Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Cardiac Injury Following Chemo/Radiation Therapy: An Updated Review on Mechanisms and Therapeutic Approaches

Author(s): Krishanveer Singh, Ameer A. Alameri, Ammar Ali Hamza, Moaed E. Al-Gazally, Sarvar Temurovich Islomov, Rasha Fadhel Obaid, Andrés Alexis Ramírez-Coronel, Munther Abosaooda, Rasoul Yahyapour and Masoud Najafi*

Volume 16, Issue 3, 2023

Published on: 08 March, 2023

Page: [185 - 203] Pages: 19

DOI: 10.2174/1874471016666230214101830

Price: $65

Abstract

Cardiovascular disorders are among the critical side effects of cancer therapy. Damage to the function and normal structure of the heart can cause serious threats to patients that are being treated for cancer. Cardiovascular complications may be induced by various types of chemotherapy drugs and also radiation therapy. The severity of cardiovascular toxicity depends on several factors, such as types of drugs, tumor location for radiotherapy, the presence of cardiac disease history, the dose of drugs or ionizing radiation, etc. Radiotherapy and chemotherapy can cause heart diseases through various mechanisms, such as oxidative stress, inflammation, cell death, fibrosis, endothelial to mesenchymal transition (EndMT), etc. Chronic inflammation following damage to a huge number of cells can trigger more accumulation of inflammatory cells and chronic release of reactive oxygen species (ROS) and nitric oxide (NO). Oxidative stress can induce more cell death and cardiac remodeling through damage to vessels and valvular and disruption of the normal structure of the extracellular matrix. These changes may lead to cardiomyopathy, myocarditis, pericarditis, and vascular disorders that may lead to heart attack and death. This review provides basic information on cellular and molecular mechanisms of different types of cardiovascular disorders following cancer therapy by radiation or chemotherapy. We also recommend some adjuvants and targets to reduce the risk of heart toxicity by radiation/chemotherapy.

[1]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[2]
Osman, A.F.I.; Maalej, N.M. Applications of machine and deep learning to patient-specific IMRT/VMAT quality assurance. J. Appl. Clin. Med. Phys., 2021, 22(9), 20-36.
[http://dx.doi.org/10.1002/acm2.13375] [PMID: 34343412]
[3]
Antoine, M.; Ralite, F.; Soustiel, C.; Marsac, T.; Sargos, P.; Cugny, A.; Caron, J. Use of metrics to quantify IMRT and VMAT treatment plan complexity: A systematic review and perspectives. Phys. Med., 2019, 64, 98-108.
[http://dx.doi.org/10.1016/j.ejmp.2019.05.024] [PMID: 31515041]
[4]
Erdmann, F.; Frederiksen, L.E.; Bonaventure, A.; Mader, L.; Hasle, H.; Robison, L.L.; Winther, J.F. Childhood cancer: Survival, treatment modalities, late effects and improvements over time. Cancer Epidemiol., 2021, 71(Pt B), 101733.
[http://dx.doi.org/10.1016/j.canep.2020.101733] [PMID: 32461035]
[5]
Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 2019, 54(2), 407-419.
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[6]
Basile, D.; Di Nardo, P.; Corvaja, C.; Garattini, S.K.; Pelizzari, G.; Lisanti, C.; Bortot, L.; Da Ros, L.; Bartoletti, M.; Borghi, M.; Gerratana, L.; Lombardi, D.; Puglisi, F. Mucosal injury during anti-cancer treatment: From pathobiology to bedside. Cancers, 2019, 11(6), 857.
[http://dx.doi.org/10.3390/cancers11060857] [PMID: 31226812]
[7]
Herrmann, J. Adverse cardiac effects of cancer therapies: Cardiotoxicity and arrhythmia. Nat. Rev. Cardiol., 2020, 17(8), 474-502.
[http://dx.doi.org/10.1038/s41569-020-0348-1] [PMID: 32231332]
[8]
Piroth, M.D.; Baumann, R.; Budach, W.; Dunst, J.; Feyer, P.; Fietkau, R.; Haase, W.; Harms, W.; Hehr, T.; Krug, D.; Röser, A.; Sedlmayer, F.; Souchon, R.; Wenz, F.; Sauer, R. Heart toxicity from breast cancer radiotherapy. Strahlenther. Onkol., 2019, 195(1), 1-12.
[http://dx.doi.org/10.1007/s00066-018-1378-z] [PMID: 30310926]
[9]
Houbois, C.P.; Thavendiranathan, P.; Wintersperger, B.J. Cardiovascular magnetic resonance imaging: Identifying the effects of cancer therapy. J. Thorac. Imaging, 2020, 35(1), 12-25.
[http://dx.doi.org/10.1097/RTI.0000000000000430] [PMID: 31211728]
[10]
Viganego, F.; Singh, R.; Fradley, M.G. Arrhythmias and other electrophysiology issues in cancer patients receiving chemotherapy or radiation. Curr. Cardiol. Rep., 2016, 18(6), 52.
[http://dx.doi.org/10.1007/s11886-016-0730-0] [PMID: 27108362]
[11]
De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers, 2019, 5(1), 1-20.
[http://dx.doi.org/10.1038/s41572-019-0064-5] [PMID: 30617281]
[12]
Yu, C.; Yang, B.; Najafi, M. Targeting of cancer cell death mechanisms by curcumin: Implications to cancer therapy. Basic Clin. Pharmacol. Toxicol., 2021, 129(6), 397-415.
[http://dx.doi.org/10.1111/bcpt.13648] [PMID: 34473898]
[13]
Fu, X.; Li, M.; Tang, C.; Huang, Z.; Najafi, M. Targeting of cancer cell death mechanisms by resveratrol: A review. Apoptosis, 2021, 26(11-12), 561-573.
[http://dx.doi.org/10.1007/s10495-021-01689-7] [PMID: 34561763]
[14]
Cohen, S.; Liu, A.; Gurvitz, M.; Guo, L.; Therrien, J.; Laprise, C.; Kaufman, J.S.; Abrahamowicz, M.; Marelli, A.J. Exposure to low-dose ionizing radiation from cardiac procedures and malignancy risk in adults with congenital heart disease. Circulation, 2018, 137(13), 1334-1345.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029138] [PMID: 29269389]
[15]
Nichols, E.M.; Modiri, A.; Mohindra, P. Cardiotoxicity and radiation therapy: A review of clinical impact in breast and thoracic malignancies. Radiat. Oncol., 2020, 9(1), 16-23.
[16]
Ruddy, K.J.; Patel, S.R.; Higgins, A.S.; Armenian, S.H.; Herrmann, J. Cardiovascular health during and after cancer therapy. Cancers, 2020, 12(12), 3737.
[http://dx.doi.org/10.3390/cancers12123737] [PMID: 33322622]
[17]
Hendifar, A.E.; Delpassand, E.S.; Kittleson, M.M.; Tuli, R. Cardiac toxicity in a patient receiving peptide receptor radionuclide therapy. Pancreas, 2018, 47(8), e55-e56.
[http://dx.doi.org/10.1097/MPA.0000000000001101] [PMID: 30113434]
[18]
Press, O.W.; Eary, J.F.; Appelbaum, F.R.; Martin, P.J.; Badger, C.C.; Nelp, W.B.; Glenn, S.; Butchko, G.; Fisher, D.; Porter, B.; Matthews, D.C.; Fisher, L.D.; Bernstein, I.D. Radiolabeled-antibody therapy of B-cell lymphoma with autologous bone marrow support. N. Engl. J. Med., 1993, 329(17), 1219-1224.
[http://dx.doi.org/10.1056/NEJM199310213291702] [PMID: 7692295]
[19]
Jokar, N.; Amini, A.; Ravanbod, M.; Barekat, M.; Shooli, H.; Gholamrezanezhad, A.; Assadi, M. State-of-the-art modalities in cardio-oncology: Insight from a nuclear medicine approach. Nuclear Medicine Review, 2021, 24(2), 82-92.
[http://dx.doi.org/10.5603/NMR.2021.0019] [PMID: 34382672]
[20]
Spetz, J.; Moslehi, J.; Sarosiek, K. Radiation-induced cardiovascular toxicity: Mechanisms, prevention, and treatment. Curr. Treat. Options Cardiovasc. Med., 2018, 20(4), 31.
[http://dx.doi.org/10.1007/s11936-018-0627-x] [PMID: 29556748]
[21]
Lai, V.; Neshat, S.Y.; Rakoski, A.; Pitingolo, J.; Doloff, J.C. Drug delivery strategies in maximizing anti-angiogenesis and anti-tumor immunity. Adv. Drug Deliv. Rev., 2021, 179, 113920.
[http://dx.doi.org/10.1016/j.addr.2021.113920] [PMID: 34384826]
[22]
Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers, 2020, 12(3), 731.
[http://dx.doi.org/10.3390/cancers12030731] [PMID: 32244867]
[23]
Liang, S.Q.; Bührer, E.D.; Berezowska, S.; Marti, T.M.; Xu, D.; Froment, L.; Yang, H.; Hall, S.R.R.; Vassella, E.; Yang, Z.; Kocher, G.J.; Amrein, M.A.; Riether, C.; Ochsenbein, A.F.; Schmid, R.A.; Peng, R.W. mTOR mediates a mechanism of resistance to chemotherapy and defines a rational combination strategy to treat KRAS-mutant lung cancer. Oncogene, 2019, 38(5), 622-636.
[http://dx.doi.org/10.1038/s41388-018-0479-6] [PMID: 30171261]
[24]
Hilfiker-Kleiner, D.; Ardehali, H.; Fischmeister, R.; Burridge, P.; Hirsch, E.; Lyon, A.R. Late onset heart failure after childhood chemotherapy. Eur. Heart J., 2019, 40(10), 798-800.
[http://dx.doi.org/10.1093/eurheartj/ehz046]
[25]
Yu, L.R.; Desai, V.G. Doxorubicin cardiotoxicity: Preclinical and clinical circulating protein markers. Biomarkers in Toxicology; Springer: Cham, 2022, pp. 1-27.
[http://dx.doi.org/10.1007/978-3-030-87225-0_44-1]
[26]
Rivankar, S. An overview of doxorubicin formulations in cancer therapy. J. Cancer Res. Ther., 2014, 10(4), 853-858.
[http://dx.doi.org/10.4103/0973-1482.139267] [PMID: 25579518]
[27]
Brinda, B.J.; Viganego, F.; Vo, T.; Dolan, D.; Fradley, M.G. Anti-VEGF-induced hypertension: A review of pathophysiology and treatment options. Curr. Treat. Options Cardiovasc. Med., 2016, 18(5), 33.
[http://dx.doi.org/10.1007/s11936-016-0452-z] [PMID: 26932588]
[28]
Toyota, E.; Warltier, D.C.; Brock, T.; Ritman, E.; Kolz, C.; O’Malley, P.; Rocic, P.; Focardi, M.; Chilian, W.M. Vascular endothelial growth factor is required for coronary collateral growth in the rat. Circulation, 2005, 112(14), 2108-2113.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.526954] [PMID: 16203926]
[29]
Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[30]
Clarke, M.; Collins, R.; Darby, S.; Davies, C.; Elphinstone, P.; Evans, V.; Godwin, J.; Gray, R.; Hicks, C.; James, S.; MacKinnon, E.; McGale, P.; McHugh, T.; Peto, R.; Taylor, C.; Wang, Y. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: An overview of the randomised trials. Lancet, 2005, 366(9503), 2087-2106.
[http://dx.doi.org/10.1016/S0140-6736(05)67887-7] [PMID: 16360786]
[31]
Rutqvist, L.E.; Johansson, H. Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish Cancer Registry. Br. J. Cancer, 1990, 61(6), 866-868.
[http://dx.doi.org/10.1038/bjc.1990.193] [PMID: 2372488]
[32]
Bouillon, K.; Haddy, N.; Delaloge, S.; Garbay, J.R.; Garsi, J.P.; Brindel, P.; Mousannif, A.; Lê, M.G.; Labbe, M.; Arriagada, R.; Jougla, E.; Chavaudra, J.; Diallo, I.; Rubino, C.; de Vathaire, F. Long-term cardiovascular mortality after radiotherapy for breast cancer. J. Am. Coll. Cardiol., 2011, 57(4), 445-452.
[http://dx.doi.org/10.1016/j.jacc.2010.08.638] [PMID: 21251585]
[33]
van Leeuwen, F.E.; Ng, A.K. Long-term risk of second malignancy and cardiovascular disease after Hodgkin lymphoma treatment. Hematology (Am. Soc. Hematol. Educ. Program), 2016, 2016(1), 323-330.
[http://dx.doi.org/10.1182/asheducation-2016.1.323] [PMID: 27913498]
[34]
Hancock, S.L.; Hoppe, R.T. Long-term complications of treatment and causes of mortality after Hodgkin's disease. In: Semin Radiat Oncol; Elsevier, 1996; 6, pp. 225-242.
[http://dx.doi.org/10.1016/S1053-4296(96)80018-X]
[35]
Ivanov, V.K.; Maksioutov, M.A.; Chekin, S.Y.; Petrov, A.V.; Biryukov, A.P.; Kruglova, Z.G.; Matyash, V.A.; Tsyb, A.F.; Manton, K.G.; Kravchenko, J.S. The risk of radiation-induced cerebrovascular disease in Chernobyl emergency workers. Health Phys., 2006, 90(3), 199-207.
[http://dx.doi.org/10.1097/01.HP.0000175835.31663.ea] [PMID: 16505616]
[36]
Kodama, K.; Sasaki, H.; Shimizu, Y. Trend of coronary heart disease and its relationship to risk factors in a Japanese population: A 26-year follow-up, Hiroshima/Nagasaki study. Jpn. Circ. J., 1990, 54(4), 414-421.
[http://dx.doi.org/10.1253/jcj.54.414] [PMID: 2398621]
[37]
Rehammar, J.C.; Jensen, M.B.; McGale, P.; Lorenzen, E.L.; Taylor, C.; Darby, S.C.; Videbæk, L.; Wang, Z.; Ewertz, M. Risk of heart disease in relation to radiotherapy and chemotherapy with anthracyclines among 19,464 breast cancer patients in Denmark, 1977–2005. Radiother. Oncol., 2017, 123(2), 299-305.
[http://dx.doi.org/10.1016/j.radonc.2017.03.012] [PMID: 28365142]
[38]
van Nimwegen, F.A.; Schaapveld, M.; Janus, C.P.M.; Krol, A.D.G.; Petersen, E.J.; Raemaekers, J.M.M.; Kok, W.E.M.; Aleman, B.M.P.; van Leeuwen, F.E. Cardiovascular disease after Hodgkin lymphoma treatment: 40-year disease risk. JAMA Intern. Med., 2015, 175(6), 1007-1017.
[http://dx.doi.org/10.1001/jamainternmed.2015.1180] [PMID: 25915855]
[39]
Crawford, M.H. Chemotherapy-induced valvular heart disease. JACC Cardiovasc. Imaging, 2016, 9(3), 240-242.
[http://dx.doi.org/10.1016/j.jcmg.2015.07.019] [PMID: 26897664]
[40]
Hu, Y.; Sun, B.; Zhao, B.; Mei, D.; Gu, Q.; Tian, Z. Cisplatin-induced cardiotoxicity with midrange ejection fraction. Medicine, 2018, 97(52), e13807.
[http://dx.doi.org/10.1097/MD.0000000000013807] [PMID: 30593170]
[41]
Nakamae, H.; Tsumura, K.; Hino, M.; Hayashi, T.; Tatsumi, N. QT dispersion as a predictor of acute heart failure after high-dose cyclophosphamide. Lancet, 2000, 355(9206), 805-806.
[http://dx.doi.org/10.1016/S0140-6736(00)02051-1] [PMID: 10711930]
[42]
Samuels, B.; Vogelzang, N.; Kennedy, B.J. Severe vascular toxicity associated with vinblastine, bleomycin, and cisplatin chemotherapy. Cancer Chemother. Pharmacol., 1987, 19(3), 253-256.
[http://dx.doi.org/10.1007/BF00252982] [PMID: 2438065]
[43]
Chen, X.L.; Lei, Y.H.; Liu, C.F.; Yang, Q.F.; Zuo, P.Y.; Liu, C.Y.; Chen, C.Z.; Liu, Y.W. Angiogenesis inhibitor bevacizumab increases the risk of ischemic heart disease associated with chemotherapy: A meta-analysis. PLoS One, 2013, 8(6), e66721.
[http://dx.doi.org/10.1371/journal.pone.0066721] [PMID: 23818962]
[44]
Di Cosimo, S. Heart to heart with trastuzumab: A review on cardiac toxicity. Target. Oncol., 2011, 6(4), 189-195.
[http://dx.doi.org/10.1007/s11523-011-0203-8] [PMID: 22125051]
[45]
Bowles, E.J.A.; Wellman, R.; Feigelson, H.S.; Onitilo, A.A.; Freedman, A.N.; Delate, T.; Allen, L.A.; Nekhlyudov, L.; Goddard, K.A.B.; Davis, R.L.; Habel, L.A.; Yood, M.U.; Mccarty, C.; Magid, D.J.; Wagner, E.H. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: A retrospective cohort study. J. Natl. Cancer Inst., 2012, 104(17), 1293-1305.
[http://dx.doi.org/10.1093/jnci/djs317] [PMID: 22949432]
[46]
Omori, S.; Oyakawa, T.; Naito, T.; Takahashi, T. Gefitinib-induced cardiomyopathy in epidermal growth receptor-mutated NSCLC. J. Thorac. Oncol., 2018, 13(10), e207-e208.
[http://dx.doi.org/10.1016/j.jtho.2018.05.020] [PMID: 30244856]
[47]
Lancellotti, P.; Marechal, P.; Donis, N.; Oury, C. Inflammation, cardiovascular disease, and cancer: A common link with far-reaching implications. Eur. Heart J., 2019, 40(48), 3910-3912.
[http://dx.doi.org/10.1093/eurheartj/ehz645] [PMID: 31504421]
[48]
Yang, R.; Tan, C.; Najafi, M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacology, 2022, 30(1), 73-89.
[http://dx.doi.org/10.1007/s10787-021-00894-9] [PMID: 34813027]
[49]
Mortezaee, K.; Najafi, M. Immune system in cancer radiotherapy: Resistance mechanisms and therapy perspectives. Crit. Rev. Oncol. Hematol., 2021, 157, 103180.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103180] [PMID: 33264717]
[50]
Kreuzer, M.; Auvinen, A.; Cardis, E.; Hall, J.; Jourdain, J.R.; Laurier, D.; Little, M.P.; Peters, A.; Raj, K.; Russell, N.S.; Tapio, S.; Zhang, W.; Gomolka, M. Low-dose ionising radiation and cardiovascular diseases – strategies for molecular epidemiological studies in Europe. Mutat. Res. Rev. Mutat. Res., 2015, 764, 90-100.
[http://dx.doi.org/10.1016/j.mrrev.2015.03.002] [PMID: 26041268]
[51]
Yusuf, S.W.; Sami, S.; Daher, I.N. Radiation-induced heart disease: A clinical update. Cardiol. Res. Pract., 2011, 2011, 1-9.
[http://dx.doi.org/10.4061/2011/317659] [PMID: 21403872]
[52]
Taunk, N.K.; Haffty, B.G.; Kostis, J.B.; Goyal, S. Radiation-induced heart disease: Pathologic abnormalities and putative mechanisms. Front. Oncol., 2015, 5, 39.
[http://dx.doi.org/10.3389/fonc.2015.00039] [PMID: 25741474]
[53]
Hatoum, O.A.; Otterson, M.F.; Kopelman, D.; Miura, H.; Sukhotnik, I.; Larsen, B.T.; Selle, R.M.; Moulder, J.E.; Gutterman, D.D. Radiation induces endothelial dysfunction in murine intestinal arterioles viaenhanced production of reactive oxygen species. Arterioscler. Thromb. Vasc. Biol., 2006, 26(2), 287-294.
[http://dx.doi.org/10.1161/01.ATV.0000198399.40584.8c] [PMID: 16322529]
[54]
Reidy, M.A. A reassessment of endothelial injury and arterial lesion formation. Lab. Invest., 1985, 53(5), 513-520.
[PMID: 3903345]
[55]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[56]
Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875.
[http://dx.doi.org/10.1038/nrc3380] [PMID: 23151605]
[57]
Zhu, Z.; Zhong, S.; Shen, Z. Targeting the inflammatory pathways to enhance chemotherapy of cancer. Cancer Biol. Ther., 2011, 12(2), 95-105.
[http://dx.doi.org/10.4161/cbt.12.2.15952] [PMID: 21623164]
[58]
Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(6), H2181-H2190.
[http://dx.doi.org/10.1152/ajpheart.00554.2011] [PMID: 21949114]
[59]
Farhood, B.; Goradel, N.H.; Mortezaee, K.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Shabeeb, D.; Musa, A.E.; Fallah, H.; Najafi, M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J. Cell Commun. Signal., 2019, 13(1), 3-16.
[http://dx.doi.org/10.1007/s12079-018-0473-3] [PMID: 29911259]
[60]
khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Amini, P.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci., 2020, 77(16), 3129-3159.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[61]
Farhood, B.; Ashrafizadeh, M. khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Afrashi, S.; Musa, A.E.; Najafi, M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci., 2020, 250, 117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[62]
Tang, D.; Loze, M.T.; Zeh, H.J., III; Kang, R.; Kang, R. The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy, 2010, 6(8), 1181-1183.
[http://dx.doi.org/10.4161/auto.6.8.13367] [PMID: 20861675]
[63]
Paris, F.; Fuks, Z.; Kang, A.; Capodieci, P.; Juan, G.; Ehleiter, D.; Haimovitz-Friedman, A.; Cordon-Cardo, C.; Kolesnick, R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 2001, 293(5528), 293-297.
[http://dx.doi.org/10.1126/science.1060191] [PMID: 11452123]
[64]
Rühle, A.; Huber, P.E.; Saffrich, R.; Lopez Perez, R.; Nicolay, N.H. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int. J. Cancer, 2018, 143(11), 2628-2639.
[http://dx.doi.org/10.1002/ijc.31619] [PMID: 29931767]
[65]
Mehdizadeh, M.; Aguilar, M.; Thorin, E.; Ferbeyre, G.; Nattel, S. The role of cellular senescence in cardiac disease: Basic biology and clinical relevance. Nat. Rev. Cardiol., 2021, 19(4), 250-264.
[http://dx.doi.org/10.1038/s41569-021-00624-2] [PMID: 34667279]
[66]
Meijles, D.N.; Cull, J.J.; Markou, T.; Cooper, S.T.E.; Haines, Z.H.R.; Fuller, S.J.; O’Gara, P.; Sheppard, M.N.; Harding, S.E.; Sugden, P.H.; Clerk, A. Redox regulation of cardiac ASK1 (apoptosis signal-regulating kinase 1) controls p38-MAPK (mitogen-activated protein kinase) and orchestrates cardiac remodeling to hypertension. Hypertension, 2020, 76(4), 1208-1218.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14556] [PMID: 32903101]
[67]
Tyurina, Y.Y.; St Croix, C.M.; Watkins, S.C.; Watson, A.M.; Epperly, M.W.; Anthonymuthu, T.S.; Kisin, E.R.; Vlasova, I.I.; Krysko, O.; Krysko, D.V.; Kapralov, A.A.; Dar, H.H.; Tyurin, V.A.; Amoscato, A.A.; Popova, E.N.; Bolevich, S.B.; Timashev, P.S.; Kellum, J.A.; Wenzel, S.E.; Mallampalli, R.K.; Greenberger, J.S.; Bayir, H.; Shvedova, A.A.; Kagan, V.E. Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. J. Leukoc. Biol., 2019, 106(1), 57-81.
[http://dx.doi.org/10.1002/JLB.3MIR0119-004RR] [PMID: 31071242]
[68]
Baselet, B.; Sonveaux, P.; Baatout, S.; Aerts, A. Pathological effects of ionizing radiation: Endothelial activation and dysfunction. Cell. Mol. Life Sci., 2019, 76(4), 699-728.
[http://dx.doi.org/10.1007/s00018-018-2956-z] [PMID: 30377700]
[69]
Shao, L.; Luo, Y.; Zhou, D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid. Redox Signal., 2014, 20(9), 1447-1462.
[http://dx.doi.org/10.1089/ars.2013.5635] [PMID: 24124731]
[70]
Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Lett., 2012, 327(1-2), 48-60.
[http://dx.doi.org/10.1016/j.canlet.2011.12.012] [PMID: 22182453]
[71]
Wang, J.; Yi, J. Cancer cell killing viaROS: To increase or decrease, that is the question. Cancer Biol. Ther., 2008, 7(12), 1875-1884.
[http://dx.doi.org/10.4161/cbt.7.12.7067] [PMID: 18981733]
[72]
Latella, G. Redox imbalance in intestinal fibrosis: Beware of the TGFβ-1, ROS, and Nrf2 connection. Dig. Dis. Sci., 2018, 63(2), 312-320.
[http://dx.doi.org/10.1007/s10620-017-4887-1] [PMID: 29273848]
[73]
Elhadidy, M.G.; Elmasry, A.; Elsayed, H.R.H.; El-Nablaway, M.; Hamed, S.; Elalfy, M.M.; Rabei, M.R. Modulation of COX-2 and NADPH oxidase-4 by alpha-lipoic acid ameliorates busulfan-induced pulmonary injury in rats. Heliyon, 2021, 7(10), e08171.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08171] [PMID: 34746462]
[74]
Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786.
[http://dx.doi.org/10.1007/s12012-022-09762-6] [PMID: 35877038]
[75]
Safarpour, S.; Safarpour, S.; Pirzadeh, M.; Moghadamnia, A.A.; Ebrahimpour, A.; Shirafkan, F.; Mansoori, R.; Kazemi, S.; Hosseini, M. Colchicine ameliorates 5-fluorouracil-induced cardiotoxicity in rats. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/6194532] [PMID: 35126817]
[76]
Xue, Q.; Yan, Y.; Zhang, R.; Xiong, H. Regulation of iNOS on immune cells and its role in diseases. Int. J. Mol. Sci., 2018, 19(12), 3805.
[http://dx.doi.org/10.3390/ijms19123805] [PMID: 30501075]
[77]
Wilkins, A.C.; Patin, E.C.; Harrington, K.J.; Melcher, A.A. The immunological consequences of radiation-induced DNA damage. J. Pathol., 2019, 247(5), 606-614.
[http://dx.doi.org/10.1002/path.5232] [PMID: 30632153]
[78]
Kuşçu, G.C.; Gürel, Ç.; Buhur, A.; Karabay Yavaşoğlu, N.Ü.; Köse, T.; Yavaşoğlu, A.; Oltulu, F. Fluvastatin alleviates doxorubicin-induced cardiac and renal toxicity in rats viaregulation of oxidative stress, inflammation, and apoptosis associated genes expressions. Drug Chem. Toxicol., 2022, 46(2), 1-12.
[http://dx.doi.org/10.1080/01480545.2022.2043351] [PMID: 35209778]
[79]
Aziz, T.; Rachek, L.; Knighten, J.; Andrews, J.; Pleshinger, D.J.; Francis, C. 8‐oxoguanine glycosylase (OGG1) is a determinant of endothelial dysfunction viacalcium and nitric oxide signaling. FASEB J., 2021, 35(S1), fasebj.2021.35.S1.02668.
[http://dx.doi.org/10.1096/fasebj.2021.35.S1.02668]
[80]
Yahyapour, R.; Amini, P.; Rezapoor, S.; Rezaeyan, A.; Farhood, B.; Cheki, M.; Fallah, H.; Najafi, M. Targeting of inflammation for radiation protection and mitigation. Curr. Mol. Pharmacol., 2018, 11(3), 203-210.
[http://dx.doi.org/10.2174/1874467210666171108165641] [PMID: 29119941]
[81]
Wang, J.; Wang, Q.; Watson, L.J.; Jones, S.P.; Epstein, P.N. Cardiac overexpression of 8-oxoguanine DNA glycosylase 1 protects mitochondrial DNA and reduces cardiac fibrosis following transaortic constriction. Am. J. Physiol. Heart Circ. Physiol., 2011, 301(5), H2073-H2080.
[http://dx.doi.org/10.1152/ajpheart.00157.2011] [PMID: 21873502]
[82]
Fukai, T.; Ushio-Fukai, M. Cross-talk between NADPH oxidase and mitochondria: Role in ROS signaling and angiogenesis. Cells, 2020, 9(8), 1849.
[http://dx.doi.org/10.3390/cells9081849] [PMID: 32781794]
[83]
Knock, G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic. Biol. Med., 2019, 145, 385-427.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.029] [PMID: 31585207]
[84]
Tian, R.; Peng, R.; Yang, Z.; Peng, Y.Y.; Lu, N. Supplementation of dietary nitrate attenuated oxidative stress and endothelial dysfunction in diabetic vasculature through inhibition of NADPH oxidase. Nitric Oxide, 2020, 96, 54-63.
[http://dx.doi.org/10.1016/j.niox.2020.01.007] [PMID: 31972252]
[85]
Mercurio, V.; Cuomo, A.; Della, P.R.; Ciervo, D.; Cella, L.; Pirozzi, F.; Parrella, P.; Campi, G.; Franco, R.; Varricchi, G.; Abete, P.; Marone, G.; Petretta, M.; Bonaduce, D.; Pacelli, R.; Picardi, M.; Tocchetti, C.G. What is the cardiac impact of chemotherapy and subsequent radiotherapy in lymphoma patients? Antioxid. Redox Signal., 2019, 31(15), 1166-1174.
[http://dx.doi.org/10.1089/ars.2019.7842] [PMID: 31436110]
[86]
Huang, C.Y.; Chung, C.L.; Hu, T.H.; Chen, J.J.; Liu, P.F.; Chen, C.L. Recent progress in TGF-β inhibitors for cancer therapy. Biomed. Pharmacother., 2021, 134, 111046.
[http://dx.doi.org/10.1016/j.biopha.2020.111046] [PMID: 33341049]
[87]
Aryafar, T.; Amini, P.; Rezapoor, S.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M.; Shirazi, A. Modulation of radiation-induced nadph oxidases in rat’s heart tissues by melatonin. J. Biomed. Phys. Eng., 2021, 11(4), 465-472.
[http://dx.doi.org/10.31661/jbpe.v0i0.1094] [PMID: 34458194]
[88]
Sakai, Y.; Yamamori, T.; Yoshikawa, Y.; Bo, T.; Suzuki, M.; Yamamoto, K.; Ago, T.; Inanami, O. NADPH oxidase 4 mediates ROS production in radiation-induced senescent cells and promotes migration of inflammatory cells. Free Radic. Res., 2018, 52(1), 92-102.
[http://dx.doi.org/10.1080/10715762.2017.1416112] [PMID: 29228832]
[89]
Zhao, Y.; McLaughlin, D.; Robinson, E.; Harvey, A.P.; Hookham, M.B.; Shah, A.M.; McDermott, B.J.; Grieve, D.J. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res., 2010, 70(22), 9287-9297.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2664] [PMID: 20884632]
[90]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Evaluating the radioprotective effect of curcumin on rat’s heart tissues. Curr. Radiopharm., 2018, 12(1), 23-28.
[http://dx.doi.org/10.2174/1874471011666180831101459] [PMID: 30173659]
[91]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Musa, A.E.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the up-regulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[http://dx.doi.org/10.22088/IJMCM.BUMS.7.3.193] [PMID: 31565651]
[92]
Cadenas, S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim. Biophys. Acta Bioenerg., 2018, 1859(9), 940-950.
[http://dx.doi.org/10.1016/j.bbabio.2018.05.019] [PMID: 29859845]
[93]
Ryoo, I.; Kwak, M.K. Regulatory crosstalk between the oxidative stress-related transcription factor Nfe2l2/Nrf2 and mitochondria. Toxicol. Appl. Pharmacol., 2018, 359, 24-33.
[http://dx.doi.org/10.1016/j.taap.2018.09.014] [PMID: 30236989]
[94]
Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[95]
Kalyanaraman, B.; Cheng, G.; Hardy, M.; Ouari, O.; Bennett, B.; Zielonka, J. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol., 2018, 15, 347-362.
[http://dx.doi.org/10.1016/j.redox.2017.12.012] [PMID: 29306792]
[96]
Cortassa, S.; Juhaszova, M.; Aon, M.A.; Zorov, D.B.; Sollott, S.J. Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J. Mol. Cell. Cardiol., 2021, 151, 113-125.
[http://dx.doi.org/10.1016/j.yjmcc.2020.11.013] [PMID: 33301801]
[97]
Hambardikar, V.D.; Mampel, M.G.; Urquiza, P.; Scoma, E.; Collins, J.; Solesio, M. Role of mitochondrial inorganic polyphosphate in maintaining mammalian bioenergetics and redox balance, by the regulation of the pentose phosphate pathway. Biophys. J., 2022, 121(3), 511a-512a.
[http://dx.doi.org/10.1016/j.bpj.2021.11.239]
[98]
Salnikova, D.; Orekhova, V.; Grechko, A.; Starodubova, A.; Bezsonov, E.; Popkova, T.; Orekhov, A. Mitochondrial dysfunction in vascular wall cells and its role in atherosclerosis. Int. J. Mol. Sci., 2021, 22(16), 8990.
[http://dx.doi.org/10.3390/ijms22168990] [PMID: 34445694]
[99]
Kuznetsov, A.V.; Margreiter, R.; Amberger, A.; Saks, V.; Grimm, M. Changes in mitochondrial redox state, membrane potential and calcium precede mitochondrial dysfunction in doxorubicin-induced cell death. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(6), 1144-1152.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.002] [PMID: 21406203]
[100]
Zhang, D.; Ma, J. Mitochondrial dynamics in rat heart induced by 5-Fluorouracil. Med. Sci. Monit., 2018, 24, 6666-6672.
[http://dx.doi.org/10.12659/MSM.910537] [PMID: 30240386]
[101]
Bindu, S.; Pillai, V.B.; Gupta, M.P. Role of sirtuins in regulating pathophysiology of the heart. Trends Endocrinol. Metab., 2016, 27(8), 563-573.
[http://dx.doi.org/10.1016/j.tem.2016.04.015] [PMID: 27210897]
[102]
Pillai, V.B.; Kanwal, A.; Fang, Y.H.; Sharp, W.W.; Samant, S.; Arbiser, J.; Gupta, M.P. Honokiol, an activator of Sirtuin-3 (SIRT3) preserves mitochondria and protects the heart from doxorubicin-induced cardiomyopathy in mice. Oncotarget, 2017, 8(21), 34082-34098.
[http://dx.doi.org/10.18632/oncotarget.16133] [PMID: 28423723]
[103]
Green, P.S.; Leeuwenburgh, C. Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis. Biochim. Biophys. Acta Mol. Basis Dis., 2002, 1588(1), 94-101.
[http://dx.doi.org/10.1016/S0925-4439(02)00144-8] [PMID: 12379319]
[104]
Ramos-Tovar, E.; Muriel, P. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver. Antioxidants, 2020, 9(12), 1279.
[http://dx.doi.org/10.3390/antiox9121279] [PMID: 33333846]
[105]
Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Yarahmadi, R.; Ghaznavi, H.; Mehrzadi, S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin. Ther. Targets, 2018, 22(12), 1049-1061.
[http://dx.doi.org/10.1080/14728222.2018.1541318] [PMID: 30445883]
[106]
Karakioulaki, M.; Papakonstantinou, E.; Stolz, D. Extracellular matrix remodelling in COPD. Eur. Respir. Rev., 2020, 29(158), 190124.
[http://dx.doi.org/10.1183/16000617.0124-2019] [PMID: 33208482]
[107]
Centurión, O.A.; Alderete, J.F.; Torales, J.M.; García, L.B.; Scavenius, K.E.; Miño, L.M. Myocardial fibrosis as a pathway of prediction of ventricular arrhythmias and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. Crit. Pathw. Cardiol., 2019, 18(2), 89-97.
[http://dx.doi.org/10.1097/HPC.0000000000000171] [PMID: 31094736]
[108]
Bradshaw, A.D.; DeLeon-Pennell, K.Y. T-cell regulation of fibroblasts and cardiac fibrosis. Matrix Biol., 2020, 91-92, 167-175.
[http://dx.doi.org/10.1016/j.matbio.2020.04.001] [PMID: 32438054]
[109]
Zhang, M.; Zhang, S. T cells in fibrosis and fibrotic diseases. Front. Immunol., 2020, 11, 1142.
[http://dx.doi.org/10.3389/fimmu.2020.01142] [PMID: 32676074]
[110]
Zou, B.; Schuster, J.P.; Niu, K.; Huang, Q.; Rühle, A.; Huber, P.E. Radiotherapy-induced heart disease: A review of the literature. Precis. Clin. Med., 2019, 2(4), 270-282.
[http://dx.doi.org/10.1093/pcmedi/pbz025] [PMID: 35693876]
[111]
Ma, C.X.; Zhao, X.K.; Li, Y.D. New therapeutic insights into radiation-induced myocardial fibrosis. Ther. Adv. Chronic Dis., 2019, 10.
[http://dx.doi.org/10.1177/2040622319868383] [PMID: 31448071]
[112]
Veith, C.; Hristova, M.; Danyal, K.; Habibovic, A.; Dustin, C.M.; McDonough, J.E.; Vanaudenaerde, B.M.; Kreuter, M.; Schneider, M.A.; Kahn, N.; van Schooten, F.J.; Boots, A.W.; van der Vliet, A. Profibrotic epithelial TGF-β1 signaling involves NOX4-mitochondria cross talk and redox-mediated activation of the tyrosine kinase FYN. Am. J. Physiol. Lung Cell. Mol. Physiol., 2021, 320(3), L356-L367.
[http://dx.doi.org/10.1152/ajplung.00444.2019] [PMID: 33325804]
[113]
Svegliati, S.; Spadoni, T.; Moroncini, G.; Gabrielli, A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic. Biol. Med., 2018, 125, 90-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.554] [PMID: 29694853]
[114]
Iwata, K.; Matsuno, K.; Murata, A.; Zhu, K.; Fukui, H.; Ikuta, K.; Katsuyama, M.; Ibi, M.; Matsumoto, M.; Ohigashi, M.; Wen, X.; Zhang, J.; Cui, W.; Yabe-Nishimura, C. Up-regulation of NOX1/NADPH oxidase following drug-induced myocardial injury promotes cardiac dysfunction and fibrosis. Free Radic. Biol. Med., 2018, 120, 277-288.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.053] [PMID: 29609020]
[115]
Du, J. Sun, J.; Li, N.; Li, X.; Sun, W.; Wei, W. β-Arrestin2 deficiency attenuates oxidative stress in mouse hepatic fibrosis through modulation of NOX4. Acta Pharmacol. Sin., 2021, 42(7), 1090-1100.
[http://dx.doi.org/10.1038/s41401-020-00545-9] [PMID: 33116250]
[116]
Wang, B.; Wang, H.; Zhang, M.; Ji, R.; Wei, J.; Xin, Y.; Jiang, X. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J. Cell. Mol. Med., 2020, 24(14), 7717-7729.
[http://dx.doi.org/10.1111/jcmm.15479] [PMID: 32536032]
[117]
Kim, M.; Choi, S.H.; Jin, Y.B.; Lee, H.J.; Ji, Y.H.; Kim, J.; Lee, Y.S.; Lee, Y.J. The effect of oxidized low-density lipoprotein (ox-LDL) on radiation-induced endothelial-to-mesenchymal transition. Int. J. Radiat. Biol., 2013, 89(5), 356-363.
[http://dx.doi.org/10.3109/09553002.2013.763193] [PMID: 23289363]
[118]
Mintet, E.; Lavigne, J.; Paget, V.; Tarlet, G.; Buard, V.; Guipaud, O.; Sabourin, J.C.; Iruela-Arispe, M.L.; Milliat, F.; François, A. Endothelial Hey2 deletion reduces endothelial-to-mesenchymal transition and mitigates radiation proctitis in mice. Sci. Rep., 2017, 7(1), 4933.
[http://dx.doi.org/10.1038/s41598-017-05389-8] [PMID: 28694461]
[119]
Xu, A. Deng, F.; Chen, Y.; Kong, Y.; Pan, L.; Liao, Q.; Rao, Z.; Xie, L.; Yao, C.; Li, S.; Zeng, X.; Zhu, X.; Liu, H.; Gao, N.; Xue, L.; Chen, F.; Xu, G.; Wei, D.; Zhou, X.; Li, Z.; Sheng, X. NF-κB pathway activation during endothelial-to-mesenchymal transition in a rat model of doxorubicin-induced cardiotoxicity. Biomed. Pharmacother., 2020, 130, 110525.
[http://dx.doi.org/10.1016/j.biopha.2020.110525] [PMID: 32702633]
[120]
Del Re, D.P.; Amgalan, D.; Linkermann, A.; Liu, Q.; Kitsis, R.N. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol. Rev., 2019, 99(4), 1765-1817.
[http://dx.doi.org/10.1152/physrev.00022.2018] [PMID: 31364924]
[121]
Zhang, Y.W.; Shi, J.; Li, Y.J.; Wei, L. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp., 2009, 57(6), 435-445.
[http://dx.doi.org/10.1007/s00005-009-0051-8] [PMID: 19866340]
[122]
Dhingra, R.; Margulets, V.; Chowdhury, S.R.; Thliveris, J.; Jassal, D.; Fernyhough, P.; Dorn, G.W., II; Kirshenbaum, L.A. Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc. Natl. Acad. Sci., 2014, 111(51), E5537-E5544.
[http://dx.doi.org/10.1073/pnas.1414665111] [PMID: 25489073]
[123]
Aguilar-Sanchez, C.; Michael, M.; Pennings, S. Cardiac stem cells in the postnatal heart: Lessons from development. Stem Cells Int., 2018, 2018, 1247857.
[http://dx.doi.org/10.1155/2018/1247857]
[124]
Chimenti, C.; Kajstura, J.; Torella, D.; Urbanek, K.; Heleniak, H.; Colussi, C.; Di Meglio, F.; Nadal-Ginard, B.; Frustaci, A.; Leri, A.; Maseri, A.; Anversa, P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ. Res., 2003, 93(7), 604-613.
[http://dx.doi.org/10.1161/01.RES.0000093985.76901.AF] [PMID: 12958145]
[125]
Rota, M.; LeCapitaine, N.; Hosoda, T.; Boni, A.; De Angelis, A.; Padin-Iruegas, M.E.; Esposito, G.; Vitale, S.; Urbanek, K.; Casarsa, C.; Giorgio, M.; Lüscher, T.F.; Pelicci, P.G.; Anversa, P.; Leri, A.; Kajstura, J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ. Res., 2006, 99(1), 42-52.
[http://dx.doi.org/10.1161/01.RES.0000231289.63468.08] [PMID: 16763167]
[126]
De Angelis, A.; Piegari, E.; Cappetta, D.; Marino, L.; Filippelli, A.; Berrino, L.; Ferreira-Martins, J.; Zheng, H.; Hosoda, T.; Rota, M.; Urbanek, K.; Kajstura, J.; Leri, A.; Rossi, F.; Anversa, P. Anthracycline cardiomyopathy is mediated by depletion of the cardiac stem cell pool and is rescued by restoration of progenitor cell function. Circulation, 2010, 121(2), 276-292.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.895771] [PMID: 20038740]
[127]
Piegari, E.; Angelis, A.; Cappetta, D.; Russo, R.; Esposito, G.; Costantino, S.; Graiani, G.; Frati, C.; Prezioso, L.; Berrino, L.; Urbanek, K.; Quaini, F.; Rossi, F. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res. Cardiol., 2013, 108(2), 334.
[http://dx.doi.org/10.1007/s00395-013-0334-4] [PMID: 23411815]
[128]
Bartekova, M.; Radosinska, J.; Jelemensky, M.; Dhalla, N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail. Rev., 2018, 23(5), 733-758.
[http://dx.doi.org/10.1007/s10741-018-9716-x] [PMID: 29862462]
[129]
Ghosh, A.K.; Crake, T.; Manisty, C.; Westwood, M. Pericardial disease in cancer patients. Curr. Treat. Options Cardiovasc. Med., 2018, 20(7), 60.
[http://dx.doi.org/10.1007/s11936-018-0654-7] [PMID: 29936603]
[130]
Nabiałek-Trojanowska, I.; Lewicka, E.; Wrona, A.; Kaleta, A.M.; Lewicka-Potocka, Z.; Raczak, G.; Dziadziuszko, R. Cardiovascular complications after radiotherapy. Cardiol. J., 2020, 27(6), 836-847.
[http://dx.doi.org/10.5603/CJ.a2018.0120] [PMID: 30338841]
[131]
Ala, C.K.; Klein, A.L.; Moslehi, J.J. Cancer treatment-associated pericardial disease: Epidemiology, clinical presentation, diagnosis, and management. Curr. Cardiol. Rep., 2019, 21(12), 156.
[http://dx.doi.org/10.1007/s11886-019-1225-6] [PMID: 31768769]
[132]
Imanaka-Yoshida, K. Inflammation in myocardial disease: From myocarditis to dilated cardiomyopathy. Pathol. Int., 2020, 70(1), 1-11.
[http://dx.doi.org/10.1111/pin.12868] [PMID: 31691489]
[133]
Takemura, G.; Fujiwara, H. Doxorubicin-induced cardiomyopathy. Prog. Cardiovasc. Dis., 2007, 49(5), 330-352.
[http://dx.doi.org/10.1016/j.pcad.2006.10.002] [PMID: 17329180]
[134]
Renu, K. v G, A.; P B, T.P.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur. J. Pharmacol., 2018, 818, 241-253.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[135]
Jacobse, J.N.; Duane, F.K.; Boekel, N.B.; Schaapveld, M.; Hauptmann, M.; Hooning, M.J.; Seynaeve, C.M.; Baaijens, M.H.; Gietema, J.A.; Darby, S.C. Radiation dose-response for risk of myocardial infarction in breast cancer survivors. Int. J. Radiat. Oncol. Biol. Phys., 2019, 103(3), 595-604.
[http://dx.doi.org/10.1016/j.ijrobp.2018.10.025] [PMID: 30385276]
[136]
Desai, R.; Abbas, S.A.; Goyal, H.; Durairaj, A.; Fong, H.K.; Hung, O.; Sachdeva, R.; Barac, A.; Yusuf, S.W.; Kumar, G. Frequency of Takotsubo cardiomyopathy in adult patients receiving chemotherapy (from a 5-year nationwide inpatient study). Am. J. Cardiol., 2019, 123(4), 667-673.
[http://dx.doi.org/10.1016/j.amjcard.2018.11.006] [PMID: 30538037]
[137]
Unger, P.; Pibarot, P.; Tribouilloy, C.; Lancellotti, P.; Maisano, F.; Iung, B.; Piérard, L. Disease, E.S.O.C.C.O.V.H., Multiple and mixed valvular heart diseases: Pathophysiology, imaging, and management. Circ. Cardiovasc. Imaging, 2018, 11(8), e007862.
[http://dx.doi.org/10.1161/CIRCIMAGING.118.007862] [PMID: 30354497]
[138]
Kodali, S.K.; Velagapudi, P.; Hahn, R.T.; Abbott, D.; Leon, M.B. Valvular heart disease in patients≥ 80 years of age. J. Am. Coll. Cardiol., 2018, 71(18), 2058-2072.
[http://dx.doi.org/10.1016/j.jacc.2018.03.459] [PMID: 29724358]
[139]
Patil, S.; Pingle, S.R.; Shalaby, K.; Kim, A.S. Mediastinal irradiation and valvular heart disease. Cardiooncology, 2022, 8(1), 7.
[http://dx.doi.org/10.1186/s40959-022-00133-2] [PMID: 35395814]
[140]
Sato, A.; Yoshihisa, A.; Miyata-Tatsumi, M.; Oikawa, M.; Kobayashi, A.; Ishida, T.; Ohtake, T.; Takeishi, Y. Valvular heart disease as a possible predictor of trastuzumab-induced cardiotoxicity in patients with breast cancer. Mol. Clin. Oncol., 2019, 10(1), 37-42.
[PMID: 30655975]
[141]
Boekel, N.B.; Jacobse, J.N.; Schaapveld, M.; Hooning, M.J.; Gietema, J.A.; Duane, F.K.; Taylor, C.W.; Darby, S.C.; Hauptmann, M.; Seynaeve, C.M.; Baaijens, M.H.A.; Sonke, G.S.; Rutgers, E.J.T.; Russell, N.S.; Aleman, B.M.P.; van Leeuwen, F.E. Cardiovascular disease incidence after internal mammary chain irradiation and anthracycline-based chemotherapy for breast cancer. Br. J. Cancer, 2018, 119(4), 408-418.
[http://dx.doi.org/10.1038/s41416-018-0159-x] [PMID: 30065254]
[142]
Armanious, M.A.; Mohammadi, H.; Khodor, S.; Oliver, D.E.; Johnstone, P.A.; Fradley, M.G. Cardiovascular effects of radiation therapy. Curr. Probl. Cancer, 2018, 42(4), 433-442.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.05.008] [PMID: 30006103]
[143]
Borges, N.; Kapadia, S.R.; Radiation-induced, C.A.D. Radiation-induced CAD: Incidence, diagnosis, and management outcomes. In: American College of Cardiology; , 2018.
[144]
da Silva, R.M.F.L. Effects of radiotherapy in coronary artery disease. Curr. Atheroscler. Rep., 2019, 21(12), 50.
[http://dx.doi.org/10.1007/s11883-019-0810-x] [PMID: 31741087]
[145]
Wennstig, A.K.; Garmo, H.; Isacsson, U.; Gagliardi, G.; Rintelä, N.; Lagerqvist, B.; Holmberg, L.; Blomqvist, C.; Sund, M.; Nilsson, G. The relationship between radiation doses to coronary arteries and location of coronary stenosis requiring intervention in breast cancer survivors. Radiat. Oncol., 2019, 14(1), 40.
[http://dx.doi.org/10.1186/s13014-019-1242-z] [PMID: 30845947]
[146]
El-Sabbagh, A.; Osman, M.M.; Fesler, M.; Helmy, T.; Parker, N.; Muzaffar, R. Chemotherapy-induced coronary arteries calcium score deterioration as detected with unenhanced CT portion of FDG PET/CT. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(5), 303-310.
[PMID: 30510848]
[147]
Shin, D.W.; Suh, B.; Park, Y.; Lim, H.; Suh, Y.S.; Yun, J.M.; Cho, B.; Yang, H.K. Risk of coronary heart disease and ischemic stroke incidence in gastric cancer survivors: A nationwide study in Korea. Ann. Surg. Oncol., 2018, 25(11), 3248-3256.
[http://dx.doi.org/10.1245/s10434-018-6635-y] [PMID: 30043317]
[148]
Morvaridzadeh, M.; Sadeghi, E.; Agah, S.; Nachvak, S.M.; Fazelian, S.; Moradi, F.; Persad, E.; Heshmati, J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol. Res., 2020, 161, 105210.
[http://dx.doi.org/10.1016/j.phrs.2020.105210] [PMID: 33007423]
[149]
Abadi, S.H.M.H.; Shirazi, A.; Alizadeh, A.M.; Changizi, V.; Najafi, M.; Khalighfard, S.; Nosrati, H. The effect of melatonin on superoxide dismutase and glutathione peroxidase activity, and malondialdehyde levels in the targeted and the non-targeted lung and heart tissues after irradiation in xenograft mice colon cancer. Curr. Mol. Pharmacol., 2018, 11(4), 326-335.
[http://dx.doi.org/10.2174/1874467211666180830150154] [PMID: 30173656]
[150]
Wahab, M.H.A.; Akoul, E.S.E.M.S.; Abdel-Aziz, A.A.H. Modulatory effects of melatonin and vitamin E on doxorubicin-induced cardiotoxicity in Ehrlich ascites carcinoma-bearing mice. Tumori, 2000, 86(2), 157-162.
[http://dx.doi.org/10.1177/030089160008600210] [PMID: 10855855]
[151]
Karim, S.; Bhandari, U.; Kumar, H.; Salam, A.; Siddiqui, M.; Pillai, K. Doxorubicin induced cardiotoxicity and its modulation by drugs. Indian J. Pharmacol., 2001, 33(3), 203-207.
[152]
Dzie˛giel, P.; Murawska-Ciałowicz, E.; Jethon, Z.; Januszewska, L.; Podhorska-Okołów, M.; Surowiak, P.; Zawadzki, M.; Rabczyński, J.; Zabel, M. Melatonin stimulates the activity of protective antioxidative enzymes in myocardial cells of rats in the course of doxorubicin intoxication. J. Pineal Res., 2003, 35(3), 183-187.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00079.x] [PMID: 12932202]
[153]
Ahmed, H.H.; Mannaa, F.; Elmegeed, G.A.; Doss, S.H. Cardioprotective activity of melatonin and its novel synthesized derivatives on doxorubicin-induced cardiotoxicity. Bioorg. Med. Chem., 2005, 13(5), 1847-1857.
[http://dx.doi.org/10.1016/j.bmc.2004.10.066] [PMID: 15698802]
[154]
Aydemir, S.; Ozdemir, I.; Kart, A. Role of exogenous melatonin on adriamycin-induced changes in the rat heart. Eur. Rev. Med. Pharmacol. Sci., 2010, 14(5), 435-441.
[PMID: 20556922]
[155]
Ozturk, M.; Ozler, M.; Kurt, Y.G.; Ozturk, B.; Uysal, B.; Ersoz, N.; Yasar, M.; Demirbas, S.; Kurt, B.; Acikel, C.; Oztas, Y.; Arpaci, F.; Topal, T.; Ozet, A.; Ataergin, S.; Kuzhan, O.; Oter, S.; Korkmaz, A. Efficacy of melatonin, mercaptoethylguanidine and 1400W in doxorubicin- and trastuzumab-induced cardiotoxicity. J. Pineal Res., 2011, 50(1), 89-96.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00818.x] [PMID: 21062350]
[156]
Zhang, Y.; Li, L.; Xiang, C.; Ma, Z.; Ma, T.; Zhu, S. Protective effect of melatonin against Adriamycin-induced cardiotoxicity. Exp. Ther. Med., 2013, 5(5), 1496-1500.
[http://dx.doi.org/10.3892/etm.2013.989] [PMID: 23737906]
[157]
Bose, C.; Awasthi, S.; Sharma, R.; Beneš, H.; Hauer-Jensen, M.; Boerma, M.; Singh, S.P. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One, 2018, 13(3), e0193918.
[http://dx.doi.org/10.1371/journal.pone.0193918] [PMID: 29518137]
[158]
Bahadır, A.; Ceyhan, A.; Öz Gergin, Ö.; Yalçın, B.; Ülger, M.; Özyazgan, T.M.; Yay, A. Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: An experimental rat model. Anatol. J. Cardiol., 2018, 19(3), 213-221.
[http://dx.doi.org/10.14744/AnatolJCardiol.2018.53059] [PMID: 29521316]
[159]
Arafa, M.H.; Mohammad, N.S.; Atteia, H.H.; Abd-Elaziz, H.R. Protective effect of resveratrol against doxorubicin-induced cardiac toxicity and fibrosis in male experimental rats. J. Physiol. Biochem., 2014, 70(3), 701-711.
[http://dx.doi.org/10.1007/s13105-014-0339-y] [PMID: 24939721]
[160]
Al-Saedi, H.F. Protective effects of pentoxifylline against adriamycin-induced cardiotoxicity in rabbits. J. Pharm. Negat. Results, 2022, 13(2), 51-56.
[161]
Zang, Z.; Li, S.; Lin, Y.; Li, X.; Li, Y.; Qin, Y.; Wang, H.; Jiang, M.; Zhu, L. Pentoxifylline prevents driamycin-induced myocardial fibrosis and apoptosis in rats. Int. Heart J., 2015, 56(6), 651-655.
[http://dx.doi.org/10.1536/ihj.15-203] [PMID: 26549291]
[162]
Dominic, A.; Hamilton, D.; Abe, J. Mitochondria and chronic effects of cancer therapeutics: The clinical implications. J. Thromb. Thrombolysis, 2021, 51(4), 884-889.
[http://dx.doi.org/10.1007/s11239-020-02313-2] [PMID: 33079380]
[163]
Sumneang, N.; Siri-Angkul, N.; Kumfu, S.; Chattipakorn, S.C.; Chattipakorn, N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch. Biochem. Biophys., 2020, 680, 108241.
[http://dx.doi.org/10.1016/j.abb.2019.108241] [PMID: 31891670]
[164]
Ashrafizadeh, M.; Samarghandian, S.; Hushmandi, K.; Zabolian, A.; Shahinozzaman, M.; Saleki, H.; Esmaeili, H.; Raei, M.; Entezari, M.; Zarrabi, A.; Najafi, M. Quercetin in attenuation of ischemic/reperfusion injury: A review. Curr. Mol. Pharmacol., 2021, 14(4), 537-558.
[http://dx.doi.org/10.2174/1874467213666201217122544] [PMID: 33334302]
[165]
Zakaria, N.; Khalil, S.R.; Awad, A.; Khairy, G.M. Quercetin reverses altered energy metabolism in the heart of rats receiving adriamycin chemotherapy. Cardiovasc. Toxicol., 2018, 18(2), 109-119.
[http://dx.doi.org/10.1007/s12012-017-9420-4] [PMID: 28702745]
[166]
Sridharan, V.; Tripathi, P.; Aykin-Burns, N.; Krager, K.J.; Sharma, S.K.; Moros, E.G.; Melnyk, S.B.; Pavliv, O.; Hauer-Jensen, M.; Boerma, M. A tocotrienol-enriched formulation protects against radiation-induced changes in cardiac mitochondria without modifying late cardiac function or structure. Radiat. Res., 2015, 183(3), 357-366.
[http://dx.doi.org/10.1667/RR13915.1] [PMID: 25710576]
[167]
Mortezaee, K.; Goradel, N.H.; Amini, P.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. NADPH oxidase as a target for modulation of radiation response; implications to carcinogenesis and radiotherapy. Curr. Mol. Pharmacol., 2019, 12(1), 50-60.
[http://dx.doi.org/10.2174/1874467211666181010154709] [PMID: 30318012]
[168]
Amini, P.; Kolivand, S.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Najafi, M.; Nouruzi, F.; Shabeeb, D.; Musa, A.E. Protective effect of selenium-l-methionine on radiation-induced acute pneumonitis and lung fibrosis in rat. Curr. Clin. Pharmacol., 2018.
[PMID: 30556505]
[169]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Saffar, H.; Motevaseli, E.; Rezapoor, S.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Ashabi, G.; Mohseni, M.; Moradi, H.; Najafi, M. Radiation-induced dual oxidase upregulation in rat heart tissues: Protective effect of melatonin. Medicina, 2019, 55(7), 317.
[http://dx.doi.org/10.3390/medicina55070317] [PMID: 31252673]
[170]
Moulder, J.E.; Cohen, E.P.; Medhora, M.; Fish, B.L. Angiotensin converting enzyme (ACE) inhibitors as radiation countermeasures for long-duration space flights. Life Sci. Space Res., 2022, 35, 60-68.
[http://dx.doi.org/10.1016/j.lssr.2022.04.005] [PMID: 36336371]
[171]
Radin, D.P.; Krebs, A.; Maqsudlu, A.; Patel, P. Our ACE in the HOLE: Justifying the use of angiotensin-converting enzyme inhibitors as adjuvants to standard chemotherapy. Anticancer Res., 2018, 38(1), 45-49.
[PMID: 29277755]
[172]
Pinter, M.; Kwanten, W.J.; Jain, R.K. Renin–angiotensin system inhibitors to mitigate cancer treatment–related adverse events. Clin. Cancer Res., 2018, 24(16), 3803-3812.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0236] [PMID: 29610292]
[173]
van der Veen, S.J.; Ghobadi, G.; de Boer, R.A.; Faber, H.; Cannon, M.V.; Nagle, P.W.; Brandenburg, S.; Langendijk, J.A.; van Luijk, P.; Coppes, R.P. ACE inhibition attenuates radiation-induced cardiopulmonary damage. Radiother. Oncol., 2015, 114(1), 96-103.
[http://dx.doi.org/10.1016/j.radonc.2014.11.017] [PMID: 25465731]
[174]
Ortiz de Choudens, S.; Sparapani, R.; Narayanan, J.; Lohr, N.; Gao, F.; Fish, B.L.; Zielonka, M.; Gasperetti, T.; Veley, D.; Beyer, A.; Olson, J.; Jacobs, E.R.; Medhora, M. Lisinopril mitigates radiation-induced mitochondrial defects in rat heart and blood cells. Front. Oncol., 2022, 12, 828177.
[http://dx.doi.org/10.3389/fonc.2022.828177] [PMID: 35311118]
[175]
Tabrizi, F.B.; Yarmohammadi, F.; Hayes, A.W.; Karimi, G. The modulation of SIRT1 and SIRT3 by natural compounds as a therapeutic target in doxorubicin-induced cardiotoxicity: A review. J. Biochem. Mol. Toxicol., 2022, 36(1), e22946.
[http://dx.doi.org/10.1002/jbt.22946] [PMID: 34747550]
[176]
Yang, N.; Ma, H.; Jiang, Z.; Niu, L.; Zhang, X.; Liu, Y.; Wang, Y.; Cheng, S.; Deng, Y.; Qi, H.; Wang, Z. Dosing depending on SIRT3 activity attenuates doxorubicin-induced cardiotoxicity viaelevated tolerance against mitochondrial dysfunction and oxidative stress. Biochem. Biophys. Res. Commun., 2019, 517(1), 111-117.
[http://dx.doi.org/10.1016/j.bbrc.2019.07.029] [PMID: 31303273]
[177]
Tomczyk, M.M.; Cheung, K.G.; Xiang, B.; Tamanna, N.; Fonseca Teixeira, A.L.; Agarwal, P.; Kereliuk, S.M.; Spicer, V.; Lin, L.; Treberg, J.; Tong, Q.; Dolinsky, V.W. Mitochondrial sirtuin-3 (SIRT3) prevents doxorubicin-induced dilated cardiomyopathy by modulating protein acetylation and oxidative stress. Circ. Heart Fail., 2022, 15(5), e008547.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.121.008547] [PMID: 35418250]
[178]
Uche, N.; Dai, Q.; Lai, S.; Benjamin, I. Carvedilol protection involves the mitochondrial deacetylase Sirt3 in mitigating Doxorubicin-induced Cardiomyocyte Injury. FASEB J., 2020, 34(S1), 1-1.
[http://dx.doi.org/10.1096/fasebj.2020.34.s1.05227]
[179]
Saleh, M.F.; Elsayad, M.E.; Goda, A.E. Mitigation of doxorubicin-induced cardiotoxicity by dichloroacetate: Potential roles of restoration of PGC-1α/SIRT3 signaling and suppression of oxidative stress and apoptosis. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(21), 6573-6584.
[http://dx.doi.org/10.26355/eurrev_202111_27100] [PMID: 34787860]
[180]
Gu, J.; Huang, H.; Liu, C.; Jiang, B.; Li, M.; Liu, L.; Zhang, S. Pinocembrin inhibited cardiomyocyte pyroptosis against doxorubicin-induced cardiac dysfunction viaregulating Nrf2/Sirt3 signaling pathway. Int. Immunopharmacol., 2021, 95, 107533.
[http://dx.doi.org/10.1016/j.intimp.2021.107533] [PMID: 33752080]
[181]
Liu, D.; Zhao, L. Spinacetin alleviates doxorubicin-induced cardiotoxicity by initiating protective autophagy through SIRT3/AMPK/mTOR pathways. Phytomedicine, 2022, 101, 154098.
[http://dx.doi.org/10.1016/j.phymed.2022.154098] [PMID: 35430482]
[182]
Peng, D.; Fu, M.; Wang, M.; Wei, Y.; Wei, X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol. Cancer, 2022, 21(1), 104.
[http://dx.doi.org/10.1186/s12943-022-01569-x] [PMID: 35461253]
[183]
Kim, J.H.; Shin, B.C.; Park, W.S.; Lee, J.; Kuh, H.J. Antifibrotic effects of pentoxifylline improve the efficacy of gemcitabine in human pancreatic tumor xenografts. Cancer Sci., 2017, 108(12), 2470-2477.
[http://dx.doi.org/10.1111/cas.13405] [PMID: 28940685]
[184]
Abo-Salem, O.M. Uroprotective effect of pentoxifylline in cyclophosphamide-induced hemorrhagic cystitis in rats. J. Biochem. Mol. Toxicol., 2013, 27(7), 343-350.
[http://dx.doi.org/10.1002/jbt.21494] [PMID: 23695977]
[185]
Liu, H.; Xiong, M.; Xia, Y-F.; Cui, N-J.; Lu, R-B.; Deng, L.; Lin, Y-H.; Rong, T-H. Studies on pentoxifylline and tocopherol combination for radiation-induced heart disease in rats. Int. J. Radiat. Oncol. Biol. Phys., 2009, 73(5), 1552-1559.
[http://dx.doi.org/10.1016/j.ijrobp.2008.12.005] [PMID: 19306752]
[186]
Boerma, M.; Roberto, K.A.; Hauer-Jensen, M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int. J. Radiat. Oncol. Biol. Phys., 2008, 72(1), 170-177.
[http://dx.doi.org/10.1016/j.ijrobp.2008.04.042] [PMID: 18632215]
[187]
Sridharan, V.; Tripathi, P.; Sharma, S.; Corry, P.M.; Moros, E.G.; Singh, A.; Compadre, C.M.; Hauer-Jensen, M.; Boerma, M. Effects of late administration of pentoxifylline and tocotrienols in an image-guided rat model of localized heart irradiation. PLoS One, 2013, 8(7), e68762.
[http://dx.doi.org/10.1371/journal.pone.0068762] [PMID: 23894340]
[188]
Subramanian, V.; Seemann, I.; Merl-Pham, J.; Hauck, S.M.; Stewart, F.A.; Atkinson, M.J.; Tapio, S.; Azimzadeh, O. Role of TGF beta and PPAR alpha signaling pathways in radiation response of locally exposed heart: Integrated global transcriptomics and proteomics analysis. J. Proteome Res., 2017, 16(1), 307-318.
[http://dx.doi.org/10.1021/acs.jproteome.6b00795] [PMID: 27805817]
[189]
Subramanian, V.; Borchard, S.; Azimzadeh, O.; Sievert, W.; Merl-Pham, J.; Mancuso, M.; Pasquali, E.; Multhoff, G.; Popper, B.; Zischka, H.; Atkinson, M.J.; Tapio, S. PPARα is necessary for radiation-induced activation of noncanonical tgfβ signaling in the heart. J. Proteome Res., 2018, 17(4), 1677-1689.
[http://dx.doi.org/10.1021/acs.jproteome.8b00001] [PMID: 29560722]
[190]
Ramani, S.; Park, S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J. Mol. Med., 2021, 99(6), 771-784.
[http://dx.doi.org/10.1007/s00109-021-02048-4] [PMID: 33728476]
[191]
Lampros, M.; Vlachos, N.; Voulgaris, S.; Alexiou, G.A. The role of Hsp27 in chemotherapy resistance. Biomedicines, 2022, 10(4), 897.
[http://dx.doi.org/10.3390/biomedicines10040897] [PMID: 35453647]
[192]
Dimmeler, S.; Zeiher, A.M.; Schneider, M.D. Unchain my heart: The scientific foundations of cardiac repair. J. Clin. Invest., 2005, 115(3), 572-583.
[http://dx.doi.org/10.1172/JCI200524283] [PMID: 15765139]
[193]
Pelacho, B.; Aranguren, X.L.; Mazo, M.; Abizanda, G.; Gavira, J.J.; Clavel, C.; Gutierrez-Perez, M.; Luttun, A.; Verfaillie, C.M.; Prósper, F. Plasticity and cardiovascular applications of multipotent adult progenitor cells. Nat. Clin. Pract. Cardiovasc. Med., 2007, 4(S1), S15-S20.
[http://dx.doi.org/10.1038/ncpcardio0735] [PMID: 17230211]
[194]
Abushouk, A.I.; Salem, A.M.A.; Saad, A.; Afifi, A.M.; Afify, A.Y.; Afify, H.; Salem, H.S.E.; Ghanem, E.; Abdel-Daim, M.M. Mesenchymal stem cell therapy for doxorubicin-induced cardiomyopathy: Potential mechanisms, governing factors, and implications of the heart stem cell debate. Front. Pharmacol., 2019, 10, 635.
[http://dx.doi.org/10.3389/fphar.2019.00635] [PMID: 31258475]
[195]
Mousa, H.S.E.; Abdel Aal, S.M.; Abbas, N.A.T. Umbilical cord blood-mesenchymal stem cells and carvedilol reduce doxorubicin- induced cardiotoxicity: Possible role of insulin-like growth factor-1. Biomed. Pharmacother., 2018, 105, 1192-1204.
[http://dx.doi.org/10.1016/j.biopha.2018.06.051] [PMID: 30021356]
[196]
Chen, L.; Xia, W.; Hou, M. Mesenchymal stem cells attenuate doxorubicin induced cellular senescence through the VEGF/Notch/TGF β signaling pathway in H9c2 cardiomyocytes. Int. J. Mol. Med., 2018, 42(1), 674-684.
[http://dx.doi.org/10.3892/ijmm.2018.3635] [PMID: 29693137]
[197]
Zhuang, L.; Xia, W.; Chen, D.; Ye, Y.; Hu, T.; Li, S.; Hou, M. Exosomal LncRNA–NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J. Nanobiotechnology, 2020, 18(1), 157.
[http://dx.doi.org/10.1186/s12951-020-00716-0] [PMID: 33129330]
[198]
Xia, W.; Hou, M. Mesenchymal stem cells confer resistance to doxorubicin induced cardiac senescence by inhibiting microRNA 34a. Oncol. Lett., 2018, 15(6), 10037-10046.
[http://dx.doi.org/10.3892/ol.2018.8438] [PMID: 29928373]
[199]
Ni, J.; Liu, Y.; Kang, L.; Wang, L.; Han, Z.; Wang, K.; Xu, B.; Gu, R. Human trophoblast-derived exosomes attenuate doxorubicin-induced cardiac injury by regulating miR-200b and downstream Zeb1. J. Nanobiotechnology, 2020, 18(1), 171.
[http://dx.doi.org/10.1186/s12951-020-00733-z] [PMID: 33218341]
[200]
Singla, D.; Johnson, T.; Tavakoli, D.Z. Exosome treatment enhances anti-inflammatory m2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells, 2019, 8(10), 1224.
[http://dx.doi.org/10.3390/cells8101224] [PMID: 31600901]
[201]
Kolivand, S.; Amini, P.; Saffar, H.; Rezapoor, S.; Najafi, M.; Motevaseli, E.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A. Selenium-L-methionine modulates radiation injury and Duox1 and Duox2 upregulation in rat’s heart tissues. J. Cardiovasc. Thorac. Res., 2019, 11(2), 121-126.
[http://dx.doi.org/10.15171/jcvtr.2019.21] [PMID: 31384406]
[202]
Boer, J.J.; Kappelhof, J.J.J.S.; van der Zant, F.M.; Wondergem, M.; de Swart, H.J.B.R.M.; Knol, R.J.J. 13N-ammonia PET/CT stress myocardial blood flow compared to fractional flow reserve in coronary artery disease. Nucl. Med. Commun., 2020, 41(2), 133-138.
[http://dx.doi.org/10.1097/MNM.0000000000001117] [PMID: 31764595]
[203]
Carabelli, A.; Canu, M.; de Fondaumière, M.; Debiossat, M.; Leenhardt, J.; Broisat, A.; Ghezzi, C.; Vanzetto, G.; Fagret, D.; Barone-Rochette, G.; Riou, L.M. Noninvasive assessment of coronary microvascular dysfunction using SPECT myocardial perfusion imaging and myocardial perfusion entropy quantification in a rodent model of type 2 diabetes. Eur. J. Nucl. Med. Mol. Imaging, 2022, 49(3), 809-820.
[http://dx.doi.org/10.1007/s00259-021-05511-z] [PMID: 34417856]
[204]
Fathala, A. Myocardial perfusion scintigraphy: Techniques, interpretation, indications and reporting. Ann. Saudi Med., 2011, 31(6), 625-634.
[http://dx.doi.org/10.4103/0256-4947.87101] [PMID: 22048510]
[205]
Hardenbergh, P.H.; Munley, M.T.; Bentel, G.C.; Kedem, R.; Borges-Neto, S.; Hollis, D.; Prosnitz, L.R.; Marks, L.B. Cardiac perfusion changes in patients treated for breast cancer with radiation therapy and doxorubicin: Preliminary results. Int. J. Radiat. Oncol. Biol. Phys., 2001, 49(4), 1023-1028.
[http://dx.doi.org/10.1016/S0360-3016(00)01531-5] [PMID: 11240243]
[206]
Kaidar-Person, O.; Zagar, T.M.; Oldan, J.D.; Matney, J.; Jones, E.L.; Das, S.; Jensen, B.C.; Zellars, R.C.; Wong, T.Z.; Marks, L.B. Early cardiac perfusion defects after left-sided radiation therapy for breast cancer: Is there a volume response? Breast Cancer Res. Treat., 2017, 164(2), 253-262.
[http://dx.doi.org/10.1007/s10549-017-4248-y] [PMID: 28439736]
[207]
Laursen, A.H.; Elming, M.B.; Ripa, R.S.; Hasbak, P.; Kjær, A.; Køber, L.; Marott, J.L.; Thune, J.J.; Hutchings, M. Rubidium-82 positron emission tomography for detection of acute doxorubicin-induced cardiac effects in lymphoma patients. J. Nucl. Cardiol., 2020, 27(5), 1698-1707.
[http://dx.doi.org/10.1007/s12350-018-1458-6] [PMID: 30298372]
[208]
Ziadi, M.C.; de Kemp, R.; Beanlands, R.S.B.; Small, G.R. Looking for trouble: Reduced myocardial flow reserve following anthracyclines. J. Nucl. Cardiol., 2020, 27(5), 1708-1713.
[http://dx.doi.org/10.1007/s12350-018-01564-0] [PMID: 30627882]
[209]
Croteau, E.; Gascon, S.; Bentourkia, M.; Langlois, R.; Rousseau, J.A.; Lecomte, R.; Bénard, F. [11C]Acetate rest–stress protocol to assess myocardial perfusion and oxygen consumption reserve in a model of congestive heart failure in rats. Nucl. Med. Biol., 2012, 39(2), 287-294.
[http://dx.doi.org/10.1016/j.nucmedbio.2011.07.010] [PMID: 22079038]
[210]
Kim, J.; Cho, S.G.; Kang, S.R.; Yoo, S.W.; Kwon, S.Y.; Min, J.J.; Bom, H.S.; Song, H.C. Association between FDG uptake in the right ventricular myocardium and cancer therapy-induced cardiotoxicity. J. Nucl. Cardiol., 2020, 27(6), 2154-2163.
[http://dx.doi.org/10.1007/s12350-019-01617-y] [PMID: 30719656]
[211]
Bauckneht, M.; Pastorino, F.; Castellani, P.; Cossu, V.; Orengo, A.M.; Piccioli, P.; Emionite, L.; Capitanio, S.; Yosifov, N.; Bruno, S.; Lazzarini, E.; Ponzoni, M.; Ameri, P.; Rubartelli, A.; Ravera, S.; Morbelli, S.; Sambuceti, G.; Marini, C. Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J. Nucl. Cardiol., 2020, 27(6), 2183-2194.
[http://dx.doi.org/10.1007/s12350-019-01618-x] [PMID: 30737636]
[212]
Sarocchi, M.; Bauckneht, M.; Arboscello, E.; Capitanio, S.; Marini, C.; Morbelli, S.; Miglino, M.; Congiu, A.G.; Ghigliotti, G.; Balbi, M.; Brunelli, C.; Sambuceti, G.; Ameri, P.; Spallarossa, P. An increase in myocardial 18-fluorodeoxyglucose uptake is associated with left ventricular ejection fraction decline in Hodgkin lymphoma patients treated with anthracycline. J. Transl. Med., 2018, 16(1), 295.
[http://dx.doi.org/10.1186/s12967-018-1670-9] [PMID: 30359253]
[213]
Polomski, E.A.S.; Antoni, M.L.; Jukema, J.W.; Kroep, J.R.; Dibbets-Schneider, P.; Sattler, M.G.A.; de Geus-Oei, L.F. Nuclear medicine imaging methods of radiation-induced cardiotoxicity. Semin. Nucl. Med., 2022, 52(5), 597-610.
[http://dx.doi.org/10.1053/j.semnuclmed.2022.02.001] [PMID: 35246310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy