Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Mini-Review Article

Research Progress on Gene Synthesis and Anticancer and Lipid-lowering Mechanism of Monacolin K

Author(s): Qiu-Wan Sun and Hou-Sheng Hong*

Volume 23, Issue 11, 2023

Published on: 03 March, 2023

Page: [1234 - 1241] Pages: 8

DOI: 10.2174/1871520623666230207122157

Price: $65

Abstract

Monacolin K (MK), also known as lovastatin (LOV), is a secondary metabolite synthesized by Monascus in the later stage of fermentation and is the main component of functional red yeast rice (RYR). The structure of MK is similar to 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), and it can competitively bind to 3-hydroxy-3- methylglutaryl coenzyme A reductase (HMGCR), thus reducing the level of blood lipids. MK can affect the expression of MAPK, PI3K/AKT, and NF-κB pathway, prepare conjugates with other compounds, and enhance the sensitivity of cancer cells to chemotherapeutic drugs so as to induce apoptosis of acute myeloid leukemia, prostate cancer, breast cancer, lung cancer, gastric cancer, and liver cancer. Combined with the synthetic route of MK, this paper summarizes the latest lipid-lowering and anticancer mechanism of MK, and provides a reference for the application of MK in medicine.

Graphical Abstract

[1]
Lin, Y.L.; Wang, T.H.; Lee, M.H.; Su, N.W. Biologically active components and nutraceuticals in the Monascus-fermented rice: A review. Appl. Microbiol. Biotechnol., 2008, 77(5), 965-973.
[http://dx.doi.org/10.1007/s00253-007-1256-6] [PMID: 18038131]
[2]
Feng, Y.; Shao, Y.; Zhou, Y.; Chen, F. Effects of glycerol on pigments and monacolin K production by the high-monacolin K-producing but citrinin-free strain, Monascus pilosus MS-1. Eur. Food Res. Technol., 2015, 240(3), 635-643.
[http://dx.doi.org/10.1007/s00217-014-2365-y]
[3]
Agboyibor, C.; Kong, W.B.; Chen, D.; Zhang, A.M.; Niu, S.Q. Monascus pigments production, composition, bioactivity and its application: A review. Biocatal. Agric. Biotechnol., 2018, 16, 433-447.
[http://dx.doi.org/10.1016/j.bcab.2018.09.012]
[4]
Dhale, M.A.; Divakar, S.; Kumar, S.U.; Vijayalakshmi, G. Isolation and characterization of dihydromonacolin-MV from Monascus pur-pureus for antioxidant properties. Appl. Microbiol. Biotechnol., 2007, 73(5), 1197-1202.
[http://dx.doi.org/10.1007/s00253-006-0578-0] [PMID: 17043831]
[5]
Cheng, M.J.; Wu, M.D.; Chan, H.Y.; Chen, J.J.; Cheng, Y.C.; Chen, Y.L.; Chen, I.S.; Yuan, G.F. A new azaphilone metabolite from the Fungus monascus ruber. Chem. Nat. Compd., 2016, 52(2), 231-233.
[http://dx.doi.org/10.1007/s10600-016-1602-y]
[6]
Patakova, P. Monascus secondary metabolites: Production and biological activity. J. Ind. Microbiol. Biotechnol., 2013, 40(2), 169-181.
[http://dx.doi.org/10.1007/s10295-012-1216-8] [PMID: 23179468]
[7]
Penson, P.E.; Banach, M. Natural compounds as anti-atherogenic agents: Clinical evidence for improved cardiovascular outcomes. Atherosclerosis, 2021, 316, 58-65.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.11.015] [PMID: 33340999]
[8]
Endo, A.; Monacolin, K. A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot., 1979, 32(8), 852-854.
[http://dx.doi.org/10.7164/antibiotics.32.852] [PMID: 500505]
[9]
Halpin, R.A.; Ulm, E.H.; Till, A.E.; Kari, P.H.; Vyas, K.P.; Hunninghake, D.B.; Duggan, D.E. Biotransformation of lovastatin. V. Species differences in in vivo metabolite profiles of mouse, rat, dog, and human. Drug Metab. Dispos., 1993, 21(6), 1003-1011.
[PMID: 7905377]
[10]
Wujian, J.; Kuan-Wei, P.; Sihyung, Y.; Huijing, S.; Mario, S.; Zhuo, W.M. A simple protein precipitation-based simultaneous quantifica-tion of lovastatin and its active metabolite lovastatin acid in human plasma by ultra-performance liquid chromatography-tandem mass spectrometry using polarity switching. J. Chromatogr. Sep. Tech., 2015, 6(3), 268.
[http://dx.doi.org/10.4172/2157-7064.1000268] [PMID: 26146590]
[11]
Li, X-M.; Shen, X-H.; Duan, Z-W.; Guo, S-R. Advances on the pharmacological effects of red yeast rice. Chin. J. Nat. Med., 2011, 9(3), 161-166.
[http://dx.doi.org/10.3724/SP.J.1009.2011.00161]
[12]
Parra-Virto, A.; Torres do Rego, A.; Demelo-Rodríguez, P.; Millán Núñez-Cortés, J.; Álvarez-Sala, L.A. Usefulness of compounds with monacolin K in a case of statins intolerance. Clin. Investig. Arterioscler., 2018, 30(6), 268-270.
[PMID: 30309697]
[13]
Liu, A.; Juan, Chen A.; Liu, B.; Wei, Q.; Bai, J.; Hu, Y. Investigation of citrinin and monacolin K gene clusters variation among pigment producer Monascus species. Fungal Genet. Biol., 2022, 160, 103687.
[http://dx.doi.org/10.1016/j.fgb.2022.103687] [PMID: 35315337]
[14]
Chen, Y.P.; Tseng, C.P.; Liaw, L.L.; Wang, C.L.; Chen, I.C.; Wu, W.J.; Wu, M.D.; Yuan, G.F. Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J. Agric. Food Chem., 2008, 56(14), 5639-5646.
[http://dx.doi.org/10.1021/jf800595k] [PMID: 18578535]
[15]
Ketkaeo, S.; Nagano, Y.; Baba, S.; Kimura, K.; Futagami, T.; Sanpamongkolchai, W.; Kobayashi, G.; Goto, M. Development of Monascus purpureus monacolin K hyperproducing mutant strains by synchrotron light irradiation and their comparative genome analysis. J. Biosci. Bioeng., 2022, 133(4), 362-368.
[http://dx.doi.org/10.1016/j.jbiosc.2021.11.011] [PMID: 35105506]
[16]
Zhang, C.; Chen, M.; Zang, Y.; Wang, H.; Wei, X.; Zhu, Q.; Yang, X.; Sun, B.; Wang, C. Effect of arginine supplementation on Monacolin K yield of Monascus purpureus. J. Food Compos. Anal., 2022, 106, 104252.
[http://dx.doi.org/10.1016/j.jfca.2021.104252]
[17]
Huang, J.; Liao, N.; Li, H. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PkA pathway. Int. J. Biol. Macromol., 2018, 109, 950-954.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.074] [PMID: 29162465]
[18]
Sakai, K.; Kinoshita, H.; Nihira, T. Identification of mokB involved in monacolin K biosynthesis in Monascus pilosus. Biotechnol. Lett., 2009, 31(12), 1911-1916.
[http://dx.doi.org/10.1007/s10529-009-0093-3] [PMID: 19693441]
[19]
Chen, Y.P.; Yuan, G.F.; Hsieh, S.Y.; Lin, Y.S.; Wang, W.Y.; Liaw, L.L.; Tseng, C.P. Identification of the mokH gene encoding transcrip-tion factor for the upregulation of monacolin K biosynthesis in Monascus pilosus. J. Agric. Food Chem., 2010, 58(1), 287-293.
[http://dx.doi.org/10.1021/jf903139x] [PMID: 19968298]
[20]
Zhang, C.; Zhu, Q.; Zhang, H.; Zhang, N.; Yang, X.; Shi, J.; Sun, B.; Wang, C. Effects on the sporulation and secondary metabolism yields of Monascus purpureus with mokH gene deletion and overexpression. Fungal Biol., 2020, 124(7), 661-670.
[http://dx.doi.org/10.1016/j.funbio.2020.03.010] [PMID: 32540189]
[21]
Zhang, C.; Liang, J.; Zhang, A.; Hao, S.; Zhang, H.; Zhu, Q.; Sun, B.; Wang, C. Overexpression of monacolin k biosynthesis genes in the Monascus purpureus azaphilone polyketide pathway. J. Agric. Food Chem., 2019, 67(9), 2563-2569.
[http://dx.doi.org/10.1021/acs.jafc.8b05524] [PMID: 30734557]
[22]
El-Ganiny, A.M.; Kamel, H.A.; Yossef, N.E.; Mansour, B.; El-Baz, A.M. Repurposing pantoprazole and haloperidol as efflux pump inhib-itors in azole resistant clinical Candida albicans and non-albicans isolates. Saudi Pharm. J., 2022, 30(3), 245-255.
[http://dx.doi.org/10.1016/j.jsps.2022.01.011] [PMID: 35498219]
[23]
Lin, L.; Wu, S.; Li, Z.; Ren, Z.; Chen, M.; Wang, C. High expression level of mok E enhances the production of monacolin K in Monas-cus. Food Biotechnol., 2018, 32(1), 35-46.
[http://dx.doi.org/10.1080/08905436.2017.1413985]
[24]
Zhang, C.; Zhang, H.; Zhu, Q.; Hao, S.; Chai, S.; Li, Y.; Jiao, Z.; Shi, J.; Sun, B.; Wang, C. Overexpression of global regulator LaeA in-creases secondary metabolite production in Monascus purpureus. Appl. Microbiol. Biotechnol., 2020, 104(7), 3049-3060.
[http://dx.doi.org/10.1007/s00253-020-10379-4] [PMID: 32043189]
[25]
Li, M.; Han, B.; Zhao, H.; Xu, C.; Xu, D.; Sieniawska, E.; Lin, X.; Kai, G. Biological active ingredients of Astragali radix and its mecha-nisms in treating cardiovascular and cerebrovascular diseases. Phytomedicine, 2022, 98, 153918.
[http://dx.doi.org/10.1016/j.phymed.2021.153918] [PMID: 35104756]
[26]
Pérez-Jiménez, F.; Pascual, V.; Meco, J.F.; Pérez Martínez, P.; Delgado Lista, J.; Domenech, M.; Estruch, R.; León-Acuña, A.; López-Miranda, J.; Sánchez-Ramos, A.; Soler i Ferrer, C.; Soler-Rivas, C.; Solá Alberich, R.M.; Valdivielso, P.; Ros, E. Document of recommen-dations of the SEA 2018. Life style in cardiovascular prevention. Clin. Investig. Arterioscler., 2018, 30(6), 280-310.
[http://dx.doi.org/10.1016/j.arteri.2018.06.005] [PMID: 30236615]
[27]
King, R.J.; Singh, P.K.; Mehla, K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol., 2022, 43(1), 78-92.
[http://dx.doi.org/10.1016/j.it.2021.11.007] [PMID: 34942082]
[28]
Huang, C.F.; Shen, S.M.; Chen, W.T.; Chen, C.C. The effects of mutation and temperature variation on monacolin K production by monascus sp. and relative statistical parameter analysis of monacolin K production. Phytochem. Lett., 2019, 32, 143-150.
[http://dx.doi.org/10.1016/j.phytol.2019.05.011]
[29]
Xie, L.; Zhu, G.; Shang, J.; Chen, X.; Zhang, C.; Ji, X.; Zhang, Q.; Wei, Y. An overview on the biological activity and anti-cancer mecha-nism of lovastatin. Cell. Signal., 2021, 87, 110122.
[http://dx.doi.org/10.1016/j.cellsig.2021.110122] [PMID: 34438015]
[30]
Yang, N.C.; Chou, C.W.; Chen, C.Y.; Hwang, K.L.; Yang, Y.C. Combined nattokinase with red yeast rice but not nattokinase alone has potent effects on blood lipids in human subjects with hyperlipidemia. Asia Pac. J. Clin. Nutr., 2009, 18(3), 310-317.
[PMID: 19786378]
[31]
Cicero, A.F.G.; Fogacci, F.; Zambon, A. Red yeast rice for hypercholesterolemia. J. Am. Coll. Cardiol., 2021, 77(5), 620-628.
[http://dx.doi.org/10.1016/j.jacc.2020.11.056] [PMID: 33538260]
[32]
Choi, H.; Dey, A.K.; Priyamvara, A.; Aksentijevich, M.; Bandyopadhyay, D.; Dey, D.; Dani, S.; Guha, A.; Nambiar, P.; Nasir, K.; Jneid, H.; Mehta, N.N.; Lavie, C.J.; Amar, S. Role of periodontal infection, inflammation and immunity in atherosclerosis. Curr. Probl. Cardiol., 2021, 46(3), 100638.
[http://dx.doi.org/10.1016/j.cpcardiol.2020.100638] [PMID: 32646544]
[33]
Ratnikova, N.M.; Lezhnin, Y.N.; Frolova, E.I.; Kravchenko, J.E.; Chumakov, S.P. CD47 receptor as a primary target for cancer therapy. Mol. Biol., 2017, 51(2), 251-261.
[PMID: 28537232]
[34]
Li, Z.; Li, Y.; Gao, J.; Fu, Y.; Hua, P.; Jing, Y.; Cai, M.; Wang, H.; Tong, T. The role of CD47-SIRPα immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci., 2021, 273, 119150.
[http://dx.doi.org/10.1016/j.lfs.2021.119150] [PMID: 33662426]
[35]
Kojima, Y.; Volkmer, J.P.; McKenna, K.; Civelek, M.; Lusis, A.J.; Miller, C.L.; Direnzo, D.; Nanda, V.; Ye, J.; Connolly, A.J.; Schadt, E.E.; Quertermous, T.; Betancur, P.; Maegdefessel, L.; Matic, L.P.; Hedin, U.; Weissman, I.L.; Leeper, N.J. CD47-blocking antibodies re-store phagocytosis and prevent atherosclerosis. Nature, 2016, 536(7614), 86-90.
[http://dx.doi.org/10.1038/nature18935] [PMID: 27437576]
[36]
Yu, D.; Liao, J.K. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc. Res., 2022, 118(2), 413-423.
[http://dx.doi.org/10.1093/cvr/cvab032] [PMID: 33533892]
[37]
Ridker, P.M.; Danielson, E.; Fonseca, F.A.H. Rosuvastatin to prevent vascular events in men and women with elevated c-reactive protein. J. Vasc. Surg., 2009, 49(2), 534.
[http://dx.doi.org/10.1016/j.jvs.2008.12.037]
[38]
Eberhardt, N.; Giannarelli, C. Statins boost the macrophage eat-me signal to keep atherosclerosis at bay. Nat. Cardiov. Res., 2022, 1(3), 196-197.
[http://dx.doi.org/10.1038/s44161-022-00038-4]
[39]
Jarr, K.U.; Ye, J.; Kojima, Y.; Ye, Z.; Gao, H.; Schmid, S.; Luo, L.; Baylis, R.A.; Lotfi, M.; Lopez, N.; Eberhard, A.V.; Smith, B.R.; Weissman, I.L.; Maegdefessel, L.; Leeper, N.J. The pleiotropic benefits of statins include the ability to reduce CD47 and amplify the effect of pro-efferocytic therapies in atherosclerosis. Nat. Cardiovas. Res., 2022, 1(3), 253-262.
[http://dx.doi.org/10.1038/s44161-022-00023-x] [PMID: 35990913]
[40]
Cao, Z.; Shu, Y.; Wang, J.; Wang, C.; Feng, T.; Yang, L.; Shao, J.; Zou, L. Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis., 2022, 9(6), 1466-1477.
[http://dx.doi.org/10.1016/j.gendis.2022.01.006] [PMID: 36157504]
[41]
Chen, C.C.; Liu, T.Y.; Huang, S.P.; Ho, C.T.; Huang, T.C. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase. Cell. Signal., 2015, 27(11), 2182-2190.
[http://dx.doi.org/10.1016/j.cellsig.2015.07.014] [PMID: 26208883]
[42]
Abankwa, D.; Gorfe, A.A. Mechanisms of Ras membrane organization and signaling: Ras rocks again. Biomolecules, 2020, 10(11), 1522.
[http://dx.doi.org/10.3390/biom10111522] [PMID: 33172116]
[43]
Adjei, A.A. Blocking oncogenic Ras signaling for cancer therapy. J. Natl. Cancer Inst., 2001, 93(14), 1062-1074.
[http://dx.doi.org/10.1093/jnci/93.14.1062] [PMID: 11459867]
[44]
Xiong, Z.; Cao, X.; Wen, Q.; Chen, Z.; Cheng, Z.; Huang, X.; Zhang, Y.; Long, C.; Zhang, Y.; Huang, Z. An overview of the bioactivity of monacolin K/lovastatin. Food Chem. Toxicol., 2019, 131, 110585.
[http://dx.doi.org/10.1016/j.fct.2019.110585] [PMID: 31207306]
[45]
Chen, C.C.; Wu, M.L.; Ho, C.T.; Huang, T.C. Blockade of the ras/raf/erk and ras/pi3k/akt pathways by monacolin K reduces the expres-sion of glo1 and induces apoptosis in u937 cells. J. Agric. Food Chem., 2015, 63(4), 1186-1195.
[http://dx.doi.org/10.1021/jf505275s] [PMID: 25569448]
[46]
Gao, M.; Sun, L.; Liu, Y.L.; Xie, J.W.; Qin, L.; Xue, J.; Wang, Y.T.; Guo, K.M.; Ma, M.M.; Li, X.Y. Reduction of glyoxalase 1 (GLO1) aggravates cerebrovascular remodeling via promoting the proliferation of basilar smooth muscle cells in hypertension. Biochem. Biophys. Res. Commun., 2019, 518(2), 278-285.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.047] [PMID: 31420161]
[47]
Toriumi, K.; Miyashita, M.; Suzuki, K.; Tabata, K.; Horiuchi, Y.; Ishida, H.; Itokawa, M.; Arai, M. Role of glyoxalase 1 in methylglyoxal detoxification–the broad player of psychiatric disorders. Redox Biol., 2022, 49, 102222.
[http://dx.doi.org/10.1016/j.redox.2021.102222] [PMID: 34953453]
[48]
Ravandi, F.; Burnett, A.K.; Agura, E.D.; Kantarjian, H.M. Progress in the treatment of acute myeloid leukemia. Cancer, 2007, 110(9), 1900-1910.
[http://dx.doi.org/10.1002/cncr.23000] [PMID: 17786921]
[49]
Dimitroulakos, J.; Nohynek, D.; Backway, K.L.; Hedley, D.W.; Yeger, H.; Freedman, M.H.; Minden, M.D.; Penn, L.Z. Increased sensitivi-ty of acute myeloid leukemias to lovastatin-induced apoptosis: A potential therapeutic approach. Blood, 1999, 93(4), 1308-1318.
[http://dx.doi.org/10.1182/blood.V93.4.1308] [PMID: 9949174]
[50]
Holstein, S.A.; Hohl, R.J. Interaction of cytosine arabinoside and lovastatin in human leukemia cells. Leuk. Res., 2001, 25(8), 651-660.
[http://dx.doi.org/10.1016/S0145-2126(00)00162-4] [PMID: 11397469]
[51]
Rodriguez-Ariza, A.; Lopez-Pedrera, C.; Aranda, E.; Barbarroja, N. VEGF targeted therapy in acute myeloid leukemia. Crit. Rev. Oncol. Hematol., 2011, 80(2), 241-256.
[http://dx.doi.org/10.1016/j.critrevonc.2010.09.009] [PMID: 21035354]
[52]
Lewis, K.A.; Holstein, S.A.; Hohl, R.J. Lovastatin alters the isoprenoid biosynthetic pathway in acute myelogenous leukemia cells in vivo. Leuk. Res., 2005, 29(5), 527-533.
[http://dx.doi.org/10.1016/j.leukres.2004.10.007] [PMID: 15755505]
[53]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[54]
Malm, J.; Lilja, H. Biochemistry of prostate specific antigen, PSA. Scand. J. Clin. Lab. Invest. Suppl., 1995, 55(S221), 15-22.
[http://dx.doi.org/10.3109/00365519509090559] [PMID: 7544481]
[55]
Stamey, T.A.; Yang, N.; Hay, A.R.; McNeal, J.E.; Freiha, F.S.; Redwine, E. Prostate-specific antigen as a serum marker for adenocarcino-ma of the prostate. N. Engl. J. Med., 1987, 317(15), 909-916.
[http://dx.doi.org/10.1056/NEJM198710083171501] [PMID: 2442609]
[56]
Cho, H.; Oh, C.K.; Cha, J.; Chung, J.I.; Byun, S.S.; Hong, S.K.; Chung, J.S.; Han, K.H. Association of serum prostate-specific antigen (PSA) level and circulating tumor cell-based PSA mRNA in prostate cancer. Prostate Int., 2022, 10(1), 14-20.
[http://dx.doi.org/10.1016/j.prnil.2022.01.002] [PMID: 35229001]
[57]
Yang, L.; Egger, M.; Plattner, R.; Klocker, H.; Eder, I.E. Lovastatin causes diminished PSA secretion by inhibiting AR expression and function in LNCaP prostate cancer cells. Urology, 2011, 77(6), 1508.e1-1508.e7.
[http://dx.doi.org/10.1016/j.urology.2010.12.074] [PMID: 21624609]
[58]
Rowinsky, E.K.; Donehower, R.C.; Jones, R.J.; Tucker, R.W. Microtubule changes and cytotoxicity in leukemic cell lines treated with tax-ol. Cancer Res., 1988, 48(14), 4093-4100.
[PMID: 2898289]
[59]
Zhang, X.; Huang, C.; Yuan, Y.; Jin, S.; Zhao, J.; Zhang, W.; Liang, H.; Chen, X.; Zhang, B. FOXM1-mediated activation of phospholipase D1 promotes lipid droplet accumulation and reduces ROS to support paclitaxel resistance in metastatic cancer cells. Free Radic. Biol. Med., 2022, 179, 213-228.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.11.024] [PMID: 34808333]
[60]
van Eijk, M.; Boosman, R.J.; Schinkel, A.H.; Huitema, A.D.R.; Beijnen, J.H. Cytochrome P450 3A4, 3A5, and 2C8 expression in breast, prostate, lung, endometrial, and ovarian tumors: Relevance for resistance to taxanes. Cancer Chemother. Pharmacol., 2019, 84(3), 487-499.
[http://dx.doi.org/10.1007/s00280-019-03905-3] [PMID: 31309254]
[61]
Li, Y.; Chen, S.; Zhu, J.; Zheng, C.; Wu, M.; Xue, L.; He, G.; Fu, S.; Deng, X. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem. Biophys. Res. Commun., 2022, 589, 85-91.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.007] [PMID: 34896780]
[62]
Vásquez-Bochm, L.X.; Velázquez-Paniagua, M.; Castro-Vázquez, S.S.; Guerrero-Rodríguez, S.L.; Mondragon-Peralta, A.; De La Fuente-Granada, M.; Pérez-Tapia, S.M.; González-Arenas, A.; Velasco-Velázquez, M.A. Transcriptome-based identification of lovastatin as a breast cancer stem cell-targeting drug. Pharmacol. Rep., 2019, 71(3), 535-544.
[http://dx.doi.org/10.1016/j.pharep.2019.02.011] [PMID: 31026757]
[63]
Siddiqui, R.A.; Harvey, K.A.; Xu, Z.; Bammerlin, E.M.; Walker, C.; Altenburg, J.D. Docosahexaenoic acid: A natural powerful adjuvant that improves efficacy for anticancer treatment with no adverse effects. Biofactors, 2011, 37(6), 399-412.
[http://dx.doi.org/10.1002/biof.181] [PMID: 22038684]
[64]
Ortega, L.; Lobos-González, L.; Reyna-Jeldes, M.; Cerda, D.; De la Fuente-Ortega, E.; Castro, P.; Bernal, G.; Coddou, C. The Ω-3 fatty acid docosahexaenoic acid selectively induces apoptosis in tumor-derived cells and suppress tumor growth in gastric cancer. Eur. J. Pharmacol., 2021, 896, 173910.
[http://dx.doi.org/10.1016/j.ejphar.2021.173910] [PMID: 33508285]
[65]
Bozzatello, P.; Brignolo, E.; De Grandi, E.; Bellino, S. Supplementation with omega-3 fatty acids in psychiatric disorders: A review of literature data. J. Clin. Med., 2016, 5(8), 67.
[http://dx.doi.org/10.3390/jcm5080067]
[66]
El-Ashmawy, N.E.; Al-Ashmawy, G.M.; Amr, E.A.; Khedr, E.G. Inhibition of lovastatin and docosahexaenoic acid-initiated autophagy in triple negative breast cancer reverted resistance and enhanced cytotoxicity. Life Sci., 2020, 259, 118212.
[http://dx.doi.org/10.1016/j.lfs.2020.118212] [PMID: 32768581]
[67]
Siddiqui, R.A.; Harvey, K.A.; Xu, Z.; Natarajan, S.K.; Davisson, V.J. Characterization of lovastatin-docosahexaenoate anticancer proper-ties against breast cancer cells. Bioorg. Med. Chem., 2014, 22(6), 1899-1908.
[http://dx.doi.org/10.1016/j.bmc.2014.01.051] [PMID: 24556504]
[68]
Zhang, H.; Sang, S.; Xu, H.; Piao, L.; Liu, X. Lovastatin suppresses bacterial therapy-induced neutrophil recruitment to the tumor by pro-moting neutrophil apoptosis. J. Funct. Foods, 2021, 86, 104693.
[http://dx.doi.org/10.1016/j.jff.2021.104693]
[69]
Zhao, X.; Wang, Y.; Gao, J.J.; Yin, J.J. Inhibited effects of veliparib combined doxorubicin for BEL-7404 proliferation of human liver cancer cell line. Asian Pac. J. Trop. Med., 2014, 7(6), 468-472.
[http://dx.doi.org/10.1016/S1995-7645(14)60076-6] [PMID: 25066396]
[70]
Yang, X.; Xie, Y. Recent advances in polymeric core-shell nanocarriers for targeted delivery of chemotherapeutic drugs. Int. J. Pharm., 2021, 608, 121094.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121094] [PMID: 34534631]
[71]
Xiao, Q.; Li, X.; Liu, C.; Yang, Y.; Hou, Y.; Wang, Y.; Su, M.; He, W. Liposome-based anchoring and core-encapsulation for combinatori-al cancer therapy. Chin. Chem. Lett., 2022, 33(9), 4191-4196.
[http://dx.doi.org/10.1016/j.cclet.2022.01.083]
[72]
Wang, T.; Jiang, Y.; Chu, H.; Liu, X.; Dai, Y.; Wang, D. Doxorubicin and lovastatin co-delivery liposomes for synergistic therapy of liver cancer. J. Drug Deliv. Sci. Technol., 2019, 52, 452-459.
[http://dx.doi.org/10.1016/j.jddst.2019.04.045]
[73]
Kim, J.K.; Noh, J.H.; Eun, J.W.; Jung, K.H.; Bae, H.J.; Shen, Q.; Kim, M.G.; Chang, Y.G.; Kim, S.J.; Park, W.S.; Lee, J.Y.; Borlak, J.; Nam, S.W. Targeted inactivation of HDAC2 restores p16INK4a activity and exerts antitumor effects on human gastric cancer. Mol. Cancer Res., 2013, 11(1), 62-73.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0332] [PMID: 23175521]
[74]
Zhang, X.; Yashiro, M.; Ren, J.; Hirakawa, K. Histone deacetylase inhibitor, trichostatin A, increases the chemosensitivity of anticancer drugs in gastric cancer cell lines. Oncol. Rep., 2006, 16(3), 563-568.
[http://dx.doi.org/10.3892/or.16.3.563] [PMID: 16865256]
[75]
Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene, 2019, 681, 15-25.
[http://dx.doi.org/10.1016/j.gene.2018.09.040] [PMID: 30266498]
[76]
Sanli, T.; Liu, C.; Rashid, A.; Hopmans, S.N.; Tsiani, E.; Schultz, C.; Farrell, T.; Singh, G.; Wright, J.; Tsakiridis, T. Lovastatin sensitizes lung cancer cells to ionizing radiation: Modulation of molecular pathways of radioresistance and tumor suppression. J. Thorac. Oncol., 2011, 6(3), 439-450.
[http://dx.doi.org/10.1097/JTO.0b013e3182049d8b] [PMID: 21258249]
[77]
Weiss, R.H. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. Cancer Cell, 2003, 4(6), 425-429.
[http://dx.doi.org/10.1016/S1535-6108(03)00308-8] [PMID: 14706334]
[78]
Müller, C.; Kiehl, M.G.; van de Loo, J.; Koch, O.M. Lovastatin induces p21WAF1/Cip1 in human vascular smooth muscle cells: Influence on protein phosphorylation, cell cycle, induction of apoptosis, and growth inhibition. Int. J. Mol. Med., 1999, 3(1), 63-68.
[http://dx.doi.org/10.3892/ijmm.3.1.63] [PMID: 9864387]
[79]
Ding, L.; Chen, Q.; Chen, K.; Jiang, Y.; Li, G.; Chen, Q.; Bai, D.; Gao, D.; Deng, M.; Zhang, H.; Xu, B. Simvastatin potentiates the cell-killing activity of imatinib in imatinib-resistant chronic myeloid leukemia cells mainly through PI3K/AKT pathway attenuation and Myc downregulation. Eur. J. Pharmacol., 2021, 913, 174633.
[http://dx.doi.org/10.1016/j.ejphar.2021.174633] [PMID: 34843676]
[80]
Santoni, M.; Monteiro, F.S.M.; Massari, F.; Abahssain, H.; Aurilio, G.; Molina-Cerrillo, J.; Myint, Z.W.; Zabalza, I.O.; Battelli, N.; Grande, E. Statins and renal cell carcinoma: Antitumor activity and influence on cancer risk and survival. Crit. Rev. Oncol. Hematol., 2022, 176, 103731.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103731] [PMID: 35718065]
[81]
Hong, M.Y.; Seeram, N.P.; Zhang, Y.; Heber, D. Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells. J. Nutr. Biochem., 2008, 19(7), 448-458.
[http://dx.doi.org/10.1016/j.jnutbio.2007.05.012] [PMID: 17869085]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy