Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Promising Radiopharmaceutical Tracers for Detection of Cardiotoxicity in Cardio-oncology

Author(s): Zahra Shaghaghi, Fatemeh Jalali Zefrei, Arsalan Salari, Seyed Amineh Hojjati, Seyed Aboozar Fakhr Mousavi and Soghra Farzipour*

Volume 16, Issue 3, 2023

Published on: 28 March, 2023

Page: [171 - 184] Pages: 14

DOI: 10.2174/1874471016666230228102231

Price: $65

Abstract

Cancer treatment has the potential to cause cardiovascular issues and can encourage the appearance of all aspects of cardiac disease, including coronary heart disease, myocardial disease, heart failure, structural heart disease, and rhythm problems. Imaging is required for both diagnostic workup and therapy monitoring for all possible cardiovascular side effects of cancer therapy. Echocardiography is the cardiac imaging gold standard in cardio-oncology. Despite advancements in its use, this method is often not sensitive to early-stage or subclinical impairment. The use of molecular imaging technologies for diagnosing, assessing, and tracking cardiovascular illness as well as for treating, it is fast growing. Molecular imaging techniques using biologically targeted markers are gradually replacing the traditional anatomical or physiological approaches. They offer unique insight into patho-biological processes at the molecular and cellular levels and enable the evaluation and treatment of cardiovascular disease. This review paper will describe molecularbased single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging techniques that are now available and in development to assess post-infarction cardiac remodeling. These methods could be used to evaluate important biological processes such as inflammation, angiogenesis, and scar formation.

Next »
Graphical Abstract

[1]
Bloom, M.W.; Hamo, C.E.; Cardinale, D.; Ky, B.; Nohria, A.; Baer, L.; Skopicki, H.; Lenihan, D.J.; Gheorghiade, M.; Lyon, A.R.; Butler, J. Cancer therapy–related cardiac dysfunction and heart failure. Circ. Heart Fail., 2016, 9(1), e002661.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002661] [PMID: 26747861]
[2]
Faber, J.; Wingerter, A.; Neu, M.A.; Henninger, N.; Eckerle, S.; Münzel, T.; Lackner, K.J.; Beutel, M.E.; Blettner, M.; Rathmann, W.; Peters, A.; Meisinger, C.; Linkohr, B.; Neuhauser, H.; Kaatsch, P.; Spix, C.; Schneider, A.; Merzenich, H.; Panova-Noeva, M.; Prochaska, J.H.; Wild, P.S. Burden of cardiovascular risk factors and cardiovascular disease in childhood cancer survivors: data from the German CVSS-study. Eur. Heart J., 2018, 39(17), 1555-1562.
[http://dx.doi.org/10.1093/eurheartj/ehy026] [PMID: 29534171]
[3]
Lipshultz, S.E.; Colan, S.D.; Gelber, R.D.; Perez-Atayde, A.R.; Sallan, S.E.; Sanders, S.P. Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N. Engl. J. Med., 1991, 324(12), 808-815.
[http://dx.doi.org/10.1056/NEJM199103213241205] [PMID: 1997853]
[4]
Polomski, E.A.S.; Antoni, M.L.; Jukema, J.W.; Kroep, J.R.; Dibbets-Schneider, P.; Sattler, M.G.A.; de Geus-Oei, L.F. Nuclear medicine imaging methods of radiation-induced cardiotoxicity. Semin. Nucl. Med., 2022, 52(5), 597-610.
[http://dx.doi.org/10.1053/j.semnuclmed.2022.02.001] [PMID: 35246310]
[5]
Thavendiranathan, P.; Grant, A.D.; Negishi, T.; Plana, J.C. Popović Z.B.; Marwick, T.H. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy. J. Am. Coll. Cardiol., 2013, 61(1), 77-84.
[http://dx.doi.org/10.1016/j.jacc.2012.09.035] [PMID: 23199515]
[6]
Tocchetti, C.G.; Ragone, G.; Coppola, C.; Rea, D.; Piscopo, G.; Scala, S.; De Lorenzo, C.; Iaffaioli, R.V.; Arra, C.; Maurea, N. Detection, monitoring, and management of trastuzumab-induced left ventricular dysfunction: an actual challenge. Eur. J. Heart Fail., 2012, 14(2), 130-137.
[http://dx.doi.org/10.1093/eurjhf/hfr165] [PMID: 22219501]
[7]
Ammar, K.A.; Jacobsen, S.J.; Mahoney, D.W.; Kors, J.A.; Redfield, M.M.; Burnett, J.C., Jr; Rodeheffer, R.J. Prevalence and prognostic significance of heart failure stages: Application of the american college of cardiology/american heart association heart failure staging criteria in the community. Circulation, 2007, 115(12), 1563-1570.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.666818] [PMID: 17353436]
[8]
Iskandar, MZ.; Quasem, W.; El-Omar, M. 5-Fluorouracil cardiotoxicity: reversible left ventricular systolic dysfunction with early detection. BMJ Case Rep., 2015 May 2; 2015. PubMed PMID: 25935919. Pubmed Central PMCID: PMC4434324. Epub 2015/05/04. eng
[9]
van Dalen, E.C.; van der Pal, H.J.H.; Kok, W.E.M.; Caron, H.N.; Kremer, L.C.M. Clinical heart failure in a cohort of children treated with anthracyclines: A long-term follow-up study. Eur. J. Cancer, 2006, 42(18), 3191-3198.
[http://dx.doi.org/10.1016/j.ejca.2006.08.005] [PMID: 16987655]
[10]
Kelly, J.M.; Babich, J.W. PET tracers for imaging cardiac function in cardio-oncology. Curr. Cardiol. Rep., 2022, 24(3), 247-260.
[http://dx.doi.org/10.1007/s11886-022-01641-4] [PMID: 35028820]
[11]
Wickramasinghe, C.D.; Nguyen, K.L.; Watson, K.E.; Vorobiof, G.; Yang, E.H. Concepts in cardio-oncology: definitions, mechanisms, diagnosis and treatment strategies of cancer therapy-induced cardiotoxicity. Future Oncol., 2016, 12(6), 855-870.
[http://dx.doi.org/10.2217/fon.15.349] [PMID: 26829050]
[12]
Khouri, M.G.; Klein, M.R.; Velazquez, E.J.; Jones, L.W. Current and emerging modalities for detection of cardiotoxicity in cardio-oncology. Future Cardiol., 2015, 11(4), 471-484.
[http://dx.doi.org/10.2217/fca.15.16] [PMID: 26235924]
[13]
Seidman, A.; Hudis, C.; Pierri, M.K.; Shak, S.; Paton, V.; Ashby, M.; Murphy, M.; Stewart, S.J.; Keefe, D. Cardiac dysfunction in the trastuzumab clinical trials experience. J. Clin. Oncol., 2002, 20(5), 1215-1221.
[http://dx.doi.org/10.1200/JCO.2002.20.5.1215] [PMID: 11870163]
[14]
Lenihan, D.J.; Sawyer, D.B. Heart disease in cancer patients: a burgeoning field where optimizing patient care is requiring interdisciplinary collaborations. Heart Fail. Clin., 2011, 7(3), xxi-xxiii.
[http://dx.doi.org/10.1016/j.hfc.2011.04.001] [PMID: 21749881]
[15]
Varricchi, G.; Ameri, P.; Cadeddu, C.; Ghigo, A.; Madonna, R.; Marone, G.; Mercurio, V.; Monte, I.; Novo, G.; Parrella, P.; Pirozzi, F.; Pecoraro, A.; Spallarossa, P.; Zito, C.; Mercuro, G.; Pagliaro, P.; Tocchetti, C.G. Antineoplastic drug-induced cardiotoxicity: A redox perspective. Front. Physiol., 2018, 9, 167.
[http://dx.doi.org/10.3389/fphys.2018.00167] [PMID: 29563880]
[16]
Jong, J.; Pinney, J.R.; Packard, R.R.S. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front. Cardiovasc. Med., 2022, 9, 919719.
[http://dx.doi.org/10.3389/fcvm.2022.919719] [PMID: 35990941]
[17]
Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev., 2014, 34(1), 106-135.
[http://dx.doi.org/10.1002/med.21280] [PMID: 23494977]
[18]
Christidi, E.; Brunham, L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis., 2021, 12(4), 339.
[http://dx.doi.org/10.1038/s41419-021-03614-x] [PMID: 33795647]
[19]
Aon, M.A.; Cortassa, S. Mitochondrial network energetics in the heart. Wiley Interdiscip. Rev. Syst. Biol. Med., 2012, 4(6), 599-613.
[http://dx.doi.org/10.1002/wsbm.1188] [PMID: 22899654]
[20]
Davies, K.J.; Doroshow, J.H. Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J. Biol. Chem., 1986, 261(7), 3060-3067.
[http://dx.doi.org/10.1016/S0021-9258(17)35746-0] [PMID: 3456345]
[21]
Focaccetti, C.; Bruno, A.; Magnani, E.; Bartolini, D.; Principi, E.; Dallaglio, K.; Bucci, E.O.; Finzi, G.; Sessa, F.; Noonan, D.M.; Albini, A. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS One, 2015, 10(2), e0115686.
[http://dx.doi.org/10.1371/journal.pone.0115686] [PMID: 25671635]
[22]
Rowinsky, E.K.; McGuire, W.P.; Guarnieri, T.; Fisherman, J.S.; Christian, M.C.; Donehower, R.C. Cardiac disturbances during the administration of taxol. J. Clin. Oncol., 1991, 9(9), 1704-1712.
[http://dx.doi.org/10.1200/JCO.1991.9.9.1704] [PMID: 1678781]
[23]
Tocchetti, C.G.; Cadeddu, C.; Di Lisi, D.; Femminò, S.; Madonna, R.; Mele, D.; Monte, I.; Novo, G.; Penna, C.; Pepe, A.; Spallarossa, P.; Varricchi, G.; Zito, C.; Pagliaro, P.; Mercuro, G. From molecular mechanisms to clinical management of antineoplastic drug-induced cardiovascular toxicity: A translational overview. Antioxid. Redox Signal., 2019, 30(18), 2110-2153.
[http://dx.doi.org/10.1089/ars.2016.6930] [PMID: 28398124]
[24]
Varbiro, G.; Veres, B.; Gallyas, F., Jr; Sumegi, B. Direct effect of Taxol on free radical formation and mitochondrial permeability transition. Free Radic. Biol. Med., 2001, 31(4), 548-558.
[http://dx.doi.org/10.1016/S0891-5849(01)00616-5] [PMID: 11498288]
[25]
Schimmel, K.J.M.; Richel, D.J.; van den Brink, R.B.A.; Guchelaar, H.J. Cardiotoxicity of cytotoxic drugs. Cancer Treat. Rev., 2004, 30(2), 181-191.
[http://dx.doi.org/10.1016/j.ctrv.2003.07.003] [PMID: 15023436]
[26]
Al-Majed, A.A.; Sayed-Ahmed, M.M.; Al-Yahya, A.A.; Aleisa, A.M.; Al-Rejaie, S.S.; Al-Shabanah, O.A. Propionyl-l-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol. Res., 2006, 53(3), 278-286.
[http://dx.doi.org/10.1016/j.phrs.2005.12.005] [PMID: 16436331]
[27]
El-Awady, E.S.E.; Moustafa, Y.M.; Abo-Elmatty, D.M.; Radwan, A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur. J. Pharmacol., 2011, 650(1), 335-341.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.085] [PMID: 21034734]
[28]
Mourad, J.J.; Levy, B.I. Mechanisms of antiangiogenic-induced arterial hypertension. Curr. Hypertens. Rep., 2011, 13(4), 289-293.
[http://dx.doi.org/10.1007/s11906-011-0206-y] [PMID: 21479992]
[29]
Hasinoff, B.B.; Patel, D. Mechanisms of myocyte cytotoxicity induced by the multikinase inhibitor sorafenib. Cardiovasc. Toxicol., 2010, 10(1), 1-8.
[http://dx.doi.org/10.1007/s12012-009-9056-0] [PMID: 19915982]
[30]
Bian, Y.; Sun, M.; Silver, M.; Ho, K.K.L.; Marchionni, M.A.; Caggiano, A.O.; Stone, J.R.; Amende, I.; Hampton, T.G.; Morgan, J.P.; Yan, X. Neuregulin-1 attenuated doxorubicin-induced decrease in cardiac troponins. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(6), H1974-H1983.
[http://dx.doi.org/10.1152/ajpheart.01010.2008] [PMID: 19801490]
[31]
Cardinale, D.; Sandri, M.T.; Colombo, A.; Colombo, N.; Boeri, M.; Lamantia, G.; Civelli, M.; Peccatori, F.; Martinelli, G.; Fiorentini, C.; Cipolla, C.M. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation, 2004, 109(22), 2749-2754.
[http://dx.doi.org/10.1161/01.CIR.0000130926.51766.CC] [PMID: 15148277]
[32]
Darby, S.C.; Cutter, D.J.; Boerma, M.; Constine, L.S.; Fajardo, L.F.; Kodama, K.; Mabuchi, K.; Marks, L.B.; Mettler, F.A.; Pierce, L.J.; Trott, K.R.; Yeh, E.T.H.; Shore, R.E. Radiation-related heart disease: current knowledge and future prospects. Int. J. Radiat. Oncol. Biol. Phys., 2010, 76(3), 656-665.
[http://dx.doi.org/10.1016/j.ijrobp.2009.09.064] [PMID: 20159360]
[33]
Purkayastha, A.; Sharma, N.; Sarin, A.; Bhatnagar, S.; Chakravarty, N.; Mukundan, H.; Suhag, V.; Singh, S. Radiation Fibrosis Syndrome: The Evergreen Menace of Radiation Therapy. Asia Pac. J. Oncol. Nurs., 2019, 6(3), 238-245.
[http://dx.doi.org/10.4103/apjon.apjon_71_18] [PMID: 31259219]
[34]
Farzipour, S.; Jalali, F.; Alvandi, M.; Shaghaghi, Z. Ferroptosis inhibitors as new therapeutic insights into radiation-induced heart disease. Cardiovasc. Hematol. Agents Med. Chem., 2023, 21(1), 2-9.
[PMID: 35838214]
[35]
Farzipour, S; Shaghaghi, Z; Raeispour, M; Alvandi, M; Jalali, F; Yazdi, A Evaluation the effect of chelating arms and carrier agents in radiotoxicity of TAT agents. Curr Radiopharm, 2022 May 10; Pub-Med PMID: 35538822. Epub 2022/05/12. eng
[http://dx.doi.org/10.2174/1874471015666220510161047] [PMID: 35538822]
[36]
Mc Ardle, B.; Dowsley, T.F.; Cocker, M.S.; Ohira, H.; deKemp, R.A.; DaSilva, J.; Ruddy, T.D.; Chow, B.J.; Beanlands, R.S. Cardiac PET: metabolic and functional imaging of the myocardium. Semin. Nucl. Med., 2013, 43(6), 434-448.
[http://dx.doi.org/10.1053/j.semnuclmed.2013.06.001] [PMID: 24094711]
[37]
Schaap, J.; de Groot, J.A.H.; Nieman, K.; Meijboom, W.B.; Boekholdt, S.M.; Post, M.C.; Van der Heyden, J.A.S.; de Kroon, T.L.; Rensing, B.J.W.M.; Moons, K.G.M.; Verzijlbergen, J.F. Hybrid myocardial perfusion SPECT/CT coronary angiography and invasive coronary angiography in patients with stable angina pectoris lead to similar treatment decisions. Heart, 2013, 99(3), 188-194.
[http://dx.doi.org/10.1136/heartjnl-2012-302761] [PMID: 23086965]
[38]
Safee, Z.M.; Baark, F.; Waters, E.C.T.; Veronese, M.; Pell, V.R.; Clark, J.E.; Mota, F.; Livieratos, L.; Eykyn, T.R.; Blower, P.J.; Southworth, R. Detection of anthracycline-induced cardiotoxicity using perfusion-corrected 99mTc sestamibi SPECT. Sci. Rep., 2019, 9(1), 216.
[http://dx.doi.org/10.1038/s41598-018-36721-5] [PMID: 30659226]
[39]
Nousiainen, T.; Jantunen, E.; Vanninen, E.; Hartikainen, J. Early decline in left ventricular ejection fraction predicts doxorubicin cardiotoxicity in lymphoma patients. Br. J. Cancer, 2002, 86(11), 1697-1700.
[http://dx.doi.org/10.1038/sj.bjc.6600346] [PMID: 12087452]
[40]
Bennink, R.J.; van den Hoff, M.J.; van Hemert, F.J.; de Bruin, K.M.; Spijkerboer, A.L.; Vanderheyden, J.L.; Steinmetz, N.; van Eck-Smit, B.L. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J. Nucl. Med., 2004, 45(5), 842-848.
[PMID: 15136635]
[41]
Carrió, I.; Lopez-Pousa, A.; Estorch, M.; Duncker, D.; Berná, L.; Torres, G.; de Andrés, L. Detection of doxorubicin cardiotoxicity in patients with sarcomas by indium-111-antimyosin monoclonal antibody studies. J. Nucl. Med., 1993, 34(9), 1503-1507.
[PMID: 8355070]
[42]
Bulten, B.F.; Sollini, M.; Boni, R.; Massri, K.; de Geus-Oei, L.F.; van Laarhoven, H.W.M.; Slart, R.H.J.A.; Erba, P.A. Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci. Rep., 2019, 9(1), 2514.
[http://dx.doi.org/10.1038/s41598-019-38986-w] [PMID: 30792528]
[43]
Borde, C.; Kand, P.; Basu, S. Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: Evidence of early chemotherapeutic cardiotoxicity? World J. Radiol., 2012, 4(5), 220-223.
[http://dx.doi.org/10.4329/wjr.v4.i5.220] [PMID: 22761982]
[44]
Boutagy, N.E.; Wu, J.; Cai, Z.; Zhang, W.; Booth, C.J.; Kyriakides, T.C.; Pfau, D.; Mulnix, T.; Liu, Z.; Miller, E.J.; Young, L.H.; Carson, R.E.; Huang, Y.; Liu, C.; Sinusas, A.J. In vivo reactive oxygen species detection with a novel positron emission tomography tracer, 18F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl. Sci., 2018, 3(3), 378-390.
[http://dx.doi.org/10.1016/j.jacbts.2018.02.003] [PMID: 30062224]
[45]
Su, H.; Gorodny, N.; Gomez, L.F.; Gangadharmath, U.; Mu, F.; Chen, G.; Walsh, J.C.; Szardenings, K.; Kolb, H.C.; Tamarappoo, B. Noninvasive molecular imaging of apoptosis in a mouse model of anthracycline-induced cardiotoxicity. Circ. Cardiovasc. Imaging, 2015, 8(2), e001952.
[http://dx.doi.org/10.1161/CIRCIMAGING.114.001952] [PMID: 25657296]
[46]
Turnock, S.; Turton, D.R.; Martins, C.D.; Chesler, L.; Wilson, T.C.; Gouverneur, V.; Smith, G.; Kramer-Marek, G. 18F-meta-fluorobenzylguanidine (18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models. Sci. Rep., 2020, 10(1), 20918.
[http://dx.doi.org/10.1038/s41598-020-77788-3] [PMID: 33262374]
[47]
McCluskey, S.P.; Haslop, A.; Coello, C.; Gunn, R.N.; Tate, E.W.; Southworth, R.; Plisson, C.; Long, N.J.; Wells, L.A. Imaging of Chemotherapy-Induced Acute Cardiotoxicity with 18 F-Labeled Lipophilic Cations. J. Nucl. Med., 2019, 60(12), 1750-1756.
[http://dx.doi.org/10.2967/jnumed.119.226787] [PMID: 31147403]
[48]
Higuchi, T.; Yousefi, B.H.; Kaiser, F.; Gärtner, F.; Rischpler, C.; Reder, S.; Yu, M.; Robinson, S.; Schwaiger, M.; Nekolla, S.G. Assessment of the 18F-labeled PET tracer LMI1195 for imaging norepinephrine handling in rat hearts. J. Nucl. Med., 2013, 54(7), 1142-1146.
[http://dx.doi.org/10.2967/jnumed.112.104232] [PMID: 23670901]
[49]
Dubash, S.R.; Merchant, S.; Heinzmann, K.; Mauri, F.; Lavdas, I.; Inglese, M.; Kozlowski, K.; Rama, N.; Masrour, N.; Steel, J.F.; Thornton, A.; Lim, A.K.; Lewanski, C.; Cleator, S.; Coombes, R.C.; Kenny, L.; Aboagye, E.O. Clinical translation of [18F]ICMT-11 for measuring chemotherapy-induced caspase 3/7 activation in breast and lung cancer. Eur. J. Nucl. Med. Mol. Imaging, 2018, 45(13), 2285-2299.
[http://dx.doi.org/10.1007/s00259-018-4098-9] [PMID: 30259091]
[50]
DeGrado, T.R.; Wang, S.; Holden, J.E.; Nickles, R.J.; Taylor, M.; Stone, C.K. Synthesis and preliminary evaluation of 18F-labeled 4-thia palmitate as a PET tracer of myocardial fatty acid oxidation. Nucl. Med. Biol., 2000, 27(3), 221-231.
[http://dx.doi.org/10.1016/S0969-8051(99)00101-8] [PMID: 10832078]
[51]
DeGrado, T.R.; Bhattacharyya, F.; Pandey, M.K.; Belanger, A.P.; Wang, S. Synthesis and preliminary evaluation of 18-(18)F-fluoro-4-thia-oleate as a PET probe of fatty acid oxidation. J. Nucl. Med., 2010, 51(8), 1310-1317.
[http://dx.doi.org/10.2967/jnumed.109.074245] [PMID: 20660391]
[52]
DeGrado, T.R.; Coenen, H.H.; Stocklin, G. 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA): evaluation in mouse of a new probe of myocardial utilization of long chain fatty acids. J. Nucl. Med., 1991, 32(10), 1888-1896.
[PMID: 1919727]
[53]
Moody, J.B.; Poitrasson-Rivière, A.; Hagio, T.; Buckley, C.; Weinberg, R.L.; Corbett, J.R.; Murthy, V.L.; Ficaro, E.P. Added value of myocardial blood flow using 18F-flurpiridaz PET to diagnose coronary artery disease: The flurpiridaz 301 trial. J. Nucl. Cardiol., 2021, 28(5), 2313-2329.
[http://dx.doi.org/10.1007/s12350-020-02034-2] [PMID: 32002847]
[54]
Doss, M.; Kolb, H.C.; Walsh, J.C.; Mocharla, V.; Fan, H.; Chaudhary, A.; Zhu, Z.; Alpaugh, R.K.; Lango, M.N.; Yu, J.Q. Biodistribution and radiation dosimetry of 18F-CP-18, a potential apoptosis imaging agent, as determined from PET/CT scans in healthy volunteers. J. Nucl. Med., 2013, 54(12), 2087-2092.
[http://dx.doi.org/10.2967/jnumed.113.119800] [PMID: 24136934]
[55]
Chen, D.L.; Zhou, D.; Chu, W.; Herrbrich, P.E.; Jones, L.A.; Rothfuss, J.M.; Engle, J.T.; Geraci, M.; Welch, M.J.; Mach, R.H. Comparison of radiolabeled isatin analogs for imaging apoptosis with positron emission tomography. Nucl. Med. Biol., 2009, 36(6), 651-658.
[http://dx.doi.org/10.1016/j.nucmedbio.2009.03.008] [PMID: 19647171]
[56]
Zhou, D.; Chu, W.; Chen, D.L.; Wang, Q.; Reichert, D.E.; Rothfuss, J.; D’Avignon, A.; Welch, M.J.; Mach, R.H. [18F]- and [11C]-Labeled N-benzyl-isatin sulfonamide analogues as PET tracers for Apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org. Biomol. Chem., 2009, 7(7), 1337-1348.
[http://dx.doi.org/10.1039/b819024k] [PMID: 19300818]
[57]
Jeon, J.Y.; Lee, M.; Whang, S.H.; Kim, J.W.; Cho, A.; Yun, M. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC). Oncol. Res., 2018, 26(1), 71-81.
[http://dx.doi.org/10.3727/096504017X14902648894463] [PMID: 28390113]
[58]
Croteau, E.; Tremblay, S.; Gascon, S.; Dumulon-Perreault, V.; Labbé, S.M.; Rousseau, J.A.; Cunnane, S.C.; Carpentier, A.C.; Bénard, F.; Lecomte, R. [11C]-Acetoacetate PET imaging: a potential early marker for cardiac heart failure. Nucl. Med. Biol., 2014, 41(10), 863-870.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.08.006] [PMID: 25195015]
[59]
Peterson, L.R.; Gropler, R.J. Radionuclide imaging of myocardial metabolism. Circ. Cardiovasc. Imaging, 2010, 3(2), 211-222.
[http://dx.doi.org/10.1161/CIRCIMAGING.109.860593] [PMID: 20233863]
[60]
Chen, X.; Werner, R.A.; Javadi, M.S.; Maya, Y.; Decker, M.; Lapa, C.; Herrmann, K.; Higuchi, T. Radionuclide imaging of neurohormonal system of the heart. Theranostics, 2015, 5(6), 545-558.
[http://dx.doi.org/10.7150/thno.10900] [PMID: 25825596]
[61]
Morooka, M.; Kubota, K.; Kadowaki, H.; Ito, K.; Okazaki, O.; Kashida, M.; Mitsumoto, T.; Iwata, R.; Ohtomo, K.; Hiroe, M. 11C-methionine PET of acute myocardial infarction. J. Nucl. Med., 2009, 50(8), 1283-1287.
[http://dx.doi.org/10.2967/jnumed.108.061341] [PMID: 19617334]
[62]
Sivapackiam, J.; Kabra, S.; Speidel, S.; Sharma, M.; Laforest, R.; Salter, A.; Rettig, M.P.; Sharma, V. 68Ga-Galmydar: A PET imaging tracer for noninvasive detection of Doxorubicin-induced cardiotoxicity. PLoS One, 2019, 14(5), e0215579.
[http://dx.doi.org/10.1371/journal.pone.0215579] [PMID: 31120912]
[63]
Niu, N.; Huo, L.; Zhang, S.; Liu, Y.; Li, X. Immune checkpoint inhibitor-associated cardiotoxicity detected by 68Ga-DOTATATE PET/CT and 68Ga-FAPI PET/CT. Eur. Heart J. Cardiovasc. Imaging, 2022, 23(3), e123.
[http://dx.doi.org/10.1093/ehjci/jeab189] [PMID: 34643688]
[64]
Nehmeh, S.A.; Fox, J.J.; Schwartz, J.; Ballangrud, Å.M.; Schöder, H.; Zhao, Y.; Strauss, H.W.; Yu, A.; Gupta, D.; Powell, S.N.; Ho, A.Y. A pilot study of 13N-ammonia cardiac PET imaging to assess subacute cardiotoxicity following adjuvant intensity-modulated radiotherapy for locally advanced breast cancer. Clin. Imaging, 2020, 68, 283-290.
[http://dx.doi.org/10.1016/j.clinimag.2020.07.026] [PMID: 32919154]
[65]
Momose, M.; Reder, S.; Raffel, D.M.; Watzlowik, P.; Wester, H.J.; Nguyen, N.; Elsinga, P.H.; Bengel, F.M.; Remien, J.; Schwaiger, M. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J. Nucl. Med., 2004, 45(3), 471-477.
[PMID: 15001690]
[66]
Laursen, A.H.; Ripa, R.S.; Hasbak, P.; Kjær, A.; Elming, M.B.; Køber, L.; Hutchings, M.; Thune, J.J. 123I-MIBG for detection of subacute doxorubicin-induced cardiotoxicity in patients with malignant lymphoma. J. Nucl. Cardiol., 2020, 27(3), 931-939.
[http://dx.doi.org/10.1007/s12350-018-01566-y] [PMID: 30569409]
[67]
Murphy, M.P. Targeting lipophilic cations to mitochondria. Biochim. Biophys. Acta Bioenerg., 2008, 1777(7-8), 1028-1031.
[http://dx.doi.org/10.1016/j.bbabio.2008.03.029] [PMID: 18439417]
[68]
Gerencser, A.A.; Chinopoulos, C.; Birket, M.J.; Jastroch, M.; Vitelli, C.; Nicholls, D.G.; Brand, M.D. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria. J. Physiol., 2012, 590(12), 2845-2871.
[http://dx.doi.org/10.1113/jphysiol.2012.228387] [PMID: 22495585]
[69]
Farzipour, S.; Hosseinimehr, S.J. Correlation between in vitro and in vivo data of radiolabeled peptide for tumor targeting. Mini Rev. Med. Chem., 2019, 19(12), 950-960.
[http://dx.doi.org/10.2174/1389557519666190304120011] [PMID: 30834830]
[70]
Alpert, N.M.; Guehl, N.; Ptaszek, L.; Pelletier-Galarneau, M.; Ruskin, J.; Mansour, M.C.; Wooten, D.; Ma, C.; Takahashi, K.; Zhou, Y.; Shoup, T.M.; Normandin, M.D.; El Fakhri, G. Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One, 2018, 13(1), e0190968.
[http://dx.doi.org/10.1371/journal.pone.0190968] [PMID: 29338024]
[71]
Pelletier-Galarneau, M.; Petibon, Y.; Ma, C.; Han, P.; Kim, S.J.W.; Detmer, F.J.; Yokell, D.; Guehl, N.; Normandin, M.; El Fakhri, G.; Alpert, N.M. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(2), 414-420.
[http://dx.doi.org/10.1007/s00259-020-04878-9] [PMID: 32719915]
[72]
Prosnitz, R.G.; Hubbs, J.L.; Evans, E.S.; Zhou, S.M.; Yu, X.; Blazing, M.A.; Hollis, D.R.; Tisch, A.; Wong, T.Z.; Borges-Neto, S.; Hardenbergh, P.H.; Marks, L.B. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: Analysis of data 3 to 6 years after treatment. Cancer, 2007, 110(8), 1840-1850.
[http://dx.doi.org/10.1002/cncr.22965] [PMID: 17763369]
[73]
Gyenes, G.; Fornander, T.; Carlens, P.; Glas, U.; Rutqvist, L.E. Myocardial damage in breast cancer patients treated with adjuvant radiotherapy: A prospective study. Int. J. Radiat. Oncol. Biol. Phys., 1996, 36(4), 899-905.
[http://dx.doi.org/10.1016/S0360-3016(96)00125-3] [PMID: 8960519]
[74]
Maddahi, J.; Lazewatsky, J.; Udelson, J.E.; Berman, D.S.; Beanlands, R.S.B.; Heller, G.V.; Bateman, T.M.; Knuuti, J.; Orlandi, C. Phase-III Clinical Trial of Fluorine-18 Flurpiridaz Positron Emission Tomography for Evaluation of Coronary Artery Disease. J. Am. Coll. Cardiol., 2020, 76(4), 391-401.
[http://dx.doi.org/10.1016/j.jacc.2020.05.063] [PMID: 32703509]
[75]
Laursen, A.H.; Elming, M.B.; Ripa, R.S.; Hasbak, P.; Kjær, A.; Køber, L.; Marott, J.L.; Thune, J.J.; Hutchings, M. Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients. J. Nucl. Cardiol., 2020, 27(5), 1698-1707.
[http://dx.doi.org/10.1007/s12350-018-1458-6] [PMID: 30298372]
[76]
Zhang, W.; Cai, Z.; Li, L.; Ropchan, J.; Lim, K.; Boutagy, N.; Wu, J.; Stendahl, J.; Chu, W.; Gropler, R.; Sinusas, A.; Liu, C.; Huang, Y. Optimized and Automated Radiosynthesis of [18F]DHMT for Translational Imaging of Reactive Oxygen Species with Positron Emission Tomography. Molecules, 2016, 21(12), 1696.
[http://dx.doi.org/10.3390/molecules21121696] [PMID: 27941676]
[77]
Naya, M.; Tamaki, N. Imaging of myocardial oxidative metabolism in heart failure. Curr. Cardiovasc. Imaging Rep., 2014, 7(1), 9244.
[http://dx.doi.org/10.1007/s12410-013-9244-y] [PMID: 24489981]
[78]
Croteau, E.; Gascon, S.; Bentourkia, M.; Langlois, R.; Rousseau, J.A.; Lecomte, R.; Bénard, F. [11C]Acetate rest–stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl. Med. Biol., 2012, 39(2), 287-294.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.07.010] [PMID: 22079038]
[79]
Nony, P.; Guastalla, J.P.; Rebattu, P.; Landais, P.; Lievre, M.; Bontemps, L.; Itti, R.; Beaune, J.; Andre-Fouet, X.; Janier, M. In vivo measurement of myocardial oxidative metabolism and blood flow does not show changes in cancer patients undergoing doxorubicin therapy. Cancer Chemother. Pharmacol., 2000, 45(5), 375-380.
[http://dx.doi.org/10.1007/s002800051005] [PMID: 10803920]
[80]
Sarocchi, M.; Bauckneht, M.; Arboscello, E.; Capitanio, S.; Marini, C.; Morbelli, S.; Miglino, M.; Congiu, A.G.; Ghigliotti, G.; Balbi, M.; Brunelli, C.; Sambuceti, G.; Ameri, P.; Spallarossa, P. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J. Transl. Med., 2018, 16(1), 295.
[http://dx.doi.org/10.1186/s12967-018-1670-9] [PMID: 30359253]
[81]
Sokoloff, L.; Reivich, M.; Kennedy, C.; Rosiers, M.H.D.; Patlak, C.S.; Pettigrew, K.D.; Sakurada, O.; Shinohara, M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem., 1977, 28(5), 897-916.
[http://dx.doi.org/10.1111/j.1471-4159.1977.tb10649.x] [PMID: 864466]
[82]
Kim, J.; Cho, S.G.; Kang, S.R.; Yoo, S.W.; Kwon, S.Y.; Min, J.J.; Bom, H.S.; Song, H.C. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J. Nucl. Cardiol., 2020, 27(6), 2154-2163.
[http://dx.doi.org/10.1007/s12350-019-01617-y] [PMID: 30719656]
[83]
Bauckneht, M.; Ferrarazzo, G.; Fiz, F.; Morbelli, S.; Sarocchi, M.; Pastorino, F.; Ghidella, A.; Pomposelli, E.; Miglino, M.; Ameri, P.; Emionite, L.; Ticconi, F.; Arboscello, E.; Buschiazzo, A.; Massimelli, E.A.; Fiordoro, S.; Borra, A.; Cossu, V.; Bozzano, A.; Ibatici, A.; Ponzoni, M.; Spallarossa, P.; Gallamini, A.; Bruzzi, P.; Sambuceti, G.; Marini, C. Doxorubicin Effect on Myocardial Metabolism as a Prerequisite for Subsequent Development of Cardiac Toxicity: A Translational 18 F-FDG PET/CT Observation. J. Nucl. Med., 2017, 58(10), 1638-1645.
[http://dx.doi.org/10.2967/jnumed.117.191122] [PMID: 28646013]
[84]
Heckmann, M.B.; Totakhel, B.; Finke, D.; Anker, M.S.; Müller-Tidow, C.; Haberkorn, U.; Katus, H.A.; Lehmann, L.H. Evidence for a cardiac metabolic switch in patients with Hodgkin’s lymphoma. ESC Heart Fail., 2019, 6(4), 824-829.
[http://dx.doi.org/10.1002/ehf2.12475] [PMID: 31278857]
[85]
Dourado, M.L.C.; Dompieri, L.T.; Leitão, G.M.; Mourato, F.A.; Santos, R.G.G.; Almeida Filho, P.J.; Markman Filho, B.; Melo, M.D.T.; Brandão, S.C.S. Chemotherapy-induced cardiac 18F-FDG uptake in patients with lymphoma: An early metabolic index of cardiotoxicity? Arq. Bras. Cardiol., 2022, 118(6), 1049-1058.
[PMID: 35703659]
[86]
Scully, R.; Xie, A. Double strand break repair functions of histone H2AX. Mutat. Res., 2013, 750(1-2), 5-14.
[http://dx.doi.org/10.1016/j.mrfmmm.2013.07.007] [PMID: 23916969]
[87]
Weisleder, N.; Taffet, G.E.; Capetanaki, Y. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2004, 101(3), 769-774.
[http://dx.doi.org/10.1073/pnas.0303202101] [PMID: 14715896]
[88]
Sarda-Mantel, L.; Hervatin, F.; Michel, J.B.; Louedec, L.; Martet, G.; Rouzet, F.; Lebtahi, R.; Merlet, P.; Khaw, B.A.; Le Guludec, D. Myocardial uptake of 99mTc-annexin-V and 111In-antimyosin-antibodies after ischemia-reperfusion in rats. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(1), 158-165.
[http://dx.doi.org/10.1007/s00259-007-0559-2] [PMID: 17805532]
[89]
Tokita, N.; Hasegawa, S.; Maruyama, K.; Izumi, T.; Blankenberg, F.G.; Tait, J.F.; Strauss, W.H.; Nishimura, T. 99mTc-Hynic-annexin V imaging to evaluate inflammation and apoptosis in rats with autoimmune myocarditis. Eur. J. Nucl. Med. Mol. Imaging, 2003, 30(2), 232-238.
[http://dx.doi.org/10.1007/s00259-002-1006-z] [PMID: 12552341]
[90]
García-Argüello, S.F.; Lopez-Lorenzo, B.; Cornelissen, B.; Smith, G. Development of [18F]ICMT-11 for Imaging Caspase-3/7 Activity during Therapy-Induced Apoptosis. Cancers (Basel), 2020, 12(8), 2191.
[http://dx.doi.org/10.3390/cancers12082191] [PMID: 32781531]
[91]
Poreba, M.; Szalek, A.; Kasperkiewicz, P.; Rut, W.; Salvesen, G.S.; Drag, M. Small molecule active site directed tools for studying human caspases. Chem. Rev., 2015, 115(22), 12546-12629.
[http://dx.doi.org/10.1021/acs.chemrev.5b00434] [PMID: 26551511]
[92]
Su, H.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Liang, Q.; Mu, F.; Mocharla, V.P.; Szardenings, A.K.; Walsh, J.C.; Xia, C.F.; Yu, C.; Kolb, H.C. Evaluation of [(18)F]-CP18 as a PET imaging tracer for apoptosis. Mol. Imaging Biol., 2013, 15(6), 739-747.
[http://dx.doi.org/10.1007/s11307-013-0644-9] [PMID: 23681757]
[93]
Margari, Z.J.; Anastasiou-Nana, M.I.; Terrovitis, J.; Toumanidis, S.; Agapitos, E.V.; Lekakis, J.P.; Nanas, J.N. Indium-111 monoclonal antimyosin cardiac scintigraphy in suspected acute myocarditis: evolution and diagnostic impact. Int. J. Cardiol., 2003, 90(2-3), 239-245.
[http://dx.doi.org/10.1016/S0167-5273(02)00555-7] [PMID: 12957757]
[94]
Estorch, M.; Carrió, I.; Martínez-Duncker, D.; Berná, L.; Torres, G.; Alonso, C.; Ojeda, B. Myocyte cell damage after administration of doxorubicin or mitoxantrone in breast cancer patients assessed by indium 111 antimyosin monoclonal antibody studies. J. Clin. Oncol., 1993, 11(7), 1264-1268.
[http://dx.doi.org/10.1200/JCO.1993.11.7.1264] [PMID: 8315423]
[95]
Valdés Olmos, R.A.; ten Bokkel Huinink, W.W.; ten Hoeve, R.F.A.; van Tinteren, H.; Bruning, P.F.; van Vlies, B.; Hoefnagel, C.A. Usefulness of indium-111 antimyosin scintigraphy in confirming myocardial injury in patients with anthracycline-associated left ventricular dysfunction. Ann. Oncol., 1994, 5(7), 617-622.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a058933] [PMID: 7993837]
[96]
Carrió, I.; Cowie, M.R.; Yamazaki, J.; Udelson, J.; Camici, P.G. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc. Imaging, 2010, 3(1), 92-100.
[http://dx.doi.org/10.1016/j.jcmg.2009.07.014] [PMID: 20129538]
[97]
Schroeder, C.; Jordan, J. Norepinephrine transporter function and human cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol., 2012, 303(11), H1273-H1282.
[http://dx.doi.org/10.1152/ajpheart.00492.2012] [PMID: 23023867]
[98]
Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skoularigis, J.; Louridas, G.; Butler, J. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol., 2009, 54(19), 1747-1762.
[http://dx.doi.org/10.1016/j.jacc.2009.05.015] [PMID: 19874988]
[99]
Böhm, M.; La Rosée, K.; Schwinger, R.H.G.; Erdmann, E. Evidence for reduction of norepinephrine uptake sites in the failing human heart. J. Am. Coll. Cardiol., 1995, 25(1), 146-153.
[http://dx.doi.org/10.1016/0735-1097(94)00353-R] [PMID: 7798493]
[100]
Carrió, I.; Estorch, M.; Berná, L.; López-Pousa, J.; Tabernero, J.; Torres, G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J. Nucl. Med., 1995, 36(11), 2044-2049.
[PMID: 7472595]
[101]
Laursen, A.H.; Thune, J.J.; Hutchings, M.; Hasbak, P.; Kjaer, A.; Elming, M.B.; Ripa, R.S. 123 I-MIBG imaging for detection of anthracycline-induced cardiomyopathy. Clin. Physiol. Funct. Imaging, 2018, 38(2), 176-185.
[http://dx.doi.org/10.1111/cpf.12419] [PMID: 28251781]
[102]
Grkovski, M.; Zanzonico, P.B.; Modak, S.; Humm, J.L.; Narula, J.; Pandit-Taskar, N. F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation. J. Nucl. Cardiol., 2022.
[http://dx.doi.org/10.1007/s12350-021-02813-5] [PMID: 34993893]
[103]
Yu, M.; Bozek, J.; Lamoy, M.; Guaraldi, M.; Silva, P.; Kagan, M.; Yalamanchili, P.; Onthank, D.; Mistry, M.; Lazewatsky, J.; Broekema, M.; Radeke, H.; Purohit, A.; Cdebaca, M.; Azure, M.; Cesati, R.; Casebier, D.; Robinson, S.P. Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ. Cardiovasc. Imaging, 2011, 4(4), 435-443.
[http://dx.doi.org/10.1161/CIRCIMAGING.110.962126] [PMID: 21555377]
[104]
Sinusas, A.J.; Lazewatsky, J.; Brunetti, J.; Heller, G.; Srivastava, A.; Liu, Y.H.; Sparks, R.; Puretskiy, A.; Lin, S.; Crane, P.; Carson, R.E.; Lee, L.V. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J. Nucl. Med., 2014, 55(9), 1445-1451.
[http://dx.doi.org/10.2967/jnumed.114.140137] [PMID: 24994931]
[105]
Thackeray, J.T.; Parsa-Nezhad, M.; Kenk, M.; Thorn, S.L.; Kolajova, M.; Beanlands, R.S.B.; DaSilva, J.N. Reduced CGP12177 binding to cardiac β-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl. Med. Biol., 2011, 38(7), 1059-1066.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.04.002] [PMID: 21831645]
[106]
Naya, M.; Tsukamoto, T.; Morita, K.; Katoh, C.; Nishijima, K.; Komatsu, H.; Yamada, S.; Kuge, Y.; Tamaki, N.; Tsutsui, H. Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J. Nucl. Med., 2009, 50(2), 220-225.
[http://dx.doi.org/10.2967/jnumed.108.056341] [PMID: 19164238]
[107]
Leung, K. S-4-(3-([11C]Isopropylamino)-2-hydroxypropoxy)-2 Hbenzimidazol-2-one. In: Molecular Imaging and Contrast Agent Database (MICAD); Bethesda (MD): National Center for Biotechnology Information (US), 2004.
[108]
Fabiani, I.; Aimo, A.; Grigoratos, C.; Castiglione, V.; Gentile, F.; Saccaro, L.F.; Arzilli, C.; Cardinale, D.; Passino, C.; Emdin, M. Oxidative stress and inflammation: determinants of anthracycline cardiotoxicity and possible therapeutic targets. Heart Fail. Rev., 2021, 26(4), 881-890.
[http://dx.doi.org/10.1007/s10741-020-10063-9] [PMID: 33319255]
[109]
Wang, X.; Wang, Q.; Li, W.; Zhang, Q.; Jiang, Y.; Guo, D.; Sun, X.; Lu, W.; Li, C.; Wang, Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. J. Exp. Clin. Cancer Res., 2020, 39(1), 93.
[http://dx.doi.org/10.1186/s13046-020-01595-x] [PMID: 32448281]
[110]
Verweij, S.L.; Duivenvoorden, R.; Stiekema, L.C.A.; Nurmohamed, N.S.; van der Valk, F.M.; Versloot, M.; Verberne, H.J.; Stroes, E.S.G.; Nahrendorf, M.; Bekkering, S.; Bernelot Moens, S.J. CCR2 expression on circulating monocytes is associated with arterial wall inflammation assessed by 18F-FDG PET/CT in patients at risk for cardiovascular disease. Cardiovasc. Res., 2018, 114(3), 468-475.
[http://dx.doi.org/10.1093/cvr/cvx224] [PMID: 29186373]
[111]
Vasudevan, P.; Gaebel, R.; Doering, P.; Mueller, P.; Lemcke, H.; Stenzel, J.; Lindner, T.; Kurth, J.; Steinhoff, G.; Vollmar, B.; Krause, B.J.; Ince, H.; David, R.; Lang, C.I. 18F-FDG PET-based imaging of myocardial inflammation predicts a functional outcome following transplantation of mESC-derived cardiac induced cells in a mouse model of myocardial infarction. Cells, 2019, 8(12), 1613.
[http://dx.doi.org/10.3390/cells8121613] [PMID: 31835854]
[112]
Levick, S.P.; Soto-Pantoja, D.R.; Bi, J.; Hundley, W.G.; Widiapradja, A.; Manteufel, E.J.; Bradshaw, T.W.; Meléndez, G.C. Doxorubicin-induced myocardial fibrosis involves the neurokinin-1 receptor and direct effects on cardiac fibroblasts. Heart Lung Circ., 2019, 28(10), 1598-1605.
[http://dx.doi.org/10.1016/j.hlc.2018.08.003] [PMID: 30205930]
[113]
Heckmann, M.B.; Reinhardt, F.; Finke, D.; Katus, H.A.; Haberkorn, U.; Leuschner, F.; Lehmann, L.H. Relationship between cardiac fibroblast activation protein activity by positron emission tomography and cardiovascular disease. Circ. Cardiovasc. Imaging, 2020, 13(9), e010628.
[http://dx.doi.org/10.1161/CIRCIMAGING.120.010628] [PMID: 32912030]
[114]
Siebermair, J.; Köhler, M.I.; Kupusovic, J.; Nekolla, S.G.; Kessler, L.; Ferdinandus, J.; Guberina, N.; Stuschke, M.; Grafe, H.; Siveke, J.T.; Kochhäuser, S.; Fendler, W.P.; Totzeck, M.; Wakili, R.; Umutlu, L.; Schlosser, T.; Rassaf, T.; Rischpler, C. Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a potential novel biomarker of cardiac injury/remodeling. J. Nucl. Cardiol., 2021, 28(3), 812-821.
[http://dx.doi.org/10.1007/s12350-020-02307-w] [PMID: 32975729]
[115]
Makowski, M.R.; Rischpler, C.; Ebersberger, U.; Keithahn, A.; Kasel, M.; Hoffmann, E.; Rassaf, T.; Kessler, H.; Wester, H.J.; Nekolla, S.G.; Schwaiger, M.; Beer, A.J. Multiparametric PET and MRI of myocardial damage after myocardial infarction: Correlation of integrin αvβ3 expression and myocardial blood flow. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(4), 1070-1080.
[http://dx.doi.org/10.1007/s00259-020-05034-z] [PMID: 32970218]
[116]
Farzipour, S.; Shaghaghi, Z.; Motieian, S.; Alvandi, M.; Yazdi, A.; Asadzadeh, B.; Abbasi, S. Ferroptosis inhibitors as potential new therapeutic targets for cardiovascular disease. Mini Rev. Med. Chem., 2022, 22(17), 2271-2286.
[http://dx.doi.org/10.2174/1389557522666220218123404] [PMID: 35184711]
[117]
Ji, N.; Qi, Z.; Wang, Y.; Yang, X.; Yan, Z.; Li, M.; Ge, Q.; Zhang, J. Pyroptosis: A new regulating mechanism in cardiovascular disease. J. Inflamm. Res., 2021, 14, 2647-2666.
[http://dx.doi.org/10.2147/JIR.S308177] [PMID: 34188515]
[118]
Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev., 2019, 99(4), 1765-1817.
[http://dx.doi.org/10.1152/physrev.00022.2018] [PMID: 31364924]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy