leu, Y.L.; Kuo, L.M.; Chen, C.Y.; Hwang, T.L. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic. Biol. Med., 2015, 89, 387-400.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.08.008] [PMID: 26432981]
[141]
Zhang, Z.; Pan, C.; Wang, H.Z.; Li, Y.X. Protective effects of osthole on intestinal ischemia-reperfusion injury in mice. Exp. Clin. Transplant., 2014, 12(3), 246-252.
[PMID: 24907727]
[142]
Dong, W.; Zhang, Z.; Liu, Z.; Liu, H.; Wang, X.; Bi, S.; Wang, X.; Ma, T.; Zhang, W. Protective effects of osthole, a natural derivative of coumarin, against intestinal ischemia-reperfusion injury in mice. Int. J. Mol. Med., 2013, 31(6), 1367-1374.
[http://dx.doi.org/10.3892/ijmm.2013.1347] [PMID: 23588507]
[143]
Chen, Y.H.; Guo, D.S.; Lu, M.H.; Yue, J.Y.; Liu, Y.; Shang, C.M.; An, D.R.; Zhao, M.M. Inhibitory effect of osthole from Cnidium monnieri on Tobacco mosaic virus (TMV) infection in Nicotiana glutinosa. Molecules, 2019, 25(1), 65.
[http://dx.doi.org/10.3390/molecules25010065] [PMID: 31878172]
[144]
Xu, Y.; Sun, P.; Wan, S.; Guo, J.; Zheng, X.; Sun, Y.; Fan, K.; Yin, W.; Sun, N.; Li, H. The combined usage of Matrine and Osthole inhibited endoplasmic reticulum apoptosis induced by PCV2. BMC Microbiol., 2020, 20(1), 303.
[http://dx.doi.org/10.1186/s12866-020-01986-2] [PMID: 33046006]
[145]
Kermani, E.; Sajjadi, S.; Hejazi, S.; Arjmand, R.; Saberi, S.; Eskandarian, A. Anti-Leishmania activity of osthole. Pharmacognosy Res., 2016, 8(Suppl. 1), 1.
[http://dx.doi.org/10.4103/0974-8490.178650] [PMID: 27114685]
[146]
Rosselli, S.; Maggio, A.; Bellone, G.; Formisano, C.; Basile, A.; Cicala, C.; Alfieri, A.; Mascolo, N.; Bruno, M. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2007, 73(2), 116-120.
[http://dx.doi.org/10.1055/s-2006-951772] [PMID: 17128388]
[147]
Kanis, J.A.; Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. Osteoporos. Int., 1994, 4(6), 368-381.
[http://dx.doi.org/10.1007/BF01622200] [PMID: 7696835]
[148]
Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAX™ and the assessment of fracture probability in men and women from the UK. Osteoporos. Int., 2008, 19(4), 385-397.
[http://dx.doi.org/10.1007/s00198-007-0543-5] [PMID: 18292978]
[149]
Feng, X.; Zhou, H.; Zhang, Y.; Yang, P.; Bai, H.; Zhang, T.; Hua, J.; Zhang, L.; Liu, Y.; Xie, X.; He, J.; Wang, J. Osthole ameliorates simulated microgravity-induced bone loss through down-regulation of miR-34c-5p. Acta Astronaut., 2021, 183, 141-152.
[http://dx.doi.org/10.1016/j.actaastro.2021.03.015]
[150]
Ma, Y.; Wang, L.; Zheng, S.; Xu, J.; Pan, Y.; Tu, P.; Sun, J.; Guo, Y. Osthole inhibits osteoclasts formation and bone resorption by regulating NF‐κB signaling and NFATc1 activations stimulated by RANKL. J. Cell. Biochem., 2019, 120(9), 16052-16061.
[http://dx.doi.org/10.1002/jcb.28886] [PMID: 31081953]
[151]
Wang, L.; Zheng, S.; Huang, G.; Sun, J.; Pan, Y.; Si, Y.; Tu, P.; Xu, G.; Ma, Y.; Guo, Y. Osthole‐loaded N‐octyl‐O‐sulfonyl chitosan micelles (NSC‐OST) inhibits RANKL‐induced osteoclastogenesis and prevents ovariectomy‐induced bone loss in rats. J. Cell. Mol. Med., 2020, 24(7), 4105-4117.
[http://dx.doi.org/10.1111/jcmm.15064] [PMID: 32126148]
[152]
Yu, H.; Zhu, D.; Liu, P.; Yang, Q.; Gao, J.; Huang, Y.; Chen, Y.; Gao, Y.; Zhang, C. Osthole stimulates bone formation, drives vascularization and retards adipogenesis to alleviate alcohol‐induced osteonecrosis of the femoral head. J. Cell. Mol. Med., 2020, 24(8), 4439-4451.
[http://dx.doi.org/10.1111/jcmm.15103] [PMID: 32135036]
[153]
Li, X.; Xue, C.; Wang, L.; Tang, D.; Huang, J.; Zhao, Y.; Chen, Y.; Zhao, D.; Shi, Q.; Wang, Y.; Shu, B. Osteoprotective effects of osthole in a mouse model of 5/6 nephrectomy through inhibiting osteoclast formation. Mol. Med. Rep., 2016, 14(4), 3769-3776.
[http://dx.doi.org/10.3892/mmr.2016.5687] [PMID: 27571745]
[154]
Jin, Z.X.; Liao, X.Y.; Da, W.W.; Zhao, Y.J.; Li, X.F.; Tang, D.Z. Osthole enhances the bone mass of senile osteoporosis and stimulates the expression of osteoprotegerin by activating β-catenin signaling. Stem Cell Res. Ther., 2021, 12(1), 154.
[http://dx.doi.org/10.1186/s13287-021-02228-6] [PMID: 33640026]
[155]
Yu, Y.; Chen, M.; Yang, S.; Shao, B.; Chen, L.; Dou, L.; Gao, J.; Yang, D. Osthole enhances the immunosuppressive effects of bone marrow‐derived mesenchymal stem cells by promoting the Fas/FasL system. J. Cell. Mol. Med., 2021, 25(10), 4835-4845.
[http://dx.doi.org/10.1111/jcmm.16459] [PMID: 33749126]
[156]
Zhang, Z.; Leung, W.N.; Li, G.; Lai, Y.M.; Chan, C.W. Osthole promotes endochondral ossification and accelerates fracture healing in mice. Calcif. Tissue Int., 2016, 99(6), 649-660.
[http://dx.doi.org/10.1007/s00223-016-0189-4] [PMID: 27538772]
[157]
Guh, J.H.; Yu, S.M.; Ko, F.N.; Wu, T.S.; Teng, C.M. Antiproliferative effect in rat vascular smooth muscle cells by osthole, isolated from Angelica pubescens. Eur. J. Pharmacol., 1996, 298(2), 191-197.
[http://dx.doi.org/10.1016/0014-2999(95)00812-8] [PMID: 8867108]
[158]
Wang, X.Y.; Dong, W.P.; Bi, S.H.; Pan, Z.G.; Yu, H.; Wang, X.W.; Ma, T.; Wang, J.; Zhang, W.D. Protective effects of osthole against myocardial ischemia/reperfusion injury in rats. Int. J. Mol. Med., 2013, 32(2), 365-372.
[http://dx.doi.org/10.3892/ijmm.2013.1386] [PMID: 23695269]
[159]
Li, Y.L.; Wang, Y.W.; Li, Y.Q.; Wang, J.Y.; Yang, D.L. Effect of osthole in attenuating right ventricle remodeling in mono crotalinetreated rats by up-regulating the expression of PPARα and PPARγ. Chin. Pharmacol. Bullet., 2015, 31, 1270-1273.
[160]
Chen, R.; Xue, J.; Xie, M.L. Reduction of isoprenaline-induced myocardial TGF-β1 expression and fibrosis in osthole-treated mice. Toxicol. Appl. Pharmacol., 2011, 256(2), 168-173.
[http://dx.doi.org/10.1016/j.taap.2011.08.005] [PMID: 21854795]
[161]
Ogawa, H.; Sasai, N.; Kamisako, T.; Baba, K. Effects of osthol on blood pressure and lipid metabolism in stroke-prone spontaneously hypertensive rats. J. Ethnopharmacol., 2007, 112(1), 26-31.
[http://dx.doi.org/10.1016/j.jep.2007.01.028] [PMID: 17324541]
[162]
Duan, J.; Yang, Y.; Liu, H.; Dou, P.C.; Tan, S.Y. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK. Int. J. Mol. Med., 2016, 37(1), 207-216.
[http://dx.doi.org/10.3892/ijmm.2015.2402] [PMID: 26549213]
[163]
Huang, Y.; Sun, M.; Cui, H.; Kong, L.; Zhai, H.; Wang, Y.; Lü, C.; Fan, D. Vasorelaxant effect of osthole on isolated thoracic aortic rings in rats. J. Tradit. Chin. Med., 2019, 39(4), 492-501.
[PMID: 32186096]
[164]
Fusi, F.; Sgaragli, G.; Ha, L.M.; Cuong, N.M.; Saponara, S. Mechanism of osthole inhibition of vascular Cav1.2 current. Eur. J. Pharmacol., 2012, 680(1-3), 22-27.
[http://dx.doi.org/10.1016/j.ejphar.2012.01.038] [PMID: 22329900]
[165]
Chen, J.; Chiou, W.F.; Chen, C.C.; Chen, C.F. Effect of the plant-extract osthole on the relaxation of rabbit corpus cavernosum tissue in vitro. J. Urol., 2000, 163(6), 1975-1980.
[http://dx.doi.org/10.1016/S0022-5347(05)67613-6] [PMID: 10799242]
[166]
Liang, H.J.; Suk, F.M.; Wang, C.K.; Hung, L.F.; Liu, D.Z.; Chen, N.Q.; Chen, Y.C.; Chang, C.C.; Liang, Y.C. Osthole, a potential antidiabetic agent, alleviates hyperglycemia in db/db mice. Chem. Biol. Interact., 2009, 181(3), 309-315.
[http://dx.doi.org/10.1016/j.cbi.2009.08.003] [PMID: 19682441]
[167]
Lee, W.H.; Lin, R.J.; Lin, S.Y.; Chen, Y.C.; Lin, H.M.; Liang, Y.C. Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J. Agric. Food Chem., 2011, 59(24), 12874-12881.
[http://dx.doi.org/10.1021/jf2036559] [PMID: 22098542]
[168]
Qi, Z.; Xue, J.; Zhang, Y.; Wang, H.; Xie, M. Osthole ameliorates insulin resistance by increment of adiponectin release in high-fat and high-sucrose-induced fatty liver rats. Planta Med., 2011, 77(3), 231-235.
[http://dx.doi.org/10.1055/s-0030-1250268] [PMID: 20717873]
[169]
Alabi, O.D.; Gunnink, S.M.; Kuiper, B.D.; Kerk, S.A.; Braun, E.; Louters, L.L. Osthole activates glucose uptake but blocks full activation in L929 fibroblast cells, and inhibits uptake in HCLE cells. Life Sci., 2014, 102(2), 105-110.
[http://dx.doi.org/10.1016/j.lfs.2014.03.017] [PMID: 24657891]
[170]
Lee, W.H.; Wu, H.H.; Huang, W.J.; Li, Y.N.; Lin, R.J.; Lin, S.Y.; Liang, Y.C. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK. Molecules, 2015, 20(3), 4516-4529.
[http://dx.doi.org/10.3390/molecules20034516] [PMID: 25768846]
[171]
Sadraei, H.; Shokoohinia, Y.; Sajjadi, S.E.; Mozafari, M. Antispasmodic effects of Prangos ferulacea acetone extract and its main component osthole on ileum contraction. Res. Pharm. Sci., 2013, 8(2), 137-144.
[PMID: 24019823]
[172]
Fan, Y.; Wei, J.; Guo, L.; Zhao, S.; Xu, C.; Sun, H.; Guo, T. Osthole reduces mouse IOP associated with ameliorating extracellular matrix expression of trabecular meshwork cell. Invest. Ophthalmol. Vis. Sci., 2020, 61(10), 38.
[http://dx.doi.org/10.1167/iovs.61.10.38] [PMID: 32821914]
[173]
Yang, N.N.; Shi, H.; Yu, G.; Wang, C.M.; Zhu, C.; Yang, Y.; Yuan, X.L.; Tang, M.; Wang, Z.; Gegen, T.; He, Q.; Tang, K.; Lan, L.; Wu, G.Y.; Tang, Z.X. Osthole inhibits histamine-dependent itch via modulating TRPV1 activity. Sci. Rep., 2016, 6(1), 25657.
[http://dx.doi.org/10.1038/srep25657] [PMID: 27160770]
[174]
Pan, Z.; Fang, Z.; Lu, W.; Liu, X.; Zhang, Y. Osthole, a coumadin analog from Cnidium monnieri (L.) Cusson, stimulates corticosterone secretion by increasing steroidogenic enzyme expression in mouse Y1 adrenocortical tumor cells. J. Ethnopharmacol., 2015, 175, 456-462.
[http://dx.doi.org/10.1016/j.jep.2015.10.009] [PMID: 26456364]
[175]
Sun, N.; Zhang, Y.; Hou, Y.; Yi, Y.; Guo, J.; Zheng, X.; Sun, P.; Sun, Y.; Khan, A.; Li, H. Effects of osthole on progesterone secretion in chicken preovulatory follicles granulosa cells. Animals, 2020, 10(11), 2027.
[http://dx.doi.org/10.3390/ani10112027] [PMID: 33158008]
[176]
Teng, C.M.; Ko, F.N.; Wang, J.P.; Lin, C.N.; Wu, T.S.; Chen, C.C.; Huang, T.F. Antihaemostatic and antithrombotic effect of some antiplatelet agents isolated from Chinese herbs. J. Pharm. Pharmacol., 2011, 43(9), 667-669.
[http://dx.doi.org/10.1111/j.2042-7158.1991.tb03561.x] [PMID: 1685529]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy