Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Protective Effect of Chrysin against Chlorpyrifos-Induced Metabolic Impairment and Pancreatitis in Male Rats

Author(s): Kobra Naseri, Mahdieh Safarzadeh, Mahdieh Rajabi Moghaddam, Hamed Aramjoo, Babak Roshanravan, Saeed Samarghandian* and Tahereh Farkhondeh*

Volume 17, 2024

Published on: 14 April, 2023

Article ID: e200223213784 Pages: 8

DOI: 10.2174/1874467216666230220094827

Price: $65

Abstract

Background: This study was performed to evaluate the protective effects of chrysin (CH) on metabolic impairment and pancreatic injury caused by sub-chronic chlorpyrifos (CPF) intoxication in male rats.

Methods: Forty male Wistar rats were randomly allocated into five groups (n=8). Intraperitoneal injections of chrysin (12.5, 25 and 50 mg/kg for 45 days) and CPF (10 mg/kg for 45 days) gavage were performed. Present findings indicated that the serum levels of glucose, total cholesterol, and lowdensity lipoprotein-cholesterol, as well as body weight, were increased in the CPF-exposed group.

Results: It was also found that CPF decreased superoxide dismutase activity as well as increased malondialdehyde and nitric oxide levels in the pancreatic tissue of exposed animals. Histopathological examination also confirmed the toxic effects of CPF on pancreatic tissue as mostly evidenced by infiltration of inflammatory cells and necrosis. CH (50 mg/kg) decreased blood glucose concentration (p < 0.05), TG (p < 0.05), and LDL-C in CPF-exposed animals. CH decreased the pancreas levels of MDA in all treated CPF-exposed groups versus the non-treated CPF-exposed group (p < 0.05, p < 0.001, p < 0.001, respectively). A significant difference was not seen in the NO and MDA levels and SOD activity between CH-treated (50 mg/kg) animals exposed to CPF and controls. A significant difference was not seen in the NO and MDA levels and SOD activity between CHtreated (50 mg/kg) animals exposed to CPF and controls.

Conclusion: A significant difference was not seen in the NO and MDA levels and SOD activity between CH-treated (50 mg/kg) animals exposed to CPF and controls. In conclusion, CH could prevent initiate and progress of CPF-induced metabolic impairment by modulating oxidative stress in pancreatic tissue as a target organ of organophosphorus pesticides.

[1]
Kacem, I.; Maoua, M.; Hasni, Y.; Kalboussi, H.; Hafsia, M.; Souguir, S. Evaluation of the risk of metabolic syndrome among shift workers in Tunisia. Eastern Medit. Health J., 2019, 25(10), 677-85.
[2]
Luo, K.; Zhang, R.; Aimuzi, R.; Wang, Y.; Nian, M.; Zhang, J. Exposure to Organophosphate esters and metabolic syndrome in adults. Environ. Int., 2020, 143, 105941.
[http://dx.doi.org/10.1016/j.envint.2020.105941] [PMID: 32679393]
[3]
Jayaraj, R.; Megha, P.; Sreedev, P. Review Article. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol., 2016, 9(3-4), 90-100.
[http://dx.doi.org/10.1515/intox-2016-0012] [PMID: 28652852]
[4]
Wang, H.; Yu, S.; Liao, J.; Qing, X.; Sun, D.; Ji, F.; Song, W.; Wang, L.; Li, T. A robot platform for highly efficient pollutant purification. Front. Bioeng. Biotechnol., 2022, 10, 903219.
[http://dx.doi.org/10.3389/fbioe.2022.903219] [PMID: 35782505]
[5]
Huang, X.; Cui, H.; Duan, W. Ecotoxicity of chlorpyrifos to aquatic organisms: A review. Ecotoxicol. Environ. Saf., 2020, 200, 110731.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110731] [PMID: 32450436]
[6]
Mu, H.; Liu, C.; Zhang, Q.; Meng, H.; Yu, S.; Zeng, K.; Han, J.; Jin, X.; Shi, S.; Yu, P.; Li, T.; Xu, J.; Hua, Y. Magnetic-Driven Hydrogel Microrobots Selectively Enhance Synthetic Lethality in MTAP-Deleted Osteosarcoma. Front. Bioeng. Biotechnol., 2022, 10, 911455.
[http://dx.doi.org/10.3389/fbioe.2022.911455] [PMID: 35875497]
[7]
Greget, R.; Dadak, S.; Barbier, L.; Lauga, F.; Linossier-Pierre, S.; Pernot, F.; Legendre, A.; Ambert, N.; Bouteiller, J.M.; Dorandeu, F.; Bischoff, S.; Baudry, M.; Fagni, L.; Moussaoui, S. Modeling and simulation of organophosphate-induced neurotoxicity: Prediction and validation by experimental studies. Neurotoxicology, 2016, 54, 140-152.
[http://dx.doi.org/10.1016/j.neuro.2016.04.013] [PMID: 27108687]
[8]
Ji, F.; Li, T.; Yu, S.; Wu, Z.; Zhang, L. Propulsion gait analysis and fluidic trapping of swinging flexible nanomotors. ACS Nano, 2021, 15(3), 5118-5128.
[http://dx.doi.org/10.1021/acsnano.0c10269] [PMID: 33687190]
[9]
Li, J.; Ren, F.; Li, Y.; Luo, J.; Pang, G. Chlorpyrifos induces metabolic disruption by altering levels of reproductive hormones. J. Agric. Food Chem., 2019, 67(38), 10553-10562.
[http://dx.doi.org/10.1021/acs.jafc.9b03602] [PMID: 31490076]
[10]
Samarghandian, S.; Samini, F.; Azimi-Nezhad, M.; Farkhondeh, T. Anti-oxidative effects of safranal on immobilization-induced oxidative damage in rat brain. Neurosci Lett., 2017, 659, 26-32.
[http://dx.doi.org/10.1016/j.neulet.2017.08.065]
[11]
Leonel Javeres, M.N.; Habib, R.; Judith Laure, N.; Abbas Shah, S.T.; Valis, M.; Kuca, K.; Muhammad Nurulain, S. Chronic exposure to organophosphates pesticides and risk of metabolic disorder in cohort from pakistan and cameroon. Int. J. Environ. Res. Public Health, 2021, 18(5), 2310.
[http://dx.doi.org/10.3390/ijerph18052310] [PMID: 33652791]
[12]
Farkhondeh, T.; Mehrpour, O.; Sadeghi, M.; Aschner, M.; Aramjoo, H.; Roshanravan, B.; Samarghandian, S. A systematic review on the metabolic effects of chlorpyrifos. Rev. Environ. Health, 2022, 37(1), 137-151.
[http://dx.doi.org/10.1515/reveh-2020-0150] [PMID: 33962508]
[13]
Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology, 2020, 96(3-4), 112-7.
[http://dx.doi.org/10.1159/000436975]
[14]
Zeinali, M.; Meybodi, N.T.; Rezaee, S.A.; Rafatpanah, H.; Hosseinzadeh, H. Protective effects of chrysin on sub-acute diazinon-induced biochemical, hematological, histopathological alterations, and genotoxicity indices in male BALB/c mice. Drug Chem. Toxicol., 2018, 41(3), 270-280.
[http://dx.doi.org/10.1080/01480545.2017.1384834] [PMID: 29092670]
[15]
Yeo, H.; Lee, Y.H.; Koh, D.; Lim, Y.; Shin, S.Y. Chrysin inhibits NF-κB-dependent CCL5 Transcription by targeting IκB kinase in the atopic dermatitis-like inflammatory microenvironment. Int. J. Mol. Sci., 2020, 21(19), 7348.
[http://dx.doi.org/10.3390/ijms21197348] [PMID: 33027922]
[16]
Abdel-Daim, M.M.; Dawood, M.A.; Elbadawy, M.; Aleya, L.; Alkahtani, S.J.A. Spirulina platensis reduced oxidative damage induced by chlorpyrifos toxicity in nile tilapia (oreochromis niloticus). Animals, 2020, 10(3), 473.
[17]
Elsharkawy, E.E.; Yahia, D. Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: Attenuation by glutathione. Environ Toxicol Pharmacol, 2013, 35(2), 218-27.
[18]
El-Tawil, MF Toxicological effects of short-term feeding with chlorpyrifos and chlorpyrifos-methyl insecticides on adult albino rats. Middle East J. Agri. Res., 2014, 3(2), 208-20.
[19]
Fang, B.; Li, J.W.; Zhang, M.; Ren, F.Z.; Pang, G.F. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food Chem. Toxicol., 2018, 111, 144-152.
[http://dx.doi.org/10.1016/j.fct.2017.11.001] [PMID: 29109040]
[20]
Acker, C.I.; Nogueira, C.W. Chlorpyrifos acute exposure induces hyperglycemia and hyperlipidemia in rats. Chemosphere, 2012, 89(5), 602-608.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.059] [PMID: 22832337]
[21]
Celik, I; Suzek, HJE Effects of subacute exposure of dichlorvos at sublethal dosages on erythrocyte and tissue antioxidant defense systems and lipid peroxidation in rats. Ecotoxicol Environ Saf, 2009, 72(3), 905-8.
[22]
Ambali, S.F.; Abubakar, A.T.; Kawu, M.U.; Uchendu, C.; Shittu, M.; Salami, S.O. Biochemical alterations induced by subchronic chlorpyrifos exposure in Wistar rats: Ameliorative effect of zinc. Biopsy (I), 2011, 19965-10073.
[23]
Ambali, SF; Onukak, C; Idris, SB; Yaqub, LS Vitamin C attenuates short-term hematological and biochemical alterations induced by acute chlorpyrifos exposure in Wistar rats. J. Medi. Medi. Sci., 2010, 1(10), 465-477.
[24]
Alp, H.; Pinar, N.; Dokuyucu, R.; Sahan, M.; Oruc, C.; Kaplan, I.; Senol, S.; Ceyran, A.B. Protective effects of intralipid and caffeic acid phenethyl ester (CAPE) on hepatotoxicity and pancreatic injury caused by dichlorvos in rats. Biochem. Genet., 2016, 54(6), 803-815.
[http://dx.doi.org/10.1007/s10528-016-9757-6] [PMID: 27365043]
[25]
Gokalp, O.; Buyukvanlı, B.; Cicek, E.; Ozer, M.K.; Koyu, A.; Altuntas, I.; Koylu, H. The effects of diazinon on pancreatic damage and ameliorating role of vitamin E and vitamin C. Pestic. Biochem. Physiol., 2005, 81(2), 123-128.
[http://dx.doi.org/10.1016/j.pestbp.2004.11.001]
[26]
Tuzcu, K.; Alp, H.; Ozgur, T.; Karcioglu, M.; Davarci, I.; Evliyaoglu, O.; Karakus, A.; Hakimoglu, S. Oral intralipid emulsion use: a novel therapeutic approach to pancreatic β-cell injury caused by malathion toxicity in rats. Drug Chem. Toxicol., 2014, 37(3), 261-267.
[http://dx.doi.org/10.3109/01480545.2013.838780] [PMID: 24180244]
[27]
Mansour, S.A.; Mossa, A.-THJPB Oxidative damage, biochemical and histopathological alterations in rats exposed to chlorpyrifos and the antioxidant role of zinc. Pesti. Biochem. Physiolo., 2010, 96(1), 14-23.
[28]
Zheng, T.; Gao, Y. Relationship between blood lipid profiles and pancreatic islet β cell function in Chinese men and women with normal glucose tolerance: A cross-sectional study. BMC Public Health, 2012, 12, 634.
[29]
Choi, J.H.; Yun, J.W. Chrysin induces brown fat-like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition, 2016, 32(9), 1002-10.
[30]
Xia, Y.; Lian, S.; Khoi, P.N.; Yoon, H.J.; Han, J.Y.; Chay, K.O.; Kim, K.K.; Jung, Y.D. Chrysin inhibits cell invasion by inhibition of Recepteur d’origine Nantais via suppressing early growth response-1 and NF-κB transcription factor activities in gastric cancer cells. Int. J. Oncol., 2015, 46(4), 1835-1843.
[http://dx.doi.org/10.3892/ijo.2015.2847] [PMID: 25625479]
[31]
Shoieb, S.M.; Esmat, A.; Khalifa, A.E.; Abdel-Naim, A.B. Chrysin attenuates testosterone-induced benign prostate hyperplasia in rats. Food Chem. Toxicol., 2018, 111, 650-659.
[http://dx.doi.org/10.1016/j.fct.2017.12.017] [PMID: 29247772]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy