Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Letter Article

Development of Novel Indole-3-sulfonamide-heteroaryl Hybrids as Carbonic Anhydrase Inhibitors: Design, Synthesis and in-vitro Screening

Author(s): Krishna K. Chinchilli, Priti Singh, Baijayantimala Swain, Nerella S. Goud, Dilep K. Sigalapalli, Abhishek Choli, Andrea Angeli, Srinivas Nanduri*, Venkata M. Yaddanapudi, Claudiu T. Supuran* and Mohammed Arifuddin*

Volume 23, Issue 11, 2023

Published on: 16 March, 2023

Page: [1225 - 1233] Pages: 9

DOI: 10.2174/1871520623666230227092821

Price: $65

Abstract

Background: Carbonic anhydrases (CAs, EC 4.2.1.1) catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Inhibition of isoforms IX and XII has induced potent anticancer effects.

Objective: A series of indole-3-sulfonamide-heteroaryl hybrid (6a-y) was synthesized and screened for the inhibition of human (h) hCA isoforms I, II, IX, and XII.

Methods: The synthesis of target compounds (6a-y) was carried out in multistep starting from 5-nitro indole as starting material by using classical reported reaction conditions. The steps involved are N-Alkylation Chlorosulfonation, amination, reduction, and finally amidation reaction.

Results: Amongst all the compounds (6a-y) synthesized and screened, 6l was found to be active against all the screened hCA isoforms, with Ki ranging 8.03 μM, 4.15 μM, 7.09 μM, and 4.06 μM respectively. On the other hand, 6i, 6j, 6q, 6s, and 6t were highly selective against tumor-associated hCA IX, and 6u was selective against both hCA II and hCA IX with moderate inhibitory activities under the range of 100 μM. These compounds showed good activity against the tumor-associated hCA IX and might be developed as future drug leads for anticancer drug discovery.

Conclusion: These compounds may be useful as starting points for the design and development of more selective and potent hCA IX and XII inhibitors.

Next »
Graphical Abstract

[1]
Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J., 2016, 473(14), 2023-2032.
[http://dx.doi.org/10.1042/BCJ20160115] [PMID: 27407171]
[2]
Supuran, C.T. Emerging role of carbonic anhydrase inhibitors. Clin. Sci., 2021, 135(10), 1233-1249.
[http://dx.doi.org/10.1042/CS20210040] [PMID: 34013961]
[3]
Thacker, P.S.; Shaikh, P.; Angeli, A.; Arifuddin, M.; Supuran, C.T. Synthesis and biological evaluation of novel 8-substituted quinoline-2-carboxamides as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1172-1177.
[http://dx.doi.org/10.1080/14756366.2019.1626376] [PMID: 31218888]
[4]
Swain, B. 3-functionalized benzenesulphonamide based 1,3,4-oxadiazoles as selective carbonic anhydrase XIII inhibitors: Design, syn-thesis and biological evaluation. Bioorg. Med. Chem. Lett., 2021, 37, 127856.
[http://dx.doi.org/10.1016/j.bmcl.2021.127856] [PMID: 33609663]
[5]
Supuran, C. Carbonic anhydrases-an overview. Curr. Pharm. Des., 2008, 14(7), 603-614.
[http://dx.doi.org/10.2174/138161208783877884] [PMID: 18336305]
[6]
Supuran, C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov., 2008, 7(2), 168-181.
[http://dx.doi.org/10.1038/nrd2467] [PMID: 18167490]
[7]
Ozensoy Guler, O.; Capasso, C.; Supuran, C.T. A magnificent enzyme superfamily: Carbonic anhydrases, their purification and characteri-zation. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 689-694.
[http://dx.doi.org/10.3109/14756366.2015.1059333] [PMID: 26118417]
[8]
Grandane, A.; Nocentini, A.; Werner, T.; Zalubovskis, R.; Supuran, C.T. Benzoxepinones: A new isoform-selective class of tumor associ-ated carbonic anhydrase inhibitors. Bioorg. Med. Chem., 2020, 28(11), 115496.
[http://dx.doi.org/10.1016/j.bmc.2020.115496] [PMID: 32327349]
[9]
Supuran, C.T.; Scozzafava, A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin. Ther. Pat., 2000, 10(5), 575-600.
[http://dx.doi.org/10.1517/13543776.10.5.575] [PMID: 30217119]
[10]
Boone, C.; Habibzadegan, A.; Gill, S.; McKenna, R. Carbonic anhydrases and their biotechnological applications. Biomolecules, 2013, 3(4), 553-562.
[http://dx.doi.org/10.3390/biom3030553] [PMID: 24970180]
[11]
Lomelino, C.; McKenna, R. Carbonic anhydrase inhibitors: A review on the progress of patent literature (2011-2016). Expert Opin. Ther. Pat., 2016, 26(8), 947-956.
[http://dx.doi.org/10.1080/13543776.2016.1203904] [PMID: 27387065]
[12]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[13]
a) Sugrue, M.F. Prog. Retin. Eye Res., 2000, 19, 87-112.;
b) Supuran, C.T. Therapeutic applications of carbonic anhydrase inhibitors. Therapy, 2007, 4, 355-378.
[14]
Kim, J.K.; Lee, C.; Lim, S.W.; Adhikari, A.; Andring, J.T.; McKenna, R.; Ghim, C.M.; Kim, C.U. Elucidating the role of metal ions in car-bonic anhydrase catalysis. Nat. Commun., 2020, 11(1), 4557.
[http://dx.doi.org/10.1038/s41467-020-18425-5] [PMID: 32917908]
[15]
Coleman, J.E. Mechanism of action of carbonic anhydrase. Subtrate, sulfonamide, and anion binding. J. Biol. Chem., 1967, 242(22), 5212-5219.
[http://dx.doi.org/10.1016/S0021-9258(18)99413-5] [PMID: 4965135]
[16]
A review on biological importance of heterocyclic compounds. Pharma Chem., 2017, 9, 141-147.
[17]
Asif, M. Biological potential and chemical properties of pyridine and piperidine fused pyridazine compounds: Pyridopyridazine a versatile nucleus. Asian J. Pharm., 2016, 1, 29-35.
[18]
Asif, M.A. Mini review: Biological significance of nitrogen heteroatom containing heterocyclic compounds. Int. J. Bioorg. Chem., 2017, 2, 146-152.
[19]
Arora, P.; Varun Arora, V.; Lamba, H.S.; Wadhwa, D. Impotance of heterocyclic chemistry a review. Int. J. Pharm. Sci. Res., 2012, 3, 2947-2954.
[20]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[21]
a) Singh, P.; Swain, B.; Thacker, P.S.; Sigalapalli, D.K.; Purnachander Yadav, P.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg. Chem., 2020, 99, 103839.
[http://dx.doi.org/10.1016/j.bioorg.2020.103839] [PMID: 32289586];
b) Singh, P.; Choli, A.; Swain, B.; Angeli, A.; Sahoo, S.K.; Yaddanapudi, V.M.; Supuran, C.T.; Arifuddin, M. Design and development of novel series of indole‐3‐sulfonamide ureido derivatives as selective carbonic anhydrase II inhibitors. Arch. Pharm., 2022, 355(1), 2100333.
[http://dx.doi.org/10.1002/ardp.202100333] [PMID: 34694638]
[22]
Husain, A.; Madhesia, D. Heterocyclic compounds as carbonic anhydrase inhibitor. J. Enzyme Inhib. Med. Chem., 2012, 27(6), 773-783.
[http://dx.doi.org/10.3109/14756366.2011.617882] [PMID: 21981003]
[23]
a) Monti, S.M.; Meccariello, A.; Ceruso, M.; Szafrański, K.; Sławiński, J.; Supuran, C.T. Inhibition studies of Brucella suis β-carbonic anhydrases with a series of 4-substituted pyridine-3-sulphonamides. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 255-259.
[http://dx.doi.org/10.1080/14756366.2017.1413097] [PMID: 29271264];
b) Sławiński, J.; Szafrański, K.; Vullo, D.; Supuran, C.T. Carbonic anhydrase inhibitors. Synthesis of heterocyclic 4-substituted pyridine-3-sulfonamide derivatives and their inhibition of the human cytosolic isozymes I and II and transmembrane tumor-associated isozymes IX and XII. Eur. J. Med. Chem., 2013, 69, 701-710.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.027] [PMID: 24095761]
[24]
Lehtonen, J.M.; Parkkila, S.; Vullo, D.; Casini, A.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of cytosolic isozyme XIII with aromatic and heterocyclic sulfonamides: A novel target for the drug design. Bioorg. Med. Chem. Lett., 2004, 14(14), 3757-3762.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.106] [PMID: 15203157]
[25]
a) Angapelly, S.; Sri Ramya, P.V.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Sulfocoumarin, coumarin, 4-sulfamoylphenyl-bearing inda-zole-3-carboxamide hybrids: Synthesis and selective inhibition of tumor-associated carbonic anhydrase isozymes IX and XII. ChemMedChem, 2017, 12(19), 1578-1584.
[http://dx.doi.org/10.1002/cmdc.201700446] [PMID: 28940980];
b) Angapelly, S.; Angeli, A.; Khan, A.J.; Sri Ramya, P.V.; Supuran, C.T.; Arifuddin, M. Synthesis and Biological evaluation of 4-Sulfamoylphenyl/sulfocoumarin carboxamides as selective inhibitors of carbonic anhydrase isoforms hCA II, IX,and XII. ChemMedChem, 2018, 13(12), 1165-1171.
[http://dx.doi.org/10.1002/cmdc.201800180] [PMID: 29675887];
c) Angapelly, S.; Ramya, P.V.S.; Sodhi, R.; Angeli, A.; Rangan, K.; Nagesh, N.; Supuran, C.T.; Arifuddin, M. Iodine-mediated one-pot in-tramolecular decarboxylation domino reaction for accessing functionalised 2-(1,3,4-oxadiazol-2-yl)anilines with carbonic anhydrase in-hibitory action. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 615-628.
[http://dx.doi.org/10.1080/14756366.2018.1443447] [PMID: 29536768]
[26]
Singh, P.; Purnachander Yadav, P.; Swain, B.; Thacker, P.S.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Discovery of a novel series of in-dolylchalcone-benzenesulfonamide hybrids acting as selective carbonic anhydrase II inhibitors. Bioorg. Chem., 2021, 108, 104647.
[http://dx.doi.org/10.1016/j.bioorg.2021.104647] [PMID: 33530019]
[27]
Rogers, J.I.; Mukherjee, J.; Khalifah, R.G. Interaction of amide inhibitors with the active site of carbonic anhydrase: Metal-induced depro-tonation of the bound amide group is indicated by slow binding kinetics, by visible spectra of complexes with cobalt enzyme, and by pH effects on binding affinity. Biochemistry, 1987, 26(18), 5672-5679.
[http://dx.doi.org/10.1021/bi00392a014] [PMID: 3118948]
[28]
Chiaramonte, N.; Romanelli, M.; Teodori, E.; Supuran, C. Amino acids as building blocks for carbonic anhydrase inhibitors. Metabolites, 2018, 8(2), 36.
[http://dx.doi.org/10.3390/metabo8020036] [PMID: 29795039]
[29]
Ostacolo, C.; Di Sarno, V.; Lauro, G.; Pepe, G.; Musella, S.; Ciaglia, T.; Vestuto, V.; Autore, G.; Bifulco, G.; Marzocco, S.; Campiglia, P.; Gomez-Monterrey, I.M.; Bertamino, A. Identification of an indol-based multi-target kinase inhibitor through phenotype screening and tar-get fishing using inverse virtual screening approach. Eur. J. Med. Chem., 2019, 167, 61-75.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.066] [PMID: 30763817]
[30]
Swain, B.; Angeli, A.; Angapelly, S.; Thacker, P.S.; Singh, P.; Supuran, C.T.; Arifuddin, M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1199-1209.
[http://dx.doi.org/10.1080/14756366.2019.1629432] [PMID: 31237458]
[31]
Thacker, P.S.; Srikanth, D.; Angeli, A.; Singh, P.; Chinchilli, K.K.; Arifuddin, M.; Supuran, C.T. Coumarin-thiourea hybrids show potent carbonic anhydrase IX and XIII inhibitory action. ChemMedChem, 2021, 16(8), 1252-1256.
[http://dx.doi.org/10.1002/cmdc.202000915] [PMID: 33346945]
[32]
Swain, B.; Singh Digwal, C.; Angeli, A.; Alvala, M.; Singh, P.; Supuran, C.T.; Arifuddin, M. Synthesis and exploration of 2-morpholino-4-phenylthiazol-5-yl acrylamide derivatives for their effects against carbonic anhydrase I, II, IX and XII isoforms as a non-sulfonamide class of inhibitors. Bioorg. Med. Chem., 2019, 27(21), 115090.
[http://dx.doi.org/10.1016/j.bmc.2019.115090] [PMID: 31515058]
[33]
Khalifah, R.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem., 1971, 246(8), 2561-2573.
[http://dx.doi.org/10.1016/S0021-9258(18)62326-9] [PMID: 4994926]
[34]
a) Korkmaz, N.; Obaidi, O.A.; Senturk, M.; Astley, D.; Ekinci, D.; Supuran, C.T. Synthesis and biological activity of novel thiourea de-rivatives as carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 75-80.
[http://dx.doi.org/10.3109/14756366.2013.879656] [PMID: 24666304];
b) Akdemir, A.; De Monte, C.; Carradori, S.; Supuran, C.T. Computational investigation of the selectivity of salen and tetrahydrosalen compounds towards the tumor-associated hCA XII isozyme. J. Enzyme Inhib. Med. Chem., 2015, 30(1), 114-118.
[http://dx.doi.org/10.3109/14756366.2014.892936] [PMID: 24666302];
c) Nishimori, I.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Carbonic anhydrase inhibitors. The mito-chondrial isozyme VB as a new target for sulfonamide and sulfamate inhibitors. J. Med. Chem., 2005, 48(24), 7860-7866.
[http://dx.doi.org/10.1021/jm050483n] [PMID: 16302824]
[35]
a) Göçer, H.; Akincioğlu, A.; Göksu, S.; Gülçin, İ.; Supuran, C.T. Carbonic anhydrase and acetylcholinesterase inhibitory effects of car-bamates and sulfamoylcarbamates. J. Enzyme Inhib. Med. Chem., 2015, 30(2), 316-320.
[http://dx.doi.org/10.3109/14756366.2014.928704] [PMID: 24964347];
b) Ceruso, M.; Bragagni, M.; AlOthman, Z.; Osman, S.M.; Supuran, C.T. New series of sulfonamides containing amino acid moiety act as effective and selective inhibitors of tumor-associated carbonic anhydrase XII. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 430-434.
[http://dx.doi.org/10.3109/14756366.2014.942659] [PMID: 25089707]
[36]
a) Supuran, C.T.; Barboiu, M.; Luca, C.; Pop, E.; Brewster, M.E.; Dinculescu, A. Synthesis of mono and bis pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)-and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole and their interaction with isozyme II. Eur. J. Med. Chem., 1996, 31, 597-606.
[http://dx.doi.org/10.1016/0223-5234(96)89555-9];
b) Puccetti, L.; Fasolis, G.; Vullo, D.; Chohan, Z.H.; Scozzafava, A.; Supuran, C.T. Carbonic anhydrase inhibitors. Inhibition of cyto-solic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfona-mide moieties, and their zinc complexes. Bioorg. Med. Chem. Lett., 2005, 15(12), 3096-3101.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.055] [PMID: 15908204]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy