Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

A Review on the Determination of Biogenic Amines in Fresh and Processed Fish Products using HPLC, LC-MS/MS and Other Chromatographic Methods

Author(s): Hossein Ahangari, Milad Tavassoli, Arezou Khezerlou, Narges Kiani Salmi, Ali Ehsani* and Mohammad Reza Afshar Mogaddam*

Volume 26, Issue 15, 2023

Published on: 11 April, 2023

Page: [2598 - 2606] Pages: 9

DOI: 10.2174/1386207326666230316141040

Price: $65

Abstract

Biogenic amines (BAs) are compounds deemed to be foodstuff contaminants and are the cause of poisoning or allergy. The main BAs found in foods include histamine, tyramine, putrescine, cadaverine, spermine and spermidine. The number of poisoning cases related to BAs in food has increased, which is reinforcing the need for BAs detection to ensure food safety. BAs are found in varying quantities in different foods such as fish, fruits, meat, cheese, vegetables, beer, and wine. Currently, different analytical techniques are used for BAs detection, as well as sample treatment methods that allow greater sensitivity, higher analyzing speed and lower detection limits. Moreover, BAs can be precursors of nitrosamines, which have been associated with mutagenic and carcinogenic activity. This review aims to provide a general approach to the different detection techniques of the BAs in foods, their concentrations and treatment methods.

Graphical Abstract

[1]
Kočar, D.; Köse, S.; Tufan, B.; Ščavničar, A.; Pompe, M. Determination of biogenic amines in fresh fish and processed fish products using IC-MS/MS. Foods, 2021, 10(8), 1746.
[http://dx.doi.org/10.3390/foods10081746] [PMID: 34441524]
[2]
Kočar, D.; Köse, S.; Koral, S.; Tufan, B.; Ščavničar, A.; Pompe, M. Analysis of biogenic amines using immunoassays, hplc, and a newly developed IC-MS/MS technique in fish products-A comparative study. Molecules, 2021, 26(20), 6156.
[http://dx.doi.org/10.3390/molecules26206156] [PMID: 34684737]
[3]
Inayatullah, A.; Badrul, H.A.; Munir, M.A. Fish analysis containing biogenic amines using gas chromatography flame ionization detector. Sci. Technol. Indonesia, 2021, 6(1), 1-7.
[http://dx.doi.org/10.26554/sti.2021.6.1.1-7]
[4]
Yu, H.; Zhuang, D.; Hu, X.; Zhang, S.; He, Z.; Zeng, M.; Fang, X.; Chen, J.; Chen, X. Rapid determination of histamine in fish by thin-layer chromatography-image analysis method using diazotized visualization reagent prepared with p -nitroaniline. Anal. Methods, 2018, 10(27), 3386-3392.
[http://dx.doi.org/10.1039/C8AY00336J]
[5]
Kaufmann, A.; Maden, K. Easy and fast method for the determination of biogenic amines in fish and fish products with liquid chromatography coupled to orbitrap tandem mass spectrometry. J. AOAC Int., 2018, 101(2), 336-341.
[http://dx.doi.org/10.5740/jaoacint.17-0407] [PMID: 29157330]
[6]
Parchami, R.; Kamalabadi, M.; Alizadeh, N. Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry. J. Chromatogr. A, 2017, 1481, 37-43.
[http://dx.doi.org/10.1016/j.chroma.2016.12.046] [PMID: 28012588]
[7]
Papageorgiou, M.; Lambropoulou, D.; Morrison, C. Kłodzińska, E.; Namieśnik, J.; Płotka-Wasylka, J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Analyt. Chem., 2018, 98, 128-142.
[http://dx.doi.org/10.1016/j.trac.2017.11.001]
[8]
Kuley, E.; Durmus, M.; Balikci, E.; Ucar, Y.; Regenstein, J.M. Özoğul, F. Fish spoilage bacterial growth and their biogenic amine accumulation: Inhibitory effects of olive by-products. Int. J. Food Prop., 2017, 20(5), 1029-1043.
[http://dx.doi.org/10.1080/10942912.2016.1193516]
[9]
Romano, A.; Klebanowski, H.; La Guerche, S.; Beneduce, L.; Spano, G.; Murat, M.L.; Lucas, P. Determination of biogenic amines in wine by thin-layer chromatography/densitometry. Food Chem., 2012, 135(3), 1392-1396.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.022] [PMID: 22953871]
[10]
Mendes, R. Biogenic Amines., in Fishery Products: Quality, Safety and Authenticity; Wiley, 2009, pp. 42-67.
[11]
Gan, N.; Li, T.; Wang, L.; Jiang, Q. Determination of seven biogenic amines in fish using micellar electrokinetic capillary chromatography Se Pu, 2007, 25(6), 934-938 [Se Pu.
[PMID: 18257320]
[12]
Mercogliano, R.; Santonicola, S. Scombroid fish poisoning: Factors influencing the production of histamine in tuna supply chain. A review. Lebensm. Wiss. Technol., 2019, 114, 108374.
[http://dx.doi.org/10.1016/j.lwt.2019.108374]
[13]
Parente, E.; Martuscelli, M.; Gardini, F.; Grieco, S.; Crudele, M.A.; Suzzi, G. Evolution of microbial populations and biogenic amine production in dry sausages produced in Southern Italy. J. Appl. Microbiol., 2001, 90(6), 882-891.
[http://dx.doi.org/10.1046/j.1365-2672.2001.01322.x] [PMID: 11412318]
[14]
Halász, A.; Baráth, Á.; Simon-Sarkadi, L.; Holzapfel, W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol., 1994, 5(2), 42-49.
[http://dx.doi.org/10.1016/0924-2244(94)90070-1]
[15]
Önal, A. A review: Current analytical methods for the determination of biogenic amines in foods. Food Chem., 2007, 103(4), 1475-1486.
[http://dx.doi.org/10.1016/j.foodchem.2006.08.028]
[16]
Cinquina, A.L.; Calì, A.; Longo, F.; Santis, L.D.; Severoni, A.; Abballe, F. Determination of biogenic amines in fish tissues by ion-exchange chromatography with conductivity detection. J. Chromatogr. A, 2004, 1032(1-2), 73-77.
[http://dx.doi.org/10.1016/j.chroma.2004.01.013] [PMID: 15065779]
[17]
Lapa-Guimarães, J.; Pickova, J. New solvent systems for thin-layer chromatographic determination of nine biogenic amines in fish and squid. J. Chromatogr. A, 2004, 1045(1-2), 223-232.
[http://dx.doi.org/10.1016/j.chroma.2004.06.014] [PMID: 15378899]
[18]
Tsiasioti, A.; Tzanavaras, P.D. Selective post-column derivatization coupled to cation exchange chromatography for the determination of histamine and its precursor histidine in fish and Oriental sauce samples. Food Chem., 2021, 351, 129351.
[http://dx.doi.org/10.1016/j.foodchem.2021.129351] [PMID: 33647687]
[19]
Antoine, F.R.; Wei, C.; Otwell, W.S.; Sims, C.A.; Littell, R.C.; Hogle, A.D.; Marshall, M.R. Gas chromatographic analysis of histamine in mahi-mahi (Coryphaena hippurus). J. Agric. Food Chem., 2002, 50(17), 4754-4759.
[http://dx.doi.org/10.1021/jf020148x] [PMID: 12166956]
[20]
Kamankesh, M.; Mohammadi, A.; Mollahosseini, A.; Seidi, S. Application of a novel electromembrane extraction and microextraction method followed by gas chromatography-mass spectrometry to determine biogenic amines in canned fish. Anal. Methods, 2019, 11(14), 1898-1907.
[http://dx.doi.org/10.1039/C9AY00224C]
[21]
Kong, X.; Squire, K.; and Wang, A.X. Facile detection of toxic ingredients in seafood using biologically enabled photonic crystal materials. In Front. Biol. Detect. From Nanosensors to Systems X, 2018, 1050, 14-19.
[http://dx.doi.org/10.1117/12.2292290]
[22]
Zhang, Y.; Yu, J.; Lai, S.; Song, J.; Wu, X.; Wang, D.; Pang, L.; Chai, T. Rapid determination of histamine level in seafood using read-out strips based on high-performance thin layer chromatography modified with self-visualization nanomaterials. Food Control, 2021, 122, 107816.
[http://dx.doi.org/10.1016/j.foodcont.2020.107816]
[23]
Fouad, M.M.; El-Maraghy, C.M. Rapid validated thin-layer chromatography–densitometry for the simultaneous determination of three co-formulated drugs used for common cold treatment. J. Planar Chromatogr. Mod. TLC, 2019, 32(2), 127-131.
[http://dx.doi.org/10.1556/1006.2019.32.2.8]
[24]
Czajkowska-Mysłek, A.; Leszczyńska, J. Liquid chromatography-single-quadrupole mass spectrometry as a responsive tool for determination of biogenic amines in ready-to-eat baby foods. Chromatographia, 2018, 81(6), 901-910.
[http://dx.doi.org/10.1007/s10337-018-3527-z] [PMID: 29887620]
[25]
Jeya Shakila, R.; Vasundhara, T.S.; Kumudavally, K.V. A comparison of the TLC-densitometry and HPLC method for the determination of biogenic amines in fish and fishery products. Food Chem., 2001, 75(2), 255-259.
[http://dx.doi.org/10.1016/S0308-8146(01)00173-X]
[26]
Poole, C.F. Thin-layer chromatography: Challenges and opportunities. J. Chromatogr. A, 2003, 1000(1-2), 963-984.
[http://dx.doi.org/10.1016/S0021-9673(03)00435-7] [PMID: 12877208]
[27]
Latorre-Moratalla, M.L.; Bover-Cid, S.; Veciana-Nogués, T.; Vidal-Carou, M.C. Thin-layer chromatography for the identification and semi-quantification of biogenic amines produced by bacteria. J. Chromatogr. A, 2009, 1216(18), 4128-4132.
[http://dx.doi.org/10.1016/j.chroma.2009.02.045] [PMID: 19286188]
[28]
Gao, Y.X.; Xin, J-W.; Shen, Z-Y.; Pan, W.; Li, X.; Wu, A-G. A new rapid colorimetric detection method of Mn2+ based on tripolyphosphate modified silver nanoparticles. Sens. Actuators B Chem., 2013, 181, 288-293.
[http://dx.doi.org/10.1016/j.snb.2013.01.079]
[29]
Huang, C.; Wang, S.; Zhao, W.; Zong, C.; Liang, A.; Zhang, Q.; Liu, X. Visual and photometric determination of histamine using unmodified gold nanoparticles. Mikrochim. Acta, 2017, 184(7), 2249-2254.
[http://dx.doi.org/10.1007/s00604-017-2253-9]
[30]
Kang, J.; Zhang, Y.; Li, X.; Miao, L.; Wu, A. A rapid colorimetric sensor of clenbuterol based on cysteamine-modified gold nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(1), 1-5.
[http://dx.doi.org/10.1021/acsami.5b09079] [PMID: 26673452]
[31]
Snellings, S.L.; Takenaka, N.E.; Kim-Hayes, Y.; Miller, D.W. Rapid colorimetric method to detect indole in shrimp with gas chromatography mass spectrometry confirmation. J. Food Sci., 2003, 68(4), 1548-1553.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb09682.x]
[32]
Marks, H.S.; Anderson, C.R. Rapid determination and confirmation of biogenic amines in tuna loin by gas chromatography/mass spectrometry using ethylchloroformate derivative. J. AOAC Int., 2006, 89(6), 1591-1599.
[http://dx.doi.org/10.1093/jaoac/89.6.1591] [PMID: 17225607]
[33]
Huang, J.; Gan, N.; Lv, F.; Cao, Y.; Ou, C.; Tang, H. Environmentally friendly solid-phase microextraction coupled with gas chromatography and mass spectrometry for the determination of biogenic amines in fish samples. J. Sep. Sci., 2016, 39(22), 4384-4390.
[http://dx.doi.org/10.1002/jssc.201600893] [PMID: 27753266]
[34]
Ruiz-Capillas, C.; Triki, M.; de las Heras, C.; Tejada, M.; Pálmadóttir, H.; Porvaldsdóttir, R.; Jiménez-Colmenero, F.; Herrero, A.M. Essay of different extraction procedures in capelin fish meal for biogenic amine determination by HPLC. J. Aquat. Food Prod. Technol., 2015, 24(5), 443-453.
[http://dx.doi.org/10.1080/10498850.2013.787482]
[35]
Vuorela, H.; Hinkkanen, R.; Hiltunen, R. Rapid determination of tyramine in fish feed and slaughter offal by HPLC using coulometric detection. Z. Lebensm. Unters. Forsch., 1989, 189(5), 434-437.
[http://dx.doi.org/10.1007/BF01028317] [PMID: 2603571]
[36]
Gill, T.A.; Thompson, J.W. Rapid, automated analysis of amines in seafood by ion-moderated partition hplc. J. Food Sci., 1984, 49(2), 603-606.
[http://dx.doi.org/10.1111/j.1365-2621.1984.tb12479.x]
[37]
Evangelista, W.P.; Silva, T.M.; Guidi, L.R.; Tette, P.A.S.; Byrro, R.M.D.; Santiago-Silva, P.; Fernandes, C.; Gloria, M.B.A. Quality assurance of histamine analysis in fresh and canned fish. Food Chem., 2016, 211, 100-106.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.035] [PMID: 27283612]
[38]
Rabie, M.A.; Elsaidy, S.; El-Badawy, A.A.; Siliha, H.; Malcata, F.X. Biogenic amine contents in selected Egyptian fermented foods as determined by ion-exchange chromatography. J. Food Prot., 2011, 74(4), 681-685.
[http://dx.doi.org/10.4315/0362-028X.JFP-10-257] [PMID: 21477488]
[39]
Romero-González, R.; Alarcón-Flores, M.I.; Vidal, J.L.M.; Frenich, A.G. Simultaneous determination of four biogenic and three volatile amines in anchovy by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. J. Agric. Food Chem., 2012, 60(21), 5324-5329.
[http://dx.doi.org/10.1021/jf300853p] [PMID: 22559197]
[40]
Draisci, R.; Giannetti, L.; Boria, P.; Lucentini, L.; Palleschi, L.; Cavalli, S. Improved ion chromatography–integrated pulsed amperometric detection method for the evaluation of biogenic amines in food of vegetable or animal origin and in fermented foods. J. Chromatogr. A, 1998, 798(1-2), 109-116.
[http://dx.doi.org/10.1016/S0021-9673(97)01198-9] [PMID: 9542132]
[41]
Palermo, C.; Muscarella, M.; Nardiello, D.; Iammarino, M.; Centonze, D. A multiresidual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal. Bioanal. Chem., 2013, 405(2-3), 1015-1023.
[http://dx.doi.org/10.1007/s00216-012-6439-z] [PMID: 23052881]
[42]
Saccani, G.; Tanzi, E.; Pastore, P. Determination of biogenic amines in fresh and processed meat by suppressed ion chromatography-mass spectrometry using a cation-exchange column. J. Chromatogr. A, 2005, 1082(1), 43-50.
[http://dx.doi.org/10.1016/j.chroma.2005.05.030]
[43]
Shashank, A.; Gupta, A.K.; Singh, S.; Ranjan, R. Biogenic Amines (BAs) in meat products, regulatory policies, and detection methods. Curr. Nutr. Food Sci., 2021, 17(9), 995-1005.
[http://dx.doi.org/10.2174/1573401317666210222105100]
[44]
Yang, X.; He, L.; Xu, Z. Pressure-assisted electrokinetic injection for the stacking of biogenic amines gives enhancement factor up to 1000 in CE with UV detection. Anal. Methods, 2022, 14(18), 1782-1787.
[http://dx.doi.org/10.1039/D2AY00430E] [PMID: 35475508]
[45]
Choi, N.; Park, B.; Lee, M.J.; Umapathi, R.; Oh, S.Y.; Cho, Y.; Huh, Y.S. Fabrication of carbon disulfide added colloidal gold colorimetric sensor for the rapid and on-site detection of biogenic amines. Sensors, 2021, 21(5), 1738.
[http://dx.doi.org/10.3390/s21051738] [PMID: 33802387]
[46]
Sadeghi, N. Determination of histamine in canned tuna fish available in Tehran market by ELISA method. J. Food Safety Hygiene, 2019, 5(1), 46-50.
[47]
Diniz, M.S.; Madeira, C.; Noronha, J.P. Survey of biogenic amines (histamine and spermidine) in commercial seafood by enzyme linked immunosorbent assay (ELISA). Ann. Med., 2021, 53(S1), S14-S15.
[http://dx.doi.org/10.1080/07853890.2021.1896888]
[48]
Ahangari, H.; Kurbanoglu, S.; Ehsani, A.; Uslu, B. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications. Trends Food Sci. Technol., 2021, 112, 75-87.
[http://dx.doi.org/10.1016/j.tifs.2021.03.037]
[49]
Xu, L.; Zhou, J.; Eremin, S.; Dias, A.C.P.; Zhang, X. Development of ELISA and chemiluminescence enzyme immunoassay for quantification of histamine in drug products and food samples. Anal. Bioanal. Chem., 2020, 412(19), 4739-4747.
[http://dx.doi.org/10.1007/s00216-020-02730-5] [PMID: 32488385]
[50]
Vasconcelos, H.; de Almeida, J.M.M.M.; Matias, A.; Saraiva, C.; Jorge, P.A.S.; Coelho, L.C.C. Detection of biogenic amines in several foods with different sample treatments: An overview. Trends Food Sci. Technol., 2021, 113, 86-96.
[http://dx.doi.org/10.1016/j.tifs.2021.04.043]
[51]
Ruiz-Capillas, C.; Herrero, A. Impact of biogenic amines on food quality and safety. Foods, 2019, 8(2), 62.
[http://dx.doi.org/10.3390/foods8020062] [PMID: 30744001]
[52]
Gil, R.L.; Amorim, C.G.; Montenegro, M.C.B.S.M.; Araújo, A.N. Determination of biogenic amines in tomato by ion-pair chromatography coupled to an amine-selective potentiometric detector. Electrochim. Acta, 2021, 378, 138134.
[http://dx.doi.org/10.1016/j.electacta.2021.138134]
[53]
Kounnoun, A.; Louajri, A.; Cacciola, F.; Baaboua, A.E.; Mondello, L.; Bougtaib, H.; Alahlah, N.; Stitou, M.; Maadoudi, M.E. Development of a new HPLC method for rapid histamine quantification in fish and fishery products without sample clean-up. Eur. Food Res. Technol., 2022, 248(6), 1679-1689.
[http://dx.doi.org/10.1007/s00217-022-03995-z]
[54]
Weremfo, A.; Eduafo, M.K.; Gyimah, H.A.; Abassah-Oppong, S. Monitoring the levels of biogenic amines in canned fish products marketed in Ghana. J. Food Qual., 2020, 1-6.
[http://dx.doi.org/10.1155/2020/2684235]
[55]
Molognoni, L.; Daguer, H.; de Sá Ploêncio, L.A.; De Dea Lindner, J. A multi-purpose tool for food inspection: Simultaneous determination of various classes of preservatives and biogenic amines in meat and fish products by LC-MS. Talanta, 2018, 178, 1053-1066.
[http://dx.doi.org/10.1016/j.talanta.2017.08.081] [PMID: 29136796]
[56]
Ochi, N. Simultaneous determination of eight underivatized biogenic amines in salted mackerel fillet by ion-pair solid-phase extraction and volatile ion-pair reversed-phase liquid chromatography-tandem mass spectrometry. J. Chromatogr. A, 2019, 1601, 115-120.
[http://dx.doi.org/10.1016/j.chroma.2019.06.027] [PMID: 31229250]
[57]
Plakidi, E.S.; Maragou, N.C.; Dasenaki, M.E.; Megoulas, N.C.; Koupparis, M.A.; Thomaidis, N.S. Liquid chromatographic determination of biogenic amines in fish based on pyrene sulfonyl chloride pre-column derivatization. Foods, 2020, 9(5), 609.
[http://dx.doi.org/10.3390/foods9050609] [PMID: 32397518]
[58]
Pataca, J.K.G.; Porto-Figueira, P.; Pereira, J.A.M.; Caldeira, H.; Câmara, J.S. Profiling the occurrence of biogenic amines in different types of tuna samples using an improved analytical approach. Lebensm. Wiss. Technol., 2021, 139, 110804.
[http://dx.doi.org/10.1016/j.lwt.2020.110804]
[59]
Alizadeh, N.; Kamalabadi, M.; Mohammadi, A. Determination of histamine and tyramine in canned fish samples by headspace solid-phase microextraction based on a nanostructured polypyrrole fiber followed by ion mobility spectrometry. Food Anal. Methods, 2017, 10(9), 3001-3008.
[http://dx.doi.org/10.1007/s12161-017-0860-z]
[60]
Peivasteh-Roudsari, L.; Rahmani, A.; Shariatifar, N.; Tajdar-Oranj, B.; Mazaheri, M.; Sadighara, P.; Khaneghah, A.M. Occurrence of histamine in canned fish samples (tuna, sardine, kilka, and mackerel) from markets in Tehran. J. Food Prot., 2020, 83(1), 136-141.
[http://dx.doi.org/10.4315/0362-028X.JFP-19-288] [PMID: 31855616]
[61]
Huynh, K.H.; Pham, X.H.; Hahm, E.; An, J.; Kim, H.M.; Jo, A.; Seong, B.; Kim, Y.H.; Son, B.S.; Kim, J.; Rho, W.Y.; Jun, B.H. Facile histamine detection by surface-enhanced Raman scattering using SiO2@ Au@ Ag alloy nanoparticles. Int. J. Mol. Sci., 2020, 21(11), 4048.
[http://dx.doi.org/10.3390/ijms21114048] [PMID: 32516981]
[62]
Teepoo, S.; Promta, A.; Phapugrangkul, P. A Competitive colorimetric immunosensor for detection of tyramine in fish samples. Food Anal. Methods, 2019, 12(8), 1886-1894.
[http://dx.doi.org/10.1007/s12161-019-01534-3]
[63]
Koçoğlu, İ.O.; Erden, P.E.; Kılıç, E. Disposable biogenic amine biosensors for histamine determination in fish. Anal. Methods, 2020, 12(30), 3802-3812.
[http://dx.doi.org/10.1039/D0AY00802H] [PMID: 32760948]
[64]
Qi, X.; Wang, W.F.; Wang, J.; Yang, J.L.; Shi, Y.P. Highly selective colorimetric detection of putrescine in fish products using o-phthalaldehyde derivatization reaction. Food Chem., 2018, 259, 245-250.
[http://dx.doi.org/10.1016/j.foodchem.2018.03.131] [PMID: 29680050]
[65]
Torre, R.; Costa-Rama, E.; Lopes, P.; Nouws, H.P.A.; Delerue-Matos, C. Amperometric enzyme sensor for the rapid determination of histamine. Anal. Methods, 2019, 11(9), 1264-1269.
[http://dx.doi.org/10.1039/C8AY02610F]
[66]
Shi, R.; Feng, S.; Park, C.Y.; Park, K.Y.; Song, J.; Park, J.P.; Chun, H.S.; Park, T.J. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosens. Bioelectron., 2020, 167, 112519.
[http://dx.doi.org/10.1016/j.bios.2020.112519] [PMID: 32853903]
[67]
Bi, J.; Tian, C.; Zhang, G.L.; Hao, H.; Hou, H.M. Detection of histamine based on gold nanoparticles with dual sensor system of colorimetric and fluorescence. Foods, 2020, 9(3), 316.
[http://dx.doi.org/10.3390/foods9030316] [PMID: 32182887]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy