Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Polysaccharide and Cyclodextrin-Based Monolithic Chiral Stationary Phases and its Application to Chiral Separation

Author(s): Hassan Y. Aboul-Enein*, Valliappan Kannappan and Selvakumar Kanthiah

Volume 26, Issue 15, 2023

Published on: 16 March, 2023

Page: [2583 - 2597] Pages: 15

DOI: 10.2174/1386207326666230208094859

Price: $65

Abstract

The recent development of monolithic chiral stationary phases (CSPs) for liquid chromatography (LC) is mainly focused on reducing backpressure, maximizing flow rates, faster run time, column efficiency, and stability. This review paper emphasizes recent progress in the development of polysaccharide and cyclodextrin-based monolithic CSPs. Further the paper draws attention to competing techniques, like non-porous particle-packed columns, core-shell and monoliths as chromatographic support matrix, available for achieving fast and efficient chromatographic separation. A brief discussion on the three main classes of chiral monolithic stationary phase viz. silica, organic polymer and hybrid-based monolithic stationary phases is also presented. In addition, the paper highlights various studies on the application of monolith chiral CSPs in LC and capillary electrochromrography separation and analysis of chiral compounds.

Graphical Abstract

[1]
Green, D.W.; Lee, J.M.; Kim, E.J.; Lee, D.J.; Jung, H.S. Chiral biomaterials: From molecular design to regenerative medicine. Adv. Mater. Interfaces, 2016, 3(6), 1500411.
[http://dx.doi.org/10.1002/admi.201500411]
[2]
Mannschreck, A.; Kiesswetter, R.; von Angerer, E. Unequal activities of enantiomers via biological receptors: Examples of chiral drug, pesticide, and fragrance molecules. J. Chem. Educ., 2007, 84(12), 2012-2017.
[http://dx.doi.org/10.1021/ed084p2012]
[3]
Maier, N.M.; Franco, P.; Lindner, W. Separation of enantiomers: Needs, challenges, perspectives. J. Chromatogr. A, 2001, 906(1-2), 3-33.
[http://dx.doi.org/10.1016/S0021-9673(00)00532-X] [PMID: 11215893]
[4]
Fanali, C.; D’Orazio, G.; Gentili, A.; Fanali, S. Analysis of enantiomers in products of food interest. Molecules, 2019, 24(6), 1119.
[http://dx.doi.org/10.3390/molecules24061119] [PMID: 30901832]
[5]
Allenmark, S.G. Chromatographic chiral separation: Methods and applications; Ellis Horwood: Chichester, England, 1988.
[6]
Bojarski, J.; Aboul-Enein, H.; Ghanem, A. What’s new in chromatographic enantioseparations. Curr. Anal. Chem., 2005, 1(1), 59-77.
[http://dx.doi.org/10.2174/1573411052948433]
[7]
Cavazzini, A.; Pasti, L.; Massi, A.; Marchetti, N.; Dondi, F. Recent applications in chiral high performance liquid chromatography: A review. Anal. Chim. Acta, 2011, 706(2), 205-222.
[http://dx.doi.org/10.1016/j.aca.2011.08.038] [PMID: 22023854]
[8]
Healey, R.; Ghanem, A. An insight to chiral monolith for enantioselective nano and micro HPLC: Preparation and applications. Chirality, 2013, 25(6), 314-323.
[http://dx.doi.org/10.1002/chir.22174] [PMID: 23716263]
[9]
Wouters, S.; Hauffman, T.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Desmet, G.; Baron, G.V.; Eeltink, S. Comprehensive study of the macropore and mesopore size distributions in polymer monoliths using complementary physical characterization techniques and liquid chromatography. J. Sep. Sci., 2016, 39(23), 4492-4501.
[http://dx.doi.org/10.1002/jssc.201600896] [PMID: 27709789]
[10]
Lynch, K.B.; Ren, J.; Beckner, M.A.; He, C.; Liu, S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal. Chim. Acta, 2019, 1046, 48-68.
[http://dx.doi.org/10.1016/j.aca.2018.09.021] [PMID: 30482303]
[11]
DeStefano, J.J.; Schuster, S.A.; Lawhorn, J.M.; Kirkland, J.J. Performance characteristics of new superficially porous particles. J. Chromatogr. A, 2012, 1258, 76-83.
[http://dx.doi.org/10.1016/j.chroma.2012.08.036] [PMID: 22939204]
[12]
Gritti, F. Introduction to “Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials” by F. Gritti, A. Cavazzini, N. Marchetti, G. Guiochon [J. Chromatogr. A 1157 (2007) 289–303]. J. Chromatogr. A, 2016, 1446, 13-14.
[http://dx.doi.org/10.1016/j.chroma.2015.09.067] [PMID: 26435310]
[13]
Sklenářová, H.; Chocholouš, P.; Koblová, P.; Zahálka, L.; Šatínský, D.; Matysová, L.; Solich, P. High-resolution monolithic columns—a new tool for effective and quick separation. Anal. Bioanal. Chem., 2013, 405(7), 2255-2263.
[http://dx.doi.org/10.1007/s00216-012-6561-y] [PMID: 23208284]
[14]
Nakanishi, K.; Minakuchi, H.; Soga, N.; Tanaka, N. Double pore silica gel monolith applied to liquid chromatography. J. Sol-Gel Sci. Technol., 1997, 8(1-3), 547-552.
[http://dx.doi.org/10.1007/BF02436897]
[15]
Nakanishi, K.; Soga, N. Phase separation in gelling silica-organic polymer solution: Systems containing poly(sodium styrenesulfonate). J. Am. Ceram. Soc., 1991, 74(10), 2518-2530.
[http://dx.doi.org/10.1111/j.1151-2916.1991.tb06794.x]
[16]
Tanaka, N.; Kobayashi, H.; Nakanishi, K.; Minakuchi, H.; Ishizuka, N. Monolithic LC columns. Anal. Chem., 2001, 73(15), 420 A-429 A.
[http://dx.doi.org/10.1021/ac012495w] [PMID: 11510862]
[17]
Minakuchi, H.; Nakanishi, K.; Soga, N.; Ishizuka, N.; Tanaka, N. Octadecylsilylated porous silica rods as separation media for reversed-phase liquid chromatography. Anal. Chem., 1996, 68(19), 3498-3501.
[http://dx.doi.org/10.1021/ac960281m] [PMID: 21619283]
[18]
Liu, Z.; Otsuka, K.; Terabe, S.; Motokawa, M.; Tanaka, N. Physically adsorbed chiral stationary phase of avidin on monolithic silica column for capillary electrochromatography and capillary liquid chromatography. Electrophoresis, 2002, 23(17), 2973-2981.
[http://dx.doi.org/10.1002/1522-2683(200209)23:17<2973:AID-ELPS2973>3.0.CO;2-U] [PMID: 12207305]
[19]
Guo, J.; Lin, Y.; Xiao, Y.; Crommen, J.; Jiang, Z. Recent developments in cyclodextrin functionalized monolithic columns for the enantioseparation of chiral drugs. J. Pharm. Biomed. Anal., 2016, 130, 110-125.
[http://dx.doi.org/10.1016/j.jpba.2016.05.023] [PMID: 27260139]
[20]
Guo, J.; Zhang, Q.; Peng, Y.; Liu, Z.; Rao, L.; He, T.; Crommen, J.; Sun, P.; Jiang, Z. A facile and efficient one-step strategy for the preparation of β-cyclodextrin monoliths. J. Sep. Sci., 2013, 36(15), 2441-2449.
[http://dx.doi.org/10.1002/jssc.201300374] [PMID: 23723148]
[21]
Guo, J.; Zhang, Q.; Yao, Z.; Zhao, X.; Ran, D.; Crommen, J.; Jiang, Z. One-step strategy for the synthesis of a derivatized cyclodextrin-based monolithic column. J. Sep. Sci., 2014, 37(14), 1720-1727.
[http://dx.doi.org/10.1002/jssc.201400312] [PMID: 24788588]
[22]
Ahmed, M.; Ghanem, A. Enantioselective nano liquid chromatographic separation of racemic pharmaceuticals: A facile one-pot in situ preparation of lipase-based polymer monoliths in capillary format. Chirality, 2014, 26(11), 754-763.
[http://dx.doi.org/10.1002/chir.22290] [PMID: 24604679]
[23]
Wistuba, D.; Schurig, V. Enantiomer separation by capillary electrochromatography on a cyclodextrin-modified monolith. Electrophoresis, 2000, 21(15), 3152-3159.
[http://dx.doi.org/10.1002/1522-2683(20000901)21:15<3152:AID-ELPS3152>3.0.CO;2-L] [PMID: 11001213]
[24]
Wistuba, D.; Banspach, L.; Schurig, V. Enantiomeric separation by capillary electrochromatography using monolithic capillaries with sol-gel-glued cyclodextrin-modified silica particles. Electrophoresis, 2005, 26(10), 2019-2026.
[http://dx.doi.org/10.1002/elps.200410251] [PMID: 15832302]
[25]
Chankvetadze, B. Monolithic chiral stationary phases for liquid-phase enantioseparation techniques. J. Sep. Sci., 2010, 33(3), 305-314.
[http://dx.doi.org/10.1002/jssc.200900805] [PMID: 20169551]
[26]
Fouad, A.; Ibrahim, D.; Adly, F.G.; Ghanem, A. An insight into chiral monolithic stationary phases for enantioselective high-performance liquid chromatography applications. J. Sep. Sci., 2019, 42(14), 2303-2340.
[http://dx.doi.org/10.1002/jssc.201900159] [PMID: 31050176]
[27]
Jialiang, Guo J.; Wang, Q.; Xu, D.; Crommen, J.; Jiang, J. Recent advances in preparation and applications of monolithic chiral stationary phases. Trends Analyt. Chem., 2019, 123, 115774.
[28]
Asmari, M.; Wang, X.; Casado, N.; Piponski, M.; Kovalenko, S.; Logoyda, L.; Hanafi, R.S.; El Deeb, S. Chiral monolithic silica-based HPLC columns for enantiomeric separation and determination: Functionalization of chiral selector and recognition of selector-select and interaction. Molecules, 2021, 26(17), 5241.
[http://dx.doi.org/10.3390/molecules26175241] [PMID: 34500675]
[29]
He, C.; Hendrickx, A.; Mangelings, D.; Smeyers-Verbeke, J.; Vander Heyden, Y. Monolithic silica capillary columns with immobilized cellulose tris(3,5-dimethylphenylcarbamate) for enantiomer separations in CEC. Electrophoresis, 2009, 30(22), 3796-3803.
[http://dx.doi.org/10.1002/elps.200900456] [PMID: 19885889]
[30]
Deng, M.; Xue, M.; Liu, Y.; Zhao, M. Preparation of a novel hydroxypropyl‐ γ‐cyclodextrin functionalized monolith for separation of chiral drugs in capillary electrochromatography. Chirality, 2021, 33(5), 188-195.
[http://dx.doi.org/10.1002/chir.23300] [PMID: 33604997]
[31]
Okamoto, Y.; Ikai, T. Chiral HPLC for efficient resolution of enantiomers. Chem. Soc. Rev., 2008, 37(12), 2593-2608.
[http://dx.doi.org/10.1039/b808881k] [PMID: 19020674]
[32]
Ward, T.J.; Ward, K.D. Chiral separations: A review of current topics and trends. Anal. Chem., 2012, 84(2), 626-635.
[http://dx.doi.org/10.1021/ac202892w] [PMID: 22066781]
[33]
Chankvetadze, B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J. Chromatogr. A, 2012, 1269, 26-51.
[http://dx.doi.org/10.1016/j.chroma.2012.10.033] [PMID: 23141986]
[34]
Padró, J.M.; Keunchkarian, S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchem. J., 2018, 140, 142-157.
[http://dx.doi.org/10.1016/j.microc.2018.04.017]
[35]
Okamoto, Y.; Ikai, T.; Shen, J. Controlled immobilization of polysaccharide derivatives for efficient chiral separation. Isr. J. Chem., 2011, 51(10), 1096-1106.
[http://dx.doi.org/10.1002/ijch.201100025]
[36]
Teixeira, J.; Tiritan, M.E.; Pinto, M.M.M.; Fernandes, C. Chiral stationary phases for liquid chromatography: Recent developments. Molecules, 2019, 24(5), 865.
[http://dx.doi.org/10.3390/molecules24050865] [PMID: 30823495]
[37]
Chankvetadze, B.; Yamamoto, C.; Okamoto, Y. Very fast enantioseparation in high performance liquid chromatography using cellulose tris(3,5- dimethylphenylcarbamate) coated on monolithic silica support. Chem. Lett., 2003, 32(9), 850-851.
[http://dx.doi.org/10.1246/cl.2003.850]
[38]
Chankvetadze, B.; Ikai, T.; Yamamoto, C.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on monolithic silica columns containing a covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J. Chromatogr. A, 2004, 1042(1-2), 55-60.
[http://dx.doi.org/10.1016/j.chroma.2004.05.011] [PMID: 15296388]
[39]
Chankvetadze, B.; Yamamoto, C.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with cellulose tris(3,5-dimethylphenylcarbamate). J. Sep. Sci., 2004, 27(10-11), 905-911.
[http://dx.doi.org/10.1002/jssc.200401819] [PMID: 15354567]
[40]
Chankvetadze, B.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). J. Chromatogr. A, 2006, 1110(1-2), 46-52.
[http://dx.doi.org/10.1016/j.chroma.2006.01.076] [PMID: 16476435]
[41]
Chankvetadze, B.; Kubota, T.; Ikai, T.; Yamamoto, C.; Kamigaito, M.; Tanaka, N.; Nakanishi, K.; Okamoto, Y. High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. J. Sep. Sci., 2006, 29(13), 1988-1995.
[http://dx.doi.org/10.1002/jssc.200500388] [PMID: 17017011]
[42]
Qin, F.; Xie, C.; Feng, S.; Ou, J.; Kong, L.; Ye, M.; Zou, H. Monolithic silica capillary column with coated cellulose tris(3,5-dimethylphenylcarbamate) for capillary electrochromatographic separation of enantiomers. Electrophoresis, 2006, 27(5-6), 1050-1059.
[http://dx.doi.org/10.1002/elps.200500622] [PMID: 16470756]
[43]
Dong, X.; Wu, R.; Dong, J.; Wu, M.; Zhu, Y.; Zou, H. The covalently bonded cellulose tris(3,5-dimethylphenylcarbamate) on a silica monolithic capillary column for enantioseparation in capillary electrochromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2008, 875(1), 317-322.
[http://dx.doi.org/10.1016/j.jchromb.2008.05.019] [PMID: 18757253]
[44]
Dong, X.; Wu, R.; Dong, J.; Wu, M.; Zhu, Y.; Zou, H. Polyacrylamide-based monolithic capillary column with coating of cellulose tris(3,5-dimethylphenyl-carbamate) for enantiomer separation in capillary electrochromatography. Electrophoresis, 2008, 29(4), 919-927.
[http://dx.doi.org/10.1002/elps.200700644] [PMID: 18219649]
[45]
Ou, J.; Lin, H.; Tang, S.; Zhang, Z.; Dong, J.; Zou, H. Hybrid monolithic columns coated with cellulose tris(3,5-dimethylphenyl-carbamate) for enantioseparations in capillary electrochromatography and capillary liquid chromatography. J. Chromatogr. A, 2012, 1269, 372-378.
[http://dx.doi.org/10.1016/j.chroma.2012.09.022] [PMID: 23022241]
[46]
Lin, H.; Ou, J.; Tang, S.; Zhang, Z.; Dong, J.; Liu, Z.; Zou, H. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography. J. Chromatogr. A, 2013, 1301, 131-138.
[http://dx.doi.org/10.1016/j.chroma.2013.05.069] [PMID: 23806359]
[47]
Kumar, A.P.; Park, J.H. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography. J. Chromatogr. A, 2010, 1217(26), 4494-4500.
[http://dx.doi.org/10.1016/j.chroma.2010.04.044] [PMID: 20451209]
[48]
Kumar, A.P.; Park, J.H. Fast separations of chiral β-blockers on a cellulosetris(3,5-dimethylphenylcarbamate)-coated zirconia monolithic column by capillary electrochromatography. J. Chromatogr. A, 2011, F 1218, 5369-5373.
[49]
Kumar, A.P.; Park, J.H. Chiral separation of basic compounds on a cellulose 3,5-dimethylphenylcarbamate-coated zirconia monolithin basic eluents by capillary electrochromatography. J. Chromatogr. A, 2011, 1218(37), 6548-6553.
[http://dx.doi.org/10.1016/j.chroma.2011.06.101] [PMID: 21791339]
[50]
Lee, J.M.; Jang, M.D.; Park, J.H. Chiral separation on sulfonated cellulose tris(3,5-dimethylphenylcarbamate)-coated zirconia monolith by capillary electrochromatography. Bull. Korean Chem. Soc., 2012, 33(8), 2651-2656.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2651]
[51]
Wang, J.; Wang, X.; Li, J.; Lü, H.; Lin, X.; Xie, Z.; Zhang, Q. Preparation of chiral monolithic column with covalently bonded cellulose and their application to rapid enantioseparation Se Pu, 2011, 29(12), 1222-1229.
[PMID: 22500451]
[52]
Lv, C.; Liu, Y.; Mangelings, D.; Vander Heyden, Y. Enantioselectivity of monolithic silica stationary phases immobilized with different concentrations cellulose tris (3,5-dimethylphenylcarbamate), analyzed with different mobile phases in capillary electrochromatography. Electrophoresis, 2011, 32(19), 2708-2717.
[http://dx.doi.org/10.1002/elps.201000637] [PMID: 21983820]
[53]
Liu, Y.; Heyden, Y.V.; Mangelings, D. Amylose-3,5-dimethylphenylcarbamate immobilized on monolithic silica stationary phases for chiral separations in capillary electrochromatography. Electrophoresis, 2012, 33(11), 1613-1623.
[http://dx.doi.org/10.1002/elps.201100689] [PMID: 22736364]
[54]
Fouad, A.; Marzouk, A.A.; Ibrahim, S.M.; El-Adl, S.M.; Ghanem, A. Functionalized polymer monoliths with carbamylated amylose for the enantioselective reversed phase nano-liquid chromatographic separation of a set of racemic pharmaceuticals. J. Chromatogr. A, 2017, 1515, 91-99.
[http://dx.doi.org/10.1016/j.chroma.2017.07.065] [PMID: 28797665]
[55]
Noel Echevarria, R.; Carrasco-Correa, E.J.; Keunchkarian, S.; Reta, M.; Herrero-Martinez, J.M. Photografted methacrylate-based monolithic columns coated with cellulose tris(3,5-dimethylphenylcarbamate) for chiral separation in CEC. J. Sep. Sci., 2018, 41(6), 1424-1432.
[http://dx.doi.org/10.1002/jssc.201701234] [PMID: 29385319]
[56]
Echevarría, R.N.; Keunchkarian, S.; Villarroel-Rocha, J.; Sapag, K.; Reta, M. Organic monolithic capillary columns coated with cellulose tris(3,5-dimethylphenyl carbamate) for enantioseparations by capillary HPLC. Microchem. J., 2019, 149, 104011.
[http://dx.doi.org/10.1016/j.microc.2019.104011]
[57]
Zhou, Y.; Liang, Q.; Zhang, Z.; Wang, Z.; Huang, M. Chiral separations with crosslinked cellulose derivatives attached onto hybrid silica monolith particles via the thiol–ene click reaction. Anal. Methods, 2020, 12(21), 2727-2734.
[http://dx.doi.org/10.1039/D0AY00772B] [PMID: 32930304]
[58]
Ratih, R.; Wätzig, H.; Azminah, A.; Asmari, M.; Peters, B.; El Deeb, S. Immobilization of chondroitin sulfate a onto monolithic epoxy silica column as a new chiral stationary phase for high-performance liquid chromatographic enantioseparation. Pharmaceuticals (Basel), 2021, 14(2), 98.
[http://dx.doi.org/10.3390/ph14020098] [PMID: 33513944]
[59]
Fujimura, K.; Ueda, T.; Ando, T. Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. Anal. Chem., 1983, 55(3), 446-450.
[http://dx.doi.org/10.1021/ac00254a009]
[60]
Armstrong, D.W.; DeMond, W. Cyclodextrin bonded phases for the liquid chromatographic separation of optical, geometrical, and structural isomers. J. Chromatogr. Sci., 1984, 22(9), 411-415.
[http://dx.doi.org/10.1093/chromsci/22.9.411]
[61]
Bressolle, F.; Audran, M.; Pham, T.N.; Vallon, J.J. Cyclodextrins and enantiomeric separations of drugs by liquid chromatography and capillary electrophoresis: Basic principles and new developments. J. Chromatogr., Biomed. Appl., 1996, 687(2), 303-336.
[http://dx.doi.org/10.1016/S0378-4347(96)00263-0] [PMID: 9017455]
[62]
Haginaka, J. Pharmaceutical and biomedical applications of enantioseparations using liquid chromatographic techniques. J. Pharm. Biomed. Anal., 2002, 27(3-4), 357-372.
[http://dx.doi.org/10.1016/S0731-7085(01)00652-5] [PMID: 11755739]
[63]
Xiao, Y.; Ng, S.C.; Tan, T.T.Y.; Wang, Y. Recent development of cyclodextrin chiral stationary phases and their applications in chromatography. J. Chromatogr. A, 2012, 1269, 52-68.
[http://dx.doi.org/10.1016/j.chroma.2012.08.049] [PMID: 22959844]
[64]
Tang, M.; Zhang, J.; Zhuang, S.; Liu, W. Development of chiral stationary phases for high-performance liquid chromatographic separation. Trends Analyt. Chem., 2012, 39, 180-194.
[http://dx.doi.org/10.1016/j.trac.2012.07.006]
[65]
Svec, F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J. Sep. Sci., 2005, 28(8), 729-745.
[http://dx.doi.org/10.1002/jssc.200400086] [PMID: 15940819]
[66]
Zou, H.; Huang, X.; Ye, M.; Luo, Q. Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J. Chromatogr. A, 2002, 954(1-2), 5-32.
[http://dx.doi.org/10.1016/S0021-9673(02)00072-9] [PMID: 12058917]
[67]
Koide, T.; Ueno, K. Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with β-cyclodextrin-bonded charged polyacrylamide gels. Anal. Sci., 1999, 15(8), 791-794.
[http://dx.doi.org/10.2116/analsci.15.791]
[68]
Koide, T.; Ueno, K. Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with β-cyclodextrin-bonded positively charged polyacrylamide gels. J. High Resolut. Chromatogr., 2000, 23(1), 59-66.
[http://dx.doi.org/10.1002/(SICI)1521-4168(20000101)23:1<59:AID-JHRC59>3.0.CO;2-B]
[69]
Sinner, F.; Buchmeiser, M.R. New class of continuous polymer supports prepared by ring-opening metathesis polymerization: A straightforward route to functionalized monoliths. Macromolecules, 2000, 33(16), 5777-5786.
[http://dx.doi.org/10.1021/ma000322n]
[70]
Koide, T.; Ueno, K. Enantiomeric separations by capillary electrochromatography with charged polyacrylamide gels incorporating chiral selectors. Anal. Sci., 2000, 16(10), 1065-1070.
[http://dx.doi.org/10.2116/analsci.16.1065]
[71]
Koide, T.; Ueno, K. Enantiomeric separations of cationic and neutral compounds by capillary electrochromatography with monolithic chiral stationary phases of β-cyclodextrin-bonded negatively charged polyacrylamide gels. J. Chromatogr. A, 2000, 893(1), 177-187.
[http://dx.doi.org/10.1016/S0021-9673(00)00699-3] [PMID: 11043598]
[72]
Kang, J.; Wistuba, D.; Schurig, V. A silica monolithic column prepared by the sol-gel process for enantiomeric separation by capillary electrochromatography. Electrophoresis, 2002, 23(7-8), 1116-1120.
[http://dx.doi.org/10.1002/1522-2683(200204)23:7/8<1116:AID-ELPS1116>3.0.CO;2-O] [PMID: 11981860]
[73]
Pumera, M. Jelinek, I.; Jindrich, J.; Benada, O. β-Cyclodextrin-modified monolithic stationary phases for capillary electrochromatography and nano-hplc chiral analysis of ephedrine and ibuprofen. J. Liq. Chromatogr. Relat. Technol., 2002, 25(16), 2473-2484.
[http://dx.doi.org/10.1081/JLC-120014268]
[74]
Chen, Z.; Ozawa, H.; Uchiyama, K.; Hobo, T. Cyclodextrin-modified monolithic columns for resolving dansyl amino acid enantiomers and positional isomers by capillary electrochromatography. Electrophoresis, 2003, 24(15), 2550-2558.
[http://dx.doi.org/10.1002/elps.200305403] [PMID: 12900867]
[75]
Lubda, D.; Cabrera, K.; Nakanishi, K.; Lindner, W. Monolithic silica columns with chemically bonded? -cyclodextrin as a stationary phase for enantiomer separations of chiral pharmaceuticals. Anal. Bioanal. Chem., 2003, 377(5), 892-901.
[http://dx.doi.org/10.1007/s00216-003-2181-x] [PMID: 13680065]
[76]
Ozawa, H.; Chen, Z.; Kawata, K.; Nakagama, T.; Uchiyama, K.; Hobo, T. Capillary electrochromatographic behaviors of dansyl amino acid enantiomers on a cyclodextrin-immobilized monolithic silica column. Bunseki Kagaku, 2003, 52(12), 1105-1112.
[http://dx.doi.org/10.2116/bunsekikagaku.52.1105]
[77]
Zeng, H.L.; Li, H.F.; Lin, J.M. Chiral separation of dansyl amino acids by PDMS microchip gel monolithic column electrochromatography with γ-cyclodextrin bonded in polyacrylamide. Anal. Chim. Acta, 2005, 551(1-2), 1-8.
[http://dx.doi.org/10.1016/j.aca.2005.07.020]
[78]
Bayer, M.; Hänsel, C.; Mosandl, A. Enantiomer separation on monolithic silica HPLC columns using chemically bonded methylated and methylated/acetylated 6-O-tert-butyldimethyl- silylated β-cyclodextrin. J. Sep. Sci., 2006, 29(11), 1561-1570.
[http://dx.doi.org/10.1002/jssc.200600044] [PMID: 16922271]
[79]
Zeng, H.L.; Li, H.F.; Wang, X.; Lin, J.M. Development of a gel monolithic column polydimethylsiloxane microfluidic device for rapid electrophoresis separation. Talanta, 2006, 69(1), 226-231.
[http://dx.doi.org/10.1016/j.talanta.2005.09.030] [PMID: 18970558]
[80]
Hsieh, M.L.; Li, G.Y.; Chau, L.K.; Hon, Y.S. Single-step approach to β-cyclodextrin-bonded silica as monolithic stationary phases for CEC. J. Sep. Sci., 2008, 31(10), 1819-1827.
[http://dx.doi.org/10.1002/jssc.200700631] [PMID: 18481324]
[81]
Guerrouache, M.; Millot, M.C.; Carbonnier, B. Functionalization of macroporous organic polymer monolith based on succinimide ester reactivity for chiral capillary chromatography: A cyclodextrin click approach. Macromol. Rapid Commun., 2009, 30(2), 109-113.
[http://dx.doi.org/10.1002/marc.200800584] [PMID: 21706584]
[82]
Tian, Y.; Zhong, C.; Fu, E.; Zeng, Z. Novel β-cyclodextrin derivative functionalized polymethacrylate-based monolithic columns for enantioselective separation of ibuprofen and naproxen enantiomers in capillary electrochromatography. J. Chromatogr. A, 2009, 1216(6), 1000-1007.
[http://dx.doi.org/10.1016/j.chroma.2008.12.014] [PMID: 19124130]
[83]
Lv, Y.; Mei, D.; Pan, X.; Tan, T. Preparation of novel β-cyclodextrin functionalized monolith and its application in chiral separation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, 878(26), 2461-2464.
[http://dx.doi.org/10.1016/j.jchromb.2010.07.020] [PMID: 20724232]
[84]
Tsuzuki, K.; Lim, L.W.; Takeuchi, T. Separation of dansyl amino acids on γ-cyclodextrin-bonded monolithic silica columns prepared via urethanization in capillary LC. Bunseki Kagaku, 2010, 59(8), 685-691.
[http://dx.doi.org/10.2116/bunsekikagaku.59.685]
[85]
Yuan, R.; Wang, Y.; Ding, G. Enantiomeric separation by capillary electrochromatography on a sulfated poly β-cyclodextrin modified silica-based monolith. Anal. Sci., 2010, 26(9), 943-947.
[http://dx.doi.org/10.2116/analsci.26.943] [PMID: 20834124]
[86]
Li, Y.; Song, C.; Zhang, L.; Zhang, W.; Fu, H. Fabrication and evaluation of chiral monolithic column modified by β-cyclodextrin derivatives. Talanta, 2010, 80(3), 1378-1384.
[http://dx.doi.org/10.1016/j.talanta.2009.09.039] [PMID: 20006102]
[87]
Salwiński, A.; Roy, V.; Agrofoglio, L.A.; Delépée, R. In situ one-step method for synthesis of “click”-functionalized monolithic stationary phase for capillary electrochromatography. Macromol. Chem. Phys., 2011, 212(24), 2700-2707.
[http://dx.doi.org/10.1002/macp.201100526]
[88]
Gu, C.; Shamsi, S.A. Evaluation of a methacrylate-bonded cyclodextrins as a monolithic chiral stationary phase for capillary electrochromatography (CEC)-UV and CEC coupled to mass spectrometry. Electrophoresis, 2011, 32(19), 2727-2737.
[http://dx.doi.org/10.1002/elps.201000647] [PMID: 21983821]
[89]
Zhang, Z.; Wu, M.; Wu, R.; Dong, J.; Ou, J.; Zou, H. Preparation of perphenylcarbamoylated β-cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography. Anal. Chem., 2011, 83(9), 3616-3622.
[http://dx.doi.org/10.1021/ac200414r] [PMID: 21456603]
[90]
Rocco, A.; Maruška, A.; Fanali, S. Enantioseparation of drugs by means of continuous bed (monolithic) columns in nano-liquid chromatography. Chemija, 2012, 23, 294-300.
[91]
Bragg, W.; Shamsi, S.A. A novel positively charged achiral co-monomer for β-cyclodextrin monolithic stationary phase: Improved chiral separation of acidic compounds using capillary electrochromatography coupled to mass spectrometry. J. Chromatogr. A, 2012, 1267, 144-155.
[http://dx.doi.org/10.1016/j.chroma.2012.08.002] [PMID: 23062876]
[92]
Li, M.; Tarawally, M.; Liu, X.; Liu, X.; Guo, L.; Yang, L.; Wang, G. Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography. Talanta, 2013, 109, 1-6.
[http://dx.doi.org/10.1016/j.talanta.2013.03.035] [PMID: 23618133]
[93]
Hong, J.S.; Park, J.H. Chiral separation of basic compounds on sulfated β-cyclodextrin-coated zirconia monolith by capillary electrochromatography. Bull. Korean Chem. Soc., 2013, 34(6), 1809-1813.
[http://dx.doi.org/10.5012/bkcs.2013.34.6.1809]
[94]
Park, J.M.; Park, J.H. Enantiomer separations of basic chiral compounds by capillary electrochromatography on a phosphated β-cyclodextrin-modified zirconia monolith. J. Chromatogr. A, 2014, 1339, 229-233.
[http://dx.doi.org/10.1016/j.chroma.2014.03.008] [PMID: 24661867]
[95]
Lu, Y.; Shamsi, S.A. Comparison of positively and negatively charged achiral co-monomers added to cyclodextrin monolith: Improved chiral separations in capillary electrochromatography. J. Chromatogr. Sci., 2014, 52(9), 1109-1120.
[http://dx.doi.org/10.1093/chromsci/bmt148] [PMID: 24108813]
[96]
Zhang, Q.; Guo, J.; Wang, F.; Crommen, J.; Jiang, Z. Preparation of a β-cyclodextrin functionalized monolith via a novel and simple one-pot approach and application to enantioseparations. J. Chromatogr. A, 2014, 1325, 147-154.
[http://dx.doi.org/10.1016/j.chroma.2013.12.019] [PMID: 24377739]
[97]
Ahmed, M.; Ghanem, A. Chiral β-cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. J. Chromatogr. A, 2014, 1345, 115-127.
[http://dx.doi.org/10.1016/j.chroma.2014.04.023] [PMID: 24786651]
[98]
Zhang, Q.; Guo, J.; Xiao, Y.; Crommen, J.; Jiang, Z. Comparative evaluation of a one-pot strategy for the preparation of β-cyclodextrin-functionalized monoliths: Effect of the degree of amino substitution of β-cyclodextrin on the column performance. J. Sep. Sci., 2015, 38(11), 1813-1821.
[http://dx.doi.org/10.1002/jssc.201500124] [PMID: 25763541]
[99]
Ghanem, A.; Ahmed, M.; Ishii, H.; Ikegami, T. Immobilized β-cyclodextrin-based silica vs polymer monoliths for chiral nano liquid chromatographic separation of racemates. Talanta, 2015, 132, 301-314.
[http://dx.doi.org/10.1016/j.talanta.2014.09.006] [PMID: 25476312]
[100]
Zhang, P.; Wang, J.; Yang, H.; Su, L.; Xiong, Y.; Ye, F. Facile one-pot preparation of chiral monoliths with a well-defined framework based on the thiol–ene click reaction for capillary liquid chromatography. RSC Advances, 2016, 6(30), 24835-24842.
[http://dx.doi.org/10.1039/C6RA01370H]
[101]
Szwed, K.; Ou, J.; Huang, G.; Lin, H.; Liu, Z.; Wang, H.; Zou, H. Preparation of cyclodextrin-modified monolithic hybrid columns for the fast enantioseparation of hydroxy acids in capillary liquid chromatography. J. Sep. Sci., 2016, 39(6), 1110-1117.
[http://dx.doi.org/10.1002/jssc.201501157] [PMID: 27027591]
[102]
Guo, J.; Xiao, Y.; Lin, Y.; Zhang, Q.; Chang, Y.; Crommen, J.; Jiang, Z. Influence of the linking spacer length and type on the enantioseparation ability of β-cyclodextrin functionalized monoliths. Talanta, 2016, 152, 259-268.
[http://dx.doi.org/10.1016/j.talanta.2016.02.016] [PMID: 26992519]
[103]
Guo, J.; Xiao, Y.; Lin, Y.; Crommen, J.; Jiang, Z. Effect of the crosslinker type on the enantioseparation performance of β -cyclodextrin functionalized monoliths prepared by the one-pot approach. J. Chromatogr. A, 2016, 1467, 288-296.
[http://dx.doi.org/10.1016/j.chroma.2016.05.078] [PMID: 27268520]
[104]
Khadka, S.; El Rassi, Z. Postpolymerization modification of a hydroxy monolith precursor. Part III. Activation of poly(hydroxyethyl methacrylate-co-pentaerythritol triacrylate) monolith with epoxy functionalities followed by bonding of glycerol, polyamines, and hydroxypropyl-β-cy. Electrophoresis, 2016, 37(23-24), 3178-3185.
[http://dx.doi.org/10.1002/elps.201600326] [PMID: 27611716]
[105]
Ghanem, A.; Adly, F.G.; Sokerik, Y.; Antwi, N.Y.; Shenashen, M.A.; El-Safty, S.A. Trimethyl- β -cyclodextrin-encapsulated monolithic capillary columns: Preparation, characterization and chiral nano-LC application. Talanta, 2017, 169, 239-248.
[http://dx.doi.org/10.1016/j.talanta.2016.06.027] [PMID: 28411817]
[106]
Lin, Y.; Guo, J.; Lin, H.; Wang, J.; Somsen, G.W.; Crommen, J.; Jiang, Z. Effect of fabrication strategy on the enantioseparation performance of β-cyclodextrin-functionalized polymethacrylate monoliths: A comparative evaluation. J. Sep. Sci., 2017, 40(19), 3754-3762.
[http://dx.doi.org/10.1002/jssc.201700424] [PMID: 28749038]
[107]
Deng, M.; Li, M.; Zhao, Y.; Jiang, Z.; Guo, X. A novel one-pot strategy to prepare β-cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs. Talanta, 2018, 189, 458-466.
[http://dx.doi.org/10.1016/j.talanta.2018.07.041] [PMID: 30086947]
[108]
Deng, M.; Li, S.; Cai, L.; Guo, X. Preparation of a hydroxypropyl-β-cyclodextrin functionalized monolithic column by one-pot sequential reaction and its application for capillary electrochromatographic enantiomer separation. J. Chromatogr. A, 2019, 1603, 269-277.
[http://dx.doi.org/10.1016/j.chroma.2019.06.044] [PMID: 31279475]
[109]
Angga, S.C.; Septiana, D.; Amalia, S.; Warsito, W.; Iftitah, E.D.; Sabarudin, A. Preparation of poly-(GMA-EDA-β-CD-co-TMPTMA) monolith as high-performance liquid chromatography chiral stationary phase column. Indones. J. Chem., 2019, 19, 951-958.
[http://dx.doi.org/10.22146/ijc.38556]
[110]
Chen, R.; Lin, C.; Lyu, H.; Lin, X.; Xie, Z. Highly efficient preparation of β-CD-based chiral monolithic column by “one-pot” hydroxymethyl polycondensation for enantioseparation in capillary liquid chromatography. J. Chromatogr. A, 2020, 1616, 460781.
[http://dx.doi.org/10.1016/j.chroma.2019.460781] [PMID: 31858997]
[111]
Zhou, L.; Liu, B.; Guan, J.; Jiang, Z.; Guo, X. Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds. J. Chromatogr. A, 2020, 1620, 460932.
[http://dx.doi.org/10.1016/j.chroma.2020.460932] [PMID: 32029266]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy