Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Comprehensive Review on the Anti-inflammatory Activity of Chalconesderived Moieties

Author(s): Roopal Mittal*, Shailesh Sharma, Ajay Singh Kushwah, Obaid Yaqoob and Deepika Kumari

Volume 10, Issue 1, 2024

Published on: 17 April, 2023

Article ID: e010323214185 Pages: 13

DOI: 10.2174/2215083809666230301085620

Price: $65

Abstract

Background: In recent decades, all-embracing research accounting for thousands of natural bioactive compounds have been detailed on behalf of their origin, pharmacological activity, active phytoconstituents, and therapeutic applications. Chalcones, secondary metabolites have shown therapeutic potential against various forms of inflammation, pain, and cancer in multiple research papers targeting their pathway inhibition and their significant therapeutic activity.

Area Covered: Diverse aspects of chalcones have been focused on with their biological source, pathway inhibition, and pharmacological activity.

Objectives: This study aims to focus on the chalcones being the origin of ethnopharmacological, possess extensive pharmacological activities, including anti-neoplastic, antimicrobial, anti-inflammatory, antioxidant, anti-acne, anti-aging, hepatoprotective, neuroprotective, psychoactive, anti-parasitic, and many others.

Methods: Chalcones display anti-inflammatory activity via COX-2, NO synthase, and TNF-α inhibition. Furthermore, comprehensive studies will be discussed with a viewpoint of the chalcones’s role in the alleviation of inflammation. According to recent advancements, chalcones clinically have been used in the treatment of inflammation, anti-aging, oxidative stress reduction, autophagy, and apoptosis.

Conclusion: This article focuses on the molecular progression of inflammation and the chalcone role in combating inflammation by targeting inflammatory mediators and pathways.

Graphical Abstract

[1]
Galley HF, Webster NR. The immuno-inflammatory cascade. Br J Anaesth 1996; 77(1): 11-6.
[http://dx.doi.org/10.1093/bja/77.1.11] [PMID: 8703619]
[2]
Bankova VS, de Castro SL, Marcucci MC. Propolis: recent advances in chemistry and plant origin. Apidologie 2000; 31(1): 3-15.
[http://dx.doi.org/10.1051/apido:2000102]
[3]
Kubina R, Kabała-Dzik A, Dziedzic A, et al. The ethanol extract of polish propolis exhibits anti-proliferative and/or pro-apoptotic effect on HCT 116 colon cancer and Me45 Malignant melanoma cells in vitro conditions. Adv Clin Exp Med 2015; 24(2): 203-12.
[http://dx.doi.org/10.17219/acem/31792] [PMID: 25931350]
[4]
Oršolić N, Šaranović A, Bašić I. Direct and indirect mechanism(s) of antitumour activity of propolis and its polyphenolic compounds. Planta Med 2006; 72(1): 20-7.
[http://dx.doi.org/10.1055/s-2005-873167] [PMID: 16450291]
[5]
Chen W, Ge X, Xu F, et al. Design, synthesis and biological evaluation of paralleled Aza resveratrol–chalcone compounds as potential anti-inflammatory agents for the treatment of acute lung injury. Bioorg Med Chem Lett 2015; 25(15): 2998-3004.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.030] [PMID: 26048788]
[6]
Raj R, Saini A, Gut J, Rosenthal PJ, Kumar V. Synthesis and in vitro antiplasmodial evaluation of 7-chloroquinoline–chalcone and 7-chloroquinoline–ferrocenylchalcone conjugates. Eur J Med Chem 2015; 95: 230-9.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.045] [PMID: 25817773]
[7]
Sashidhara KV, Kumar M, Modukuri RK, et al. Synthesis and anti-inflammatory activity of novel biscoumarin–chalcone hybrids. Bioorg Med Chem Lett 2011; 21(15): 4480-4.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.002] [PMID: 21723119]
[8]
Wei ZY, Chi KQ, Yu ZK, et al. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Bioorg Med Chem Lett 2016; 26(24): 5920-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.001] [PMID: 27843112]
[9]
Bohlmann F, Misra L. New prenylflavanones and chalcones from Helichrysum rugulosum. Planta Med 1984; 50(3): 271-2.
[http://dx.doi.org/10.1055/s-2007-969699] [PMID: 17340312]
[10]
Dominguez X, Tellez O, Ramireze G. Mixtecacin, a prenylated flavanone and oaxacacin its chalcone from the roots of Tephrosia woodii. Phytochemistry 1983; 22(9): 2047-9.
[http://dx.doi.org/10.1016/0031-9422(83)80042-9]
[11]
Iwashina T. The structure and distribution of the flavonoids in plants. J Plant Res 2000; 113(3): 287-99.
[http://dx.doi.org/10.1007/PL00013940]
[12]
Abegaz BM, Ngadjui BT, Dongo E, Ngameni B, Nindi MN, Bezabih M. Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri. Phytochemistry 2002; 59(8): 877-83.
[http://dx.doi.org/10.1016/S0031-9422(01)00483-6] [PMID: 11937170]
[13]
Jayasinghe L, Balasooriya BAIS, Padmini WC, Hara N, Fujimoto Y. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarpus nobilis. Phytochemistry 2004; 65(9): 1287-90.
[http://dx.doi.org/10.1016/j.phytochem.2004.03.033] [PMID: 15184014]
[14]
Yang Y, Zhang T, Xiao L, Yang L, Chen R. Two new chalcones from leaves of Morus alba L. Fitoterapia 2010; 81(6): 614-6.
[http://dx.doi.org/10.1016/j.fitote.2010.03.005] [PMID: 20211228]
[15]
Bhatt P, Dayal R. Stipulin, a prenylated chalcone from Dalbergia stipulacea. Phytochemistry 1992; 31(2): 719-21.
[http://dx.doi.org/10.1016/0031-9422(92)90074-Z]
[16]
Friis-Møller A, Chen M, Fuursted K, Christensen SB, Kharazmi A. In vitro antimycobacterial and antilegionella activity of licochalcone A from Chinese licorice roots. Planta Med 2002; 68(5): 416-9.
[http://dx.doi.org/10.1055/s-2002-32087] [PMID: 12058317]
[17]
Li YP, Yang YC, Li YK, et al. Five new prenylated chalcones from Desmodium renifolium. Fitoterapia 2014; 95: 214-9.
[http://dx.doi.org/10.1016/j.fitote.2014.03.026] [PMID: 24704553]
[18]
Nishimura R, Tabata K, Arakawa M, et al. Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma. Biol Pharm Bull 2007; 30(10): 1878-83.
[http://dx.doi.org/10.1248/bpb.30.1878] [PMID: 17917255]
[19]
Shang X, He X, He X, et al. The genus Scutellaria an ethnopharmacological and phytochemical review. J Ethnopharmacol 2010; 128(2): 279-313.
[http://dx.doi.org/10.1016/j.jep.2010.01.006] [PMID: 20064593]
[20]
Janeczko T, Gładkowski W, Kostrzewa-Susłow E. Microbial transformations of chalcones to produce food sweetener derivatives. J Mol Catal, B Enzym 2013; 98: 55-61.
[http://dx.doi.org/10.1016/j.molcatb.2013.09.021]
[21]
Dolwick Grieb SM, Theis RP, Burr D, Benardot D, Siddiqui T, Asal NR. Food groups and renal cell carcinoma: results from a case-control study. J Am Diet Assoc 2009; 109(4): 656-67.
[http://dx.doi.org/10.1016/j.jada.2008.12.020] [PMID: 19328261]
[22]
Lazarus SA, Bowen K, Garg ML. Tomato juice and platelet aggregation in type 2 diabetes. JAMA 2004; 292(7): 805-6.
[http://dx.doi.org/10.1001/jama.292.7.805] [PMID: 15315994]
[23]
Pandey DK, Shekelle R, Selwyn BJ, Tangney C, Stamler J. Dietary vitamin C and β-carotene and risk of death in middle-aged men. The Western Electric Study. Am J Epidemiol 1995; 142(12): 1269-78.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a117594] [PMID: 7503047]
[24]
Hirai S, Kim YII, Goto T, et al. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages. Life Sci 2007; 81(16): 1272-9.
[http://dx.doi.org/10.1016/j.lfs.2007.09.001] [PMID: 17915259]
[25]
Gafner F, Schmid D, Lozza J, Zülli F. Tetra-carboxy-methyl-naringenin-chalcone, a new active to treat rosacea. Household Pers Care Today 2013; 8: 14-6.
[26]
Horiba T, Nishimura I, Nakai Y, Abe K, Sato R. Naringenin chalcone improves adipocyte functions by enhancing adiponectin production. Mol Cell Endocrinol 2010; 323(2): 208-14.
[http://dx.doi.org/10.1016/j.mce.2010.03.020] [PMID: 20363289]
[27]
Ma L, Wang R, Nan Y, Li W, Wang Q, Jin F. Phloretin exhibits an anticancer effect and enhances the anticancer ability of cisplatin on non-small cell lung cancer cell lines by regulating expression of apoptotic pathways and matrix metalloproteinases. Int J Oncol 2016; 48(2): 843-53.
[http://dx.doi.org/10.3892/ijo.2015.3304] [PMID: 26692364]
[28]
Gomes M, Muratov E, Pereira M, et al. Chalcone derivatives: promising starting points for drug design. Molecules 2017; 22(8): 1210.
[http://dx.doi.org/10.3390/molecules22081210] [PMID: 28757583]
[29]
Ni L, Meng CQ, Sikorski JA. Recent advances in therapeutic chalcones. Expert Opin Ther Pat 2004; 14(12): 1669-91.
[http://dx.doi.org/10.1517/13543776.14.12.1669]
[30]
Salehi B, Fokou P, Sharifi-Rad M, et al. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019; 12(1): 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]
[31]
Ping C, Tengku Mohamad T, Akhtar M, et al. Antinociceptive effects of cardamonin in mice: possible involvement of trpv1, glutamate, and opioid receptors. Molecules 2018; 23(9): 2237.
[http://dx.doi.org/10.3390/molecules23092237] [PMID: 30177603]
[32]
Kaswan NK, Mohd Suhaimi NS, Mohammed Izham NA, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin inhibits nitric oxide production modulated through NMDA receptor in LPS-induced SH-SY5Y cell in vitro model. Life Sci Med Biomed 2020; 4(9): 58.
[http://dx.doi.org/10.28916/lsmb.4.9.2020.58]
[33]
Kaswan NK, Mohammed Izham NAB, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin modulates neuropathic pain through the possible involvement of serotonergic 5-ht1a receptor pathway in cci-induced neuropathic pain mice model. Molecules 2021; 26(12): 3677.
[http://dx.doi.org/10.3390/molecules26123677] [PMID: 34208700]
[34]
Ali AA, Abd Al Haleem EN, Khaleel SAH, Sallam AS. Protective effect of cardamonin against acetic acid-induced ulcerative colitis in rats. Pharmacol Rep 2017; 69(2): 268-75.
[http://dx.doi.org/10.1016/j.pharep.2016.11.002] [PMID: 28129600]
[35]
Chen H, Shi D, Niu P, Zhu Y, Zhou J. Anti-inflammatory effects of cardamonin in ovarian cancer cells are mediated via mTOR suppression. Planta Med 2018; 84(16): 1183-90.
[http://dx.doi.org/10.1055/a-0626-7426] [PMID: 29772587]
[36]
Isa NM, Abdelwahab SI, Mohan S, et al. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot). Braz J Med Biol Res 2012; 45(6): 524-30.
[http://dx.doi.org/10.1590/S0100-879X2012007500022] [PMID: 22358425]
[37]
Bailly C, Vergoten G. Mechanistic insights into dimethyl cardamonin-mediated pharmacological effects: A double control of the AMPK-HMGB1 signaling axis. Life Sci 2020; 263118601
[http://dx.doi.org/10.1016/j.lfs.2020.118601] [PMID: 33086122]
[38]
de Oliveira Cabral C, Campos A, da Silva LM, et al. Gastroprotective potential of methanolic extract and dimethyl cardamonin from Campomanesia reitziana fruits in mice. Naunyn Schmiedebergs Arch Pharmacol 2017; 390(6): 661-6.
[http://dx.doi.org/10.1007/s00210-017-1369-0] [PMID: 28365824]
[39]
Abdallah BM, Ali EM. Butein promotes lineage commitment of bone marrow-derived stem cells into osteoblasts via modulating erk1/2 signaling pathways. Molecules 2020; 25(8): 1885.
[http://dx.doi.org/10.3390/molecules25081885] [PMID: 32325749]
[40]
Ajiboye TO, Lophirones B. Lophirones B and C attenuate acetaminophen-induced liver damage in mice: studies on hepatic, oxidative stress and inflammatory biomarkers. J Biochem Mol Toxicol 2016; 30(10): 497-505.
[http://dx.doi.org/10.1002/jbt.21814] [PMID: 27161652]
[41]
Alhage J, Elbitar H, Taha S, et al. Isolation of bioactive compounds from Calicotome villosa stems. Molecules 2018; 23(4): 851.
[http://dx.doi.org/10.3390/molecules23040851] [PMID: 29642501]
[42]
Apaza TL, Serban AM, Cabanillas AH, Villacampa A, Rumbero A. Flavonoids of Tripodanthus acutifolius inhibit TNF–α production in LPS–activated THP–1 and B16–F10 cells. J Ethnopharmacol 2019; 242112036
[http://dx.doi.org/10.1016/j.jep.2019.112036] [PMID: 31238104]
[43]
Bélanger A, Grenier A, Simard F, et al. Dihydrochalcone derivatives from Populus balsamifera L. buds for the treatment of psoriasis. Int J Mol Sci 2019; 21(1): 256.
[http://dx.doi.org/10.3390/ijms21010256] [PMID: 31905943]
[44]
Bell RF, Moreira VM, Kalso EA, Yli-Kauhaluoma J. Liquorice for pain? Ther Adv Psychopharmacol 2021; 11 20451253211024873. https://doi.org/10.1177%2F20451253211024873.
[http://dx.doi.org/10.1177/20451253211024873] [PMID: 34349979]
[45]
Boyapelly K, Bonin MA, Traboulsi H, et al. Synthesis and characterization of a phosphate prodrug of isoliquiritigenin. J Nat Prod 2017; 80(4): 879-86.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00600] [PMID: 28252963]
[46]
Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int J Mol Sci 2017; 18(10): 2025.
[http://dx.doi.org/10.3390/ijms18102025] [PMID: 28934130]
[47]
Chen J, Liu C, Yang QQ, et al. Isoliquiritigenin suppresses osteosarcoma U2OS cell proliferation and invasion by regulating the PI3K/Akt signalling pathway. Chemotherapy 2018; 63(3): 155-61.
[http://dx.doi.org/10.1159/000490151] [PMID: 29936511]
[48]
Chi JH, Seo GS, Cheon JH, Lee SH. Isoliquiritigenin inhibits TNF-α-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur J Pharmacol 2017; 796: 101-9.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.026] [PMID: 28012970]
[49]
Cerutti ML, Benvenutti L, Nunes R, et al. Effects of 2′,6′-dihydroxy-4′-methoxydihidrochalcone on innate inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(11): 2061-72.
[http://dx.doi.org/10.1007/s00210-020-01922-1] [PMID: 32548784]
[50]
Chen LW, Tsai MC, Chern CY, et al. A chalcone derivative, 1m‐6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation‐induced endothelial dysfunction. Br J Pharmacol 2020; 177(23): 5375-92.
[http://dx.doi.org/10.1111/bph.15175] [PMID: 32579243]
[51]
Kim DU, Chung HC, Kim C, Hwang JK. Oral intake of Boesenbergia pandurata extract improves skin hydration, gloss, and wrinkling: A randomized, double-blind, and placebo-controlled study. J Cosmet Dermatol 2017; 16(4): 512-9.
[http://dx.doi.org/10.1111/jocd.12343] [PMID: 28421656]
[52]
Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T. Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem 2003; 51(11): 3309-12.
[http://dx.doi.org/10.1021/jf0341060] [PMID: 12744659]
[53]
Jiraungkoorskul W, Ongwisespaiboon O. Fingerroot, Boesenbergia rotunda and its aphrodisiac activity. Pharmacogn Rev 2017; 11(21): 27-30.
[http://dx.doi.org/10.4103/phrev.phrev_50_16] [PMID: 28503050]
[54]
Rukayadi Y, Lee K-H, Hwang J-K, Hwang JK. Activity of panduratin A isolated from Kaempferia pandurata Roxb. against multi-species oral biofilms in vitro. J Oral Sci 2009; 51(1): 87-95.
[http://dx.doi.org/10.2334/josnusd.51.87] [PMID: 19325204]
[55]
Tewtrakul S, Subhadhirasakul S, Puripattanavong J, Panphadung T. HIV-1 protease inhibitory substances from the rhizomes of Boesenbergia pandurata Holtt. Songklanakarin J Sci Technol 2003; 25(4): 503-8.
[56]
Chen X, Liu Z, Meng R, Shi C, Guo N. Antioxidative and anticancer properties of Licochalcone A from licorice. J Ethnopharmacol 2017; 198: 331-7.
[http://dx.doi.org/10.1016/j.jep.2017.01.028] [PMID: 28111219]
[57]
Chuang CY, Tang CM, Ho HY, et al. Licochalcone A induces apoptotic cell death via JNK/p38 activation in human nasopharyngeal carcinoma cells. Environ Toxicol 2019; 34(7): 853-60.
[http://dx.doi.org/10.1002/tox.22753] [PMID: 30983163]
[58]
Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet 2012; 379(9813): 361-72.
[http://dx.doi.org/10.1016/S0140-6736(11)60321-8] [PMID: 21880356]
[59]
Thiboutot D, Gollnick H, Bettoli V, et al. New insights into the management of acne: an update from the global alliance to improve outcomes in acne group. J Am Acad Dermatol 2009; 60(5) (Suppl.): S1-S50.
[http://dx.doi.org/10.1016/j.jaad.2009.01.019] [PMID: 19376456]
[60]
Wang Y, Kuo S, Shu M, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Appl Microbiol Biotechnol 2014; 98(1): 411-24.
[http://dx.doi.org/10.1007/s00253-013-5394-8] [PMID: 24265031]
[61]
Angelova-Fischer I, Rippke F, Fischer TW, Neufang G, Zillikens D. A double-blind, randomized, vehicle-controlled efficacy assessment study of a skin care formulation for improvement of mild to moderately severe acne. J Eur Acad Dermatol Venereol 2013; 27 (Suppl. 2): 6-11.
[http://dx.doi.org/10.1111/jdv.12168] [PMID: 23731195]
[62]
Chularojanamontri L, Tuchinda P, Kulthanan K, Varothai S, Winayanuwattikun W. A double-blinded, randomized, vehicle-controlled study to access skin tolerability and efficacy of an anti-inflammatory moisturizer in treatment of acne with 0.1% adapalene gel. J Dermatolog Treat 2016; 27(2): 140-5.
[http://dx.doi.org/10.3109/09546634.2015.1079298] [PMID: 26293170]
[63]
Kantikosum K, Chongpison Y, Chottawornsak N, Asawanonda P. The efficacy of glycolic acid, salicylic acid, gluconolactone, and licochalcone A combined with 0.1% adapalene vs adapalene monotherapy in mild-to-moderate acne vulgaris: a double-blinded within-person comparative study. Clin Cosmet Investig Dermatol 2019; 12: 151-61.
[http://dx.doi.org/10.2147/CCID.S193730] [PMID: 30858720]
[64]
Yang G, Lee HE, Yeon SH, et al. Licochalcone A attenuates acne symptoms mediated by suppression of NLRP3 inflammasome. Phytother Res 2018; 32(12): 2551-9.
[http://dx.doi.org/10.1002/ptr.6195] [PMID: 30281174]
[65]
Kwon HS, Park JH, Kim DH, et al. Licochalcone A isolated from licorice suppresses lipopolysaccharide-stimulated inflammatory reactions in RAW264.7 cells and endotoxin shock in mice. J Mol Med 2008; 86(11): 1287-95.
[http://dx.doi.org/10.1007/s00109-008-0395-2] [PMID: 18825356]
[66]
Tan BC, Tan SK, Wong SM, Ata N, Rahman NA, Khalid N. Distribution of flavonoids and cyclohexenyl chalcone derivatives in conventional propagated and in vitro-derived field-grown Boesenbergia rotunda (L.) Mansf. Evid-based Comply Alter Med 2015; 2015 Article ID 451870, 7 pages, 2015.
[http://dx.doi.org/10.1155/2015/451870]
[67]
Khan J, Deb PK, Priya S, et al. Dietary flavonoids: Cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 2021; 26(13): 4021.
[http://dx.doi.org/10.3390/molecules26134021] [PMID: 34209338]
[68]
Furusawa J, Funakoshi-Tago M, Mashino T, et al. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway. Int Immunopharmacol 2009; 9(4): 499-507.
[http://dx.doi.org/10.1016/j.intimp.2009.01.031] [PMID: 19291859]
[69]
Park HG, Bak EJ, Woo GH, et al. Licochalcone E has an antidiabetic effect. J Nutr Biochem 2012; 23(7): 759-67.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.021] [PMID: 21840191]
[70]
Zhai L, Blom J, Chen M, Christensen SB, Kharazmi A. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob Agents Chemother 1995; 39(12): 2742-8.
[http://dx.doi.org/10.1128/AAC.39.12.2742] [PMID: 8593012]
[71]
Nabekura T, Hiroi T, Kawasaki T, Uwai Y. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein. Biomed Pharmacother 2015; 70: 140-5.
[http://dx.doi.org/10.1016/j.biopha.2015.01.007] [PMID: 25776492]
[72]
Tsukiyama RI, Katsura H, Tokuriki N, Kobayashi M. Antibacterial activity of licochalcone A against spore-forming bacteria. antimicrob agents chemother 2002; 46(5): 1226-30.
[http://dx.doi.org/10.1128/AAC.46.5.1226-1230.2002] [PMID: 11959549]
[73]
Jung M, Triebel S, Anke T, Richling E, Erkel G. Influence of apple polyphenols on inflammatory gene expression. Mol Nutr Food Res 2009; 53(10): 1263-80.
[http://dx.doi.org/10.1002/mnfr.200800575] [PMID: 19764067]
[74]
Rezk BM, Haenen GRMM, van der Vijgh WJF, Bast A. The antioxidant activity of phloretin: the disclosure of a new antioxidant pharmacophore in flavonoids. Biochem Biophys Res Commun 2002; 295(1): 9-13.
[http://dx.doi.org/10.1016/S0006-291X(02)00618-6] [PMID: 12083758]
[75]
Choi B. Biochemical basis of anti-cancer-effects of phloretin-A natural dihydrochalcone. Molecules 2019; 24(2): 278.
[http://dx.doi.org/10.3390/molecules24020278] [PMID: 30642127]
[76]
Chiu YJ, Lin SA, Chen WL, et al. Pathomechanism characterization and potential therapeutics identification for SCA3 targeting neuroinflammation. Aging 2020; 12(23): 23619-46.
[http://dx.doi.org/10.18632/aging.103700] [PMID: 33196459]
[77]
Cheng BF, Gao YX, Lian JJ, et al. Hydroxysafflor yellow A inhibits IL-1β-induced release of IL-6, IL-8, and MMP-1 via suppression of ERK, NF-κB and AP-1 signaling in SW982 human synovial cells. Food Funct 2016; 7(11): 4516-22.
[http://dx.doi.org/10.1039/C6FO01045H] [PMID: 27713966]
[78]
Ban HS, Suzuki K, Lim SS, et al. Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase and tumor necrosis factor-α by 2′-hydroxychalcone derivatives in RAW 264.7 cells. Biochem Pharmacol 2004; 67(8): 1549-57.
[http://dx.doi.org/10.1016/j.bcp.2003.12.016] [PMID: 15041472]
[79]
Jadhav DH, Ramaa C. Synthesis and anti-inflammatory activity of fluorinated chalcone derivatives 2007; 6B, 2064-2067.
[80]
Rojas J, Payá M, Dominguez JN, Luisa Ferrándiz M. The synthesis and effect of fluorinated chalcone derivatives on nitric oxide production. Bioorg Med Chem Lett 2002; 12(15): 1951-4.
[http://dx.doi.org/10.1016/S0960-894X(02)00317-7] [PMID: 12113816]
[81]
Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1β generation. Clin Exp Immunol 2007; 147(2): 227-35.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03261.x] [PMID: 17223962]
[82]
Abbas AK, Lichtman AH, Pillai S. Basic immunology: Functions and disorders of the immune system, 6e: Sae-E-Book. Elsevier India 2019.
[83]
Clària J. Cyclooxygenase-2 biology. Curr Pharm Des 2003; 9(27): 2177-90.
[http://dx.doi.org/10.2174/1381612033454054] [PMID: 14529398]
[84]
Cryer B, Feldman M. Effects of nonsteroidal anti-inflammatory drugs on endogenous gastrointestinal prostaglandins and therapeutic strategies for prevention and treatment of nonsteroidal anti-inflammatory drug-induced damage. Arch Intern Med 1992; 152(6): 1145-55.
[http://dx.doi.org/10.1001/archinte.1992.00400180017003] [PMID: 1599341]
[85]
Madhukar M, Sawraj S, Sharma PD. Design, synthesis and evaluation of mutual prodrug of 4-biphenylacetic acid and quercetin tetramethyl ether (BPA–QTME) as gastrosparing NSAID. Eur J Med Chem 2010; 45(6): 2591-6.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.047] [PMID: 20227799]
[86]
Xu GL, Liu F, Ao GZ, et al. Anti-inflammatory effects and gastrointestinal safety of NNU-hdpa, a novel dual COX/5-LOX inhibitor. Eur J Pharmacol 2009; 611(1-3): 100-6.
[http://dx.doi.org/10.1016/j.ejphar.2009.03.062] [PMID: 19345206]
[87]
Hallas J, Lauritsen J, Villadsen HD, Gram LF. Nonsteroidal anti-inflammatory drugs and upper gastrointestinal bleeding, identifying high-risk groups by excess risk estimates. Scand J Gastroenterol 1995; 30(5): 438-44.
[http://dx.doi.org/10.3109/00365529509093304] [PMID: 7638569]
[88]
N Chaudhary A. Kumar A, Juyal V. Design, synthesis and evaluation of chalcone derivatives as anti-inflammatory, antioxidant and antiulcer agents. Lett Drug Des Discov 2012; 9(5): 479-88.
[http://dx.doi.org/10.2174/157018012800389368]
[89]
Foresti R, Hoque M, Monti D, Green CJ, Motterlini R. Differential activation of heme oxygenase-1 by chalcones and rosolic acid in endothelial cells. J Pharmacol Exp Ther 2005; 312(2): 686-93.
[http://dx.doi.org/10.1124/jpet.104.074153] [PMID: 15537827]
[90]
Hasan S, Elias A, Jwaied AH, Khuodaer AR, Hussain S. Synthesis of new fluorinated chalcone derivative with anti-inflammatory activity. Int J Pharm Pharm Sci 2012; 4(5): 430-4.
[91]
Singhal M, Paul A, Singh H. Synthesis and characterization of some novel chalcone derivatives: an intermediate for various heterocyclic compounds. IJPI 2011; 1(1): 1-7.
[92]
Yadav HL, Gupta P, Pawar RS, Singour PK, Patil UK. Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med Chem Res 2011; 20(4): 461-5.
[http://dx.doi.org/10.1007/s00044-010-9339-9]
[93]
Lichota A, Gwozdzinski L, Gwozdzinski K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur J Med Chem 2019; 176: 68-91.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.075] [PMID: 31096120]
[94]
Sifaki M, Calina D, Docea AO, et al. A novel approach regarding the anti-aging of facial skin through collagen reorganization. Exp Ther Med 2020; 19(1): 717-21.
[PMID: 31885709]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy