Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Recent Progress on Wearable Sensor based on Nanocomposite Hydrogel

Author(s): Ke Xu* and Changtong Wang

Volume 20, Issue 2, 2024

Published on: 16 March, 2023

Page: [132 - 145] Pages: 14

DOI: 10.2174/1573413719666230217141149

open access plus

Abstract

Nanocomposite hydrogels have attracted extensive research interest due to their potential applications in health care, electronic skin, and sensors. This paper reviews the performance and characteristics of nanocomposite hydrogels based on zero-dimensional, onedimensional, and two-dimensional nanofillers, including sensitivity, detection range, detection limit, and application scenarios. The effects of different dimensional nanofillers on the performance of nanocomposite hydrogels are discussed, and the advantages and disadvantages of nanocomposite hydrogels based on different nanomaterials are analyzed. The structural design, materials, processing strategies and encapsulation methods of nanocomposite hydrogel sensors are also briefly described. Then, this paper focuses on the application of wearable sensors in human motion detection and biomedical direction and compares the advantages and disadvantages of wearable sensors based on different nanocomposite hydrogels in the above two applications directions. Finally, the problems and challenges existing in the application of wearable sensors are discussed, and the development trend of wearable sensors based on nanocomposite hydrogels is attempted to be prospected.

Graphical Abstract

[1]
Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low‐temperature tolerant strain sensors. Adv. Funct. Mater., 2019, 29(39), 1904507.
[http://dx.doi.org/10.1002/adfm.201904507]
[2]
Lu, Y.; Biswas, M.C.; Guo, Z.; Jeon, J.W.; Wujcik, E.K. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron., 2019, 123, 167-177.
[http://dx.doi.org/10.1016/j.bios.2018.08.037] [PMID: 30174272]
[3]
Li, X.; He, L.; Li, Y.; Chao, M.; Li, M.; Wan, P.; Zhang, L. Healable, degradable, and conductive mxene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano, 2021, 15(4), 7765-7773.
[http://dx.doi.org/10.1021/acsnano.1c01751] [PMID: 33769046]
[4]
Lei, Z.; Wang, Q.; Wu, P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater. Horiz., 2017, 4(4), 694-700.
[http://dx.doi.org/10.1039/C7MH00262A]
[5]
Gao, Y.; Gu, S.; Jia, F.; Gao, G. A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(45), 24175-24183.
[http://dx.doi.org/10.1039/D0TA07883B]
[6]
Li, Y.; Hu, C. Lan, J.; Yan, B.; Zhang, Y.; Shi, L.; Ran, R. Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer (Guildf.), 2020, 186, 122027.
[http://dx.doi.org/10.1016/j.polymer.2019.122027]
[7]
Tan, H.L.; Teow, S.Y.; Pushpamalar, J. Application of metal nanoparticle–hydrogel composites in tissue regeneration. Bioengineering (Basel), 2019, 6(1), 17.
[http://dx.doi.org/10.3390/bioengineering6010017] [PMID: 30754677]
[8]
Simon, J.; Flahaut, E.; Golzio, M. Overview of carbon nanotubes for biomedical applications. Materials (Basel), 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[9]
Cui, C.; Shao, C.; Meng, L.; Yang, J. High-strength, self-adhesive, and strain-sensitive chitosan/poly(acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors. ACS Appl. Mater. Interfaces, 2019, 11(42), 39228-39237.
[http://dx.doi.org/10.1021/acsami.9b15817] [PMID: 31550132]
[10]
Liu, C.; Zhang, B.; Chen, W.; Liu, W.; Zhang, S. Current development of wearable sensors based on nanosheets and applications. Trends Analyt. Chem., 2021, 143, 116334.
[http://dx.doi.org/10.1016/j.trac.2021.116334]
[11]
Nosuhi, M.; Nezamzadeh-Ejhieh, A. High catalytic activity of Fe(II)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: Experimental design by response surface methodology (RSM). Electrochim. Acta, 2017, 223, 47-62.
[http://dx.doi.org/10.1016/j.electacta.2016.12.011]
[12]
Sharifian, S.; Nezamzadeh-Ejhieh, A. Modification of carbon paste electrode with Fe(III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Mater. Sci. Eng. C, 2016, 58, 510-520.
[http://dx.doi.org/10.1016/j.msec.2015.08.071] [PMID: 26478339]
[13]
Nasiri-Ardali, M.; Nezamzadeh-Ejhieh, A. A comprehensive study on the kinetics and thermodynamic aspects of batch and column removal of Pb(II) by the clinoptilolite–glycine adsorbent. Mater. Chem. Phys., 2020, 240, 122142.
[http://dx.doi.org/10.1016/j.matchemphys.2019.122142]
[14]
Shafiof, M.S.; Nezamzadeh-Ejhieh, A. A comprehensive study on the removal of Cd(II) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: Experimental design, kinetic and thermodynamic aspects. Solid State Sci., 2020, 99, 106071.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.106071]
[15]
Omrani, N.; Nezamzadeh-Ejhieh, A. A novel quadripartite Cu2O-CdS-BiVO4-WO3 visible-light driven photocatalyst: Brief characterization and study the kinetic of the photodegradation and mineralization of sulfasalazine. J. Photochem. Photobiol. Chem., 2020, 400, 112726.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112726]
[16]
Derikvandi, H.; Nezamzadeh-Ejhieh, A. Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: Effect of coupling, supporting, particles size and calcination temperature. J. Hazard. Mater., 2017, 321, 629-638.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.056] [PMID: 27694027]
[17]
Mirsalari, S.A.; Nezamzadeh-Ejhieh, A.; Massah, A.R. A designed experiment for CdS-AgBr photocatalyst toward methylene blue. Environ. Sci. Pollut. Res. Int., 2022, 29(22), 33013-33032.
[http://dx.doi.org/10.1007/s11356-021-17569-1] [PMID: 35018594]
[18]
Soori, F.; Nezamzadeh-Ejhieh, A. Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution. J. Mol. Liq., 2018, 255, 250-256.
[http://dx.doi.org/10.1016/j.molliq.2018.01.169]
[19]
Hashemi, H.S.; Nezamzadeh-Ejhieh, A.; Karimi-Shamsabadi, M. A novel cysteine sensor based on modification of carbon paste electrode by Fe(II)-exchanged zeolite X nanoparticles. Mater. Sci. Eng. C, 2016, 58, 286-293.
[http://dx.doi.org/10.1016/j.msec.2015.08.051] [PMID: 26478313]
[20]
Nosuhi, M.; Nezamzadeh-Ejhieh, A. Comprehensive study on the electrocatalytic effect of copper – doped nano-clinoptilolite towards amoxicillin at the modified carbon paste electrode – solution interface. J. Colloid Interface Sci., 2017, 497, 66-72.
[http://dx.doi.org/10.1016/j.jcis.2017.02.055] [PMID: 28268183]
[21]
Ahmadpour-Mobarakeh, L.; Nezamzadeh-Ejhieh, A. A zeolite modified carbon paste electrode as useful sensor for voltammetric determination of acetaminophen. Mater. Sci. Eng. C, 2015, 49, 493-499.
[http://dx.doi.org/10.1016/j.msec.2015.01.028] [PMID: 25686976]
[22]
Nezamzadeh-Ejhieh, A.; Tavakoli-Ghinani, S. Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery. C. R. Chim., 2014, 17(1), 49-61.
[http://dx.doi.org/10.1016/j.crci.2013.07.009]
[23]
Ghattavi, S.; Nezamzadeh-Ejhieh, A. A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers. Compos., Part B Eng., 2020, 183, 107712.
[http://dx.doi.org/10.1016/j.compositesb.2019.107712]
[24]
Raeisi-Kheirabadi, N.; Nezamzadeh-Ejhieh, A. A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. Int. J. Hydrogen Energy, 2020, 45(58), 33381-33395.
[http://dx.doi.org/10.1016/j.ijhydene.2020.09.028]
[25]
Tamiji, T.; Nezamzadeh-Ejhieh, A. A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn(IV)-clinoptilolite carbon paste electrode towards Hg(II). J. Electroanal. Chem. (Lausanne), 2018, 829, 95-105.
[http://dx.doi.org/10.1016/j.jelechem.2018.10.011]
[26]
Nezamzadeh-Ejhieh, A.; Mirzaeyan, E. Hexadecylpyridinium surfactant modified zeolite A as an active component of a polymeric membrane sulfite selective electrode. Mater. Sci. Eng. C, 2013, 33(8), 4751-4758.
[http://dx.doi.org/10.1016/j.msec.2013.07.040] [PMID: 24094184]
[27]
Fu, L.; Yu, A.; Lai, G. Conductive hydrogel-based electrochemical sensor: a soft platform for capturing analyte. Chemosensors (Basel), 2021, 9(10), 282.
[http://dx.doi.org/10.3390/chemosensors9100282]
[28]
Zhou, Z.; He, Z.; Yin, S.; Xie, X.; Yuan, W. Adhesive, stretchable and antibacterial hydrogel with external/self-power for flexible sensitive sensor used as human motion detection. Compos., Part B Eng., 2021, 220, 108984.
[http://dx.doi.org/10.1016/j.compositesb.2021.108984]
[29]
Dwivedi, P.; Singha, M.K. IoT Based Wearable Healthcare System; Springer International Publishing: Cham, 2021, pp. 305-321.
[30]
Xu, H.; Lv, Y.; Qiu, D.; Zhou, Y.; Zeng, H.; Chu, Y. An ultra-stretchable, highly sensitive and biocompatible capacitive strain sensor from an ionic nanocomposite for on-skin monitoring. Nanoscale, 2019, 11(4), 1570-1578.
[http://dx.doi.org/10.1039/C8NR08589G] [PMID: 30644941]
[31]
Li, S.N.; Li, B.; Yu, Z.R.; Gong, L.X.; Xia, Q.Q.; Feng, Y.; Jia, D.; Zhou, Y.; Tang, L.C. Chitosan in-situ grafted magnetite nanoparticles toward mechanically robust and electrically conductive ionic-covalent nanocomposite hydrogels with sensitive strain-responsive resistance. Compos. Sci. Technol., 2020, 195, 108173.
[http://dx.doi.org/10.1016/j.compscitech.2020.108173]
[32]
Wang, B.; Dai, L.; Hunter, L.A.; Zhang, L.; Yang, G.; Chen, J.; Zhang, X.; He, Z.; Ni, Y. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydr. Polym., 2021, 268, 118210.
[http://dx.doi.org/10.1016/j.carbpol.2021.118210] [PMID: 34127214]
[33]
He, S.; Sun, X.; Qin, Z.; Dong, X.; Zhang, H.; Shi, M.; Yao, F.; Zhang, H.; Li, J. Non-swelling and anti-fouling mxene nanocomposite hydrogels for underwater strain sensing. Adv. Mater. Technol., 2021, 7, 2101343.
[http://dx.doi.org/10.1002/admt.202101343]
[34]
Sun, X.; Yao, F.; Li, J. Nanocomposite hydrogel-based strain and pressure sensors: a review. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(36), 18605-18623.
[http://dx.doi.org/10.1039/D0TA06965E]
[35]
Wu, H.; Lei, Y.; Wang, J.; Tan, Y.; Song, X.; Zheng, J.; He, T.; Zhou, X.; Liu, C.; Kjøniksen, A.L.; Zhang, Y. Exploiting CMC@Fe3O4 nanoparticles as a multi-functional component for hydrogel fabrication. J. Phys. D Appl. Phys., 2022, 55(40), 404002.
[http://dx.doi.org/10.1088/1361-6463/ac8350]
[36]
Miranda, B.; Moretta, R.; De Martino, S.; Dardano, P.; Rea, I.; Forestiere, C.; De Stefano, L. A PEGDA hydrogel nanocomposite to improve gold nanoparticles stability for novel plasmonic sensing platforms. J. Appl. Phys., 2021, 129(3), 033101.
[http://dx.doi.org/10.1063/5.0033520]
[37]
Kong, L.; Gao, Z.; Li, X.; Gao, G. An amylopectin-enabled skin-mounted hydrogel wearable sensor. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(4), 1082-1088.
[http://dx.doi.org/10.1039/D0TB02460K] [PMID: 33415324]
[38]
Wang, Z.; Zhang, X.; Cao, T.; Wang, T.; Sun, L.; Wang, K.; Fan, X. Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interfaces, 2021, 13(38), 46022-46032.
[http://dx.doi.org/10.1021/acsami.1c15052] [PMID: 34542266]
[39]
Wang, T.; Wang, J.; Li, Z.; Yue, M.; Qing, X.; Zhang, P.; Liao, X.; Fan, Z.; Yang, S. PVA/SA/MXENE dual‐network conductive hydrogel for wearable sensor to monitor human motions. J. Appl. Polym. Sci., 2022, 139(7), 51627.
[http://dx.doi.org/10.1002/app.51627]
[40]
Chan, M.H.; Chen, W.; Li, C.H.; Fang, C.Y.; Chang, Y.C.; Wei, D.H.; Liu, R.S.; Hsiao, M. An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: Crossing the blood–brain barrier and improving the suppression of glioblastoma using iron-platinum nanoparticles in nanobubbles. ACS Appl. Mater. Interfaces, 2021, 13(23), 26759-26769.
[http://dx.doi.org/10.1021/acsami.1c04990] [PMID: 34076419]
[41]
Han, X.; Jiang, D.; Qu, X.; Bai, Y.; Cao, Y.; Luo, R.; Li, Z. A stretchable, self-healable triboelectric nanogenerator as electronic skin for energy harvesting and tactile sensing. Materials (Basel), 2021, 14(7), 1689.
[http://dx.doi.org/10.3390/ma14071689] [PMID: 33808195]
[42]
Wang, X.; Wang, Z.; Wang, X.; Shi, L.; Ran, R. Preparation of silver nanoparticles by solid-state redox route from hydroxyethyl cellulose for antibacterial strain sensor hydrogel. Carbohydr. Polym., 2021, 257, 117665.
[http://dx.doi.org/10.1016/j.carbpol.2021.117665] [PMID: 33541668]
[43]
Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod., 2021, 6(1), 75-81.
[http://dx.doi.org/10.1016/j.jobab.2021.01.003]
[44]
Shen, X.; Zheng, L.; Tang, R.; Nie, K.; Wang, Z.; Jin, C.; Sun, Q. Double-network hierarchical-porous piezoresistive nanocomposite hydrogel sensors based on compressive cellulosic hydrogels deposited with silver nanoparticles. ACS Sustain. Chem.& Eng., 2020, 8(19), 7480-7488.
[http://dx.doi.org/10.1021/acssuschemeng.0c02035]
[45]
Nejati, K.; Dadashpour, M.; Gharibi, T.; Mellatyar, H.; Akbarzadeh, A. Biomedical applications of functionalized gold nanoparticles: A review. J. Cluster Sci., 2022, 33(1), 1-16.
[http://dx.doi.org/10.1007/s10876-020-01955-9]
[46]
Chen, T.; Hou, K.; Ren, Q.; Chen, G.; Wei, P.; Zhu, M. Nanoparticle-polymer synergies in nanocomposite hydrogels: From design to application. Macromol. Rapid Commun., 2018, 39(21), 1800337.
[http://dx.doi.org/10.1002/marc.201800337] [PMID: 30118163]
[47]
Palem, R.R.; Shimoga, G.; Kang, T.J.; Lee, S.H. Fabrication of multifunctional Guar gum-silver nanocomposite hydrogels for biomedical and environmental applications. Int. J. Biol. Macromol., 2020, 159, 474-486.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.041] [PMID: 32437816]
[48]
Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z.; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules, 2021, 26(4), 844.
[http://dx.doi.org/10.3390/molecules26040844] [PMID: 33562781]
[49]
Jiang, H.; Carter, N.M.; Zareei, A.; Nejati, S.; Waimin, J.F.; Chittiboyina, S.; Niedert, E.E.; Soleimani, T.; Lelièvre, S.A.; Goergen, C.J.; Rahimi, R. A wireless implantable strain sensing scheme using ultrasound imaging of highly stretchable zinc oxide/poly dimethylacrylamide nanocomposite hydrogel. ACS Appl. Bio Mater., 2020, 3(7), 4012-4024.
[http://dx.doi.org/10.1021/acsabm.9b01032] [PMID: 35025476]
[50]
Takeno, H.; Aoki, Y.; Kimura, K. Effects of silica and clay nanoparticles on the mechanical properties of poly(vinyl alcohol) nanocomposite hydrogels. Colloids Surf. A Physicochem. Eng. Asp., 2021, 630, 127592.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127592]
[51]
Pang, H.; Ma, C.; Li, S.; Liu, H.; Xia, C.; Li, J.; Zhang, S.; Zhang, W.; Cai, L.; Huang, Z. Tough thermosensitive hydrogel with excellent adhesion to low-energy surface developed via nanoparticle-induced dynamic crosslinking. Appl. Surf. Sci., 2021, 560, 149935.
[http://dx.doi.org/10.1016/j.apsusc.2021.149935]
[52]
Gan, D.; Shuai, T.; Wang, X.; Huang, Z.; Ren, F.; Fang, L.; Wang, K.; Xie, C.; Lu, X. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nano-Micro Lett., 2020, 12(1), 169.
[http://dx.doi.org/10.1007/s40820-020-00507-0] [PMID: 34138168]
[53]
Wang, L.; Xu, T.; Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. Trends Analyt. Chem., 2021, 134, 116130.
[http://dx.doi.org/10.1016/j.trac.2020.116130]
[54]
Yu, X.; Zheng, Y.; Zhang, H.; Wang, Y.; Fan, X.; Liu, T. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing. Chem. Mater., 2021, 33(15), 6146-6157.
[http://dx.doi.org/10.1021/acs.chemmater.1c01595]
[55]
Bai, J.; Wang, R.; Ju, M.; Zhou, J.; Zhang, L.; Jiao, T. Facile preparation and high performance of wearable strain sensors based on ionically cross-linked composite hydrogels. Sci. China Mater., 2021, 64(4), 942-952.
[http://dx.doi.org/10.1007/s40843-020-1507-0]
[56]
Lu, C.H.; Yu, C.H.; Yeh, Y.C. Engineering nanocomposite hydrogels using dynamic bonds. Acta Biomater., 2021, 130, 66-79.
[http://dx.doi.org/10.1016/j.actbio.2021.05.055] [PMID: 34098090]
[57]
Huang, C.B.; Yao, Y.; Montes-García, V.; Stoeckel, M.A.; Von Holst, M.; Ciesielski, A.; Samorì, P. Highly sensitive strain sensors based on molecules–gold nanoparticles networks for high‐resolution human pulse analysis. Small, 2021, 17(8), 2007593.
[http://dx.doi.org/10.1002/smll.202007593] [PMID: 33464719]
[58]
Yue, L.; Zhang, X.; Wang, Y.; Li, W.; Tang, Y.; Bai, Y. Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property. Eur. Polym. J., 2021, 146, 110258.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110258]
[59]
Yousefi, I.; Zhong, W. A review of recent developments in nanocellulose-based conductive hydrogels. Curr. Nanosci., 2021, 17(4), 620-633.
[http://dx.doi.org/10.2174/1573413716999201127111627]
[60]
Zheng, C.; Yue, Y.; Gan, L.; Xu, X.; Mei, C.; Han, J. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels. Nanomaterials (Basel), 2019, 9(7), 937.
[http://dx.doi.org/10.3390/nano9070937] [PMID: 31261708]
[61]
Wang, M.; Bai, J.; Shao, K.; Tang, W.; Zhao, X.; Lin, D.; Huang, S.; Chen, C.; Ding, Z.; Ye, J. Poly(vinyl alcohol) hydrogels: The old and new functional materials. Int. J. Polym. Sci., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/2225426]
[62]
Chen, D.; Zhao, X.; Wei, X.; Zhang, J.; Wang, D.; Lu, H.; Jia, P. Ultrastretchable, tough, antifreezing, and conductive cellulose hydrogel for wearable strain sensor. ACS Appl. Mater. Interfaces, 2020, 12(47), 53247-53256.
[http://dx.doi.org/10.1021/acsami.0c14935] [PMID: 33185423]
[63]
Miyashiro, D.; Hamano, R.; Umemura, K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials (Basel), 2020, 10(2), 186.
[http://dx.doi.org/10.3390/nano10020186] [PMID: 31973149]
[64]
Qin, Z.; Sun, X.; Yu, Q.; Zhang, H.; Wu, X.; Yao, M.; Liu, W.; Yao, F.; Li, J. Nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain and pressure sensors. ACS Appl. Mater. Interfaces, 2020, 12, 4944-4953.
[http://dx.doi.org/10.1021/acsami.9b21659]
[65]
Jiao, Y.; Lu, K.; Lu, Y. Highly viscoelastic, stretchable, conductive, and self-healing strain sensors based on cellulose nanofiber-reinforced polyacrylic acid hydrogel. Cellulose, 2021, 28, 4295-4311.
[http://dx.doi.org/10.1007/s10570-021-03782-1]
[66]
Zheng, C.; Lu, K.; Lu, Y.; Zhu, S.; Yue, Y.; Xu, X.; Mei, C.; Xiao, H.; Wu, Q.; Han, J. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Carbohydr. Polym., 2020, 250, 116905.
[http://dx.doi.org/10.1016/j.carbpol.2020.116905] [PMID: 33049881]
[67]
Lu, Y.; Yue, Y.; Ding, Q.; Mei, C.; Xu, X.; Wu, Q.; Xiao, H.; Han, J. Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces, 2021, 13(42), 50281-50297.
[http://dx.doi.org/10.1021/acsami.1c16828] [PMID: 34637615]
[68]
Huang, F.; Wei, W.; Fan, Q.; Li, L.; Zhao, M.; Zhou, Z. Super-stretchable and adhesive cellulose Nanofiber-reinforced conductive nanocomposite hydrogel for wearable Motion-monitoring sensor. J. Colloid Interface Sci., 2022, 615, 215-226.
[http://dx.doi.org/10.1016/j.jcis.2022.01.117] [PMID: 35131502]
[69]
Li, M.; Yang, Y.; Yue, C.; Song, Y.; Manzo, M.; Huang, Z.; Cai, L. Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose, 2022, 29(3), 1897-1909.
[http://dx.doi.org/10.1007/s10570-022-04418-8]
[70]
Gao, Y.; Zhang, L.; Yang, L. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates: Mechanics of advanced materials and structures. Mech. Adv. Mater. Structures, 2019, 12, 1216-1226.
[http://dx.doi.org/10.1080/15376494.2019.1655687]
[71]
Rafieian, S.; Mirzadeh, H.; Mahdavi, H.; Masoumi, M.E. A review on nanocomposite hydrogels and their biomedical applications. Sci. Eng. Compos. Mater., 2019, 26(1), 154-174.
[http://dx.doi.org/10.1515/secm-2017-0161]
[72]
Xue, S.; Wu, Y.; Guo, M.; Xia, Y.; Liu, D.; Zhou, H.; Lei, W. Self-healable poly(acrylic acid-co-maleic acid)/glycerol/boron nitride nanosheet composite hydrogels at low temperature with enhanced mechanical properties and water retention. Soft Matter, 2019, 15(18), 3680-3688.
[http://dx.doi.org/10.1039/C9SM00179D] [PMID: 30892366]
[73]
Ding, H.; Liang, X.; Xu, J.; Tang, Z.; Li, Z.; Liang, R.; Sun, G. Hydrolyzed hydrogels with super stretchability, high strength, and fast self-recovery for flexible sensors. ACS Appl. Mater. Interfaces, 2021, 13(19), 22774-22784.
[http://dx.doi.org/10.1021/acsami.1c04781] [PMID: 33944548]
[74]
Bao, S.; Gao, J.; Xu, T.; Li, N.; Chen, W.; Lu, W. Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J., 2021, 411, 128470.
[http://dx.doi.org/10.1016/j.cej.2021.128470]
[75]
Zhang, Y.Z.; El-Demellawi, J.K.; Jiang, Q.; Ge, G.; Liang, H.; Lee, K.; Dong, X.; Alshareef, H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev., 2020, 49(20), 7229-7251.
[http://dx.doi.org/10.1039/D0CS00022A] [PMID: 32936169]
[76]
Yang, M.; He, S.; Huang, M.; Wang, J.; Liu, H.; Liu, W.; Hao, C.; Zhou, J. Song, Changyuan; Sun, Z. Rapid photothermal responsive conductive mxene nanocomposite hydrogels for soft manipulators and sensitive strain sensors. Macromol. Rapid Commun., 2021, 42(23), 2100499.
[http://dx.doi.org/10.1002/marc.202100499]
[77]
Chen, Z.; Liu, J.; Chen, Y.; Zheng, X.; Liu, H.; Li, H. Multiple-stimuli-responsive and cellulose conductive ionic hydrogel for smart wearable devices and thermal actuators. ACS Appl. Mater. Interfaces, 2021, 13(1), 1353-1366.
[http://dx.doi.org/10.1021/acsami.0c16719] [PMID: 33351585]
[78]
Wang, Q.; Pan, X.; Lin, C.; Gao, H.; Cao, S.; Ni, Y.; Ma, X. Modified Ti3C2TX (MXene) nanosheet-catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for wearable bioelectronics. Chem. Eng. J., 2020, 401, 126129.
[http://dx.doi.org/10.1016/j.cej.2020.126129]
[79]
Cai, Y.; Shen, J.; Yang, C.W.; Wan, Y.; Tang, H.L.; Aljarb, A.A.; Chen, C.; Fu, J.H.; Wei, X.; Huang, K.W.; Han, Y.; Jonas, S.J.; Dong, X.; Tung, V. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv., 2020, 6(48), eabb5367.
[http://dx.doi.org/10.1126/sciadv.abb5367] [PMID: 33246950]
[80]
Ren, Y.; Feng, J. Skin-inspired multifunctional luminescent hydrogel containing layered rare-earth hydroxide with 3D printability for human motion sensing. ACS Appl. Mater. Interfaces, 2020, 12(6), 6797-6805.
[http://dx.doi.org/10.1021/acsami.9b17371] [PMID: 31955579]
[81]
Li, X.; Xiao, S.; Zhao, H.; Rong, J.; Chen, Y.; Shan, W.; Joralmon, D.; Zhu, Y. 3D printing biomimetic materials and structures for biomedical applications; SpringerLink, 2021.
[82]
Khan, S.; Ali, S.; Bermak, A. Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac. Sensors (Basel), 2019, 19, 1230.
[http://dx.doi.org/10.3390/s19051230] [PMID: 30862062]
[83]
Chen, K.; Hu, Y.; Liu, M.; Wang, F.; Liu, P.; Yu, Y.; Feng, Q.; Xiao, X. Highly stretchable, tough, and conductive Ag@Cu nanocomposite hydrogels for flexible wearable sensors and bionic electronic skins. Macromol. Mater. Eng., 2021, 306(10), 2100341.
[http://dx.doi.org/10.1002/mame.202100341]
[84]
Wang, Y.; Chang, Q.; Zhan, R.; Xu, K.; Wang, Y.; Zhang, X.; Li, B.; Luo, G.; Xing, M.; Zhong, W. Tough but self-healing and 3D printable hydrogels for E-skin, E-noses and laser controlled actuators. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(43), 24814-24829.
[http://dx.doi.org/10.1039/C9TA04248B]
[85]
Wang, L.; Gao, G.; Zhou, Y.; Xu, T.; Chen, J.; Wang, R.; Zhang, R.; Fu, J. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces, 2019, 11(3), 3506-3515.
[http://dx.doi.org/10.1021/acsami.8b20755] [PMID: 30592203]
[86]
Liu, S.; Qiu, Y.; Yu, W.; Zhang, H. Highly stretchable and self-healing strain sensor based on gellan gum hybrid hydrogel for human motion monitoring. ACS Appl. Polym. Mater., 2020, 2(3), 1325-1334.
[http://dx.doi.org/10.1021/acsapm.9b01200]
[87]
Zhang, Q.; Liu, X.; Duan, L.; Gao, G. Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chem. Eng. J., 2019, 365, 10-19.
[http://dx.doi.org/10.1016/j.cej.2019.02.014]
[88]
Deng, Z.; Hu, T.; Lei, Q.; He, J.; Ma, P.X.; Guo, B. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3d printability for human motion sensing. ACS Appl. Mater. Interfaces, 2019, 11(7), 6796-6808.
[http://dx.doi.org/10.1021/acsami.8b20178] [PMID: 30673228]
[89]
Azadi, S.; Peng, S.; Moshizi, S.A.; Asadnia, M.; Xu, J.; Park, I.; Wang, C.H.; Wu, S. Biocompatible and highly stretchable PVA/AgNWs Hydrogel Strain Sensors for Human Motion Detection. Adv. Mater. Technol., 2021, 5, 2000426.
[http://dx.doi.org/10.1002/admt.202000426]
[90]
Wang, S.; Fang, Y.; He, H.; Zhang, L.; Li, C.; Ouyang, J. Wearable stretchable dry and self‐adhesive strain sensors with conformal contact to skin for high‐quality motion monitoring. Adv. Funct. Mater., 2021, 31, 2007495.
[http://dx.doi.org/10.1002/adfm.202007495]
[91]
Lin, F.; Wang, Z.; Shen, Y.; Tang, L.; Zhang, P.; Wang, Y.; Chen, Y.; Huang, B.; Lu, B. Natural skin-inspired versatile cellulose biomimetic hydrogels. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(46), 26442-26455.
[http://dx.doi.org/10.1039/C9TA10502F]
[92]
Liu, X.; Ma, Y.; Zhang, X.; Huang, J. Cellulose nanocrystal reinforced conductive nanocomposite hydrogel with fast self-healing and self-adhesive properties for human motion sensing. Colloids Surf. A Physicochem. Eng. Asp., 2021, 613, 126076.
[http://dx.doi.org/10.1016/j.colsurfa.2020.126076]
[93]
Mao, J.; Zhao, C.; Li, Y.; Xiang, D.; Wang, Z. Highly stretchable, self-healing, and strain-sensitive based on double-crosslinked nanocomposite hydrogel. Compos. Commun., 2020, 17, 22-27.
[http://dx.doi.org/10.1016/j.coco.2019.10.007]
[94]
Liu, H.; Chen, X.; Zheng, Y.; Zhang, D.; Zhao, Y.; Wang, C.; Pan, C.; Liu, C.; Shen, C. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater., 2021, 31, 2008006.
[http://dx.doi.org/10.1002/adfm.202008006]
[95]
Zhou, H.; Jin, Z.; Gao, Y.; Wu, P.; Lai, J.; Li, S.; Jin, X.; Liu, H.; Chen, W.; Wu, Y.; Ma, A. Thermoresponsive, magnetic, adhesive and conductive nanocomposite hydrogels for wireless and non-contact flexible sensors. Colloids Surf. A Physicochem. Eng. Asp., 2022, 636, 128113.
[http://dx.doi.org/10.1016/j.colsurfa.2021.128113]
[96]
Kursun, S.; Koncar, V.; Cochrane, C.; Sayar, E.; Kuzubasoglu, B.A. Wearable temperature sensor for human body temperature detection. SpringerLink., 2021, 32, 4784-4797.
[http://dx.doi.org/10.1007/s10854-020-05217-2]
[97]
Huang, H.; Han, L.; Li, J.; Fu, X.; Wang, Y.; Yang, Z.; Xu, X.; Pan, L.; Xu, M. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(20), 10291-10300.
[http://dx.doi.org/10.1039/D0TA02902E]
[98]
Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J., 2020, 382, 122832.
[http://dx.doi.org/10.1016/j.cej.2019.122832]
[99]
Chen, Z.; Chen, Y.; Hedenqvist, M.S.; Chen, C.; Cai, C.; Li, H.; Liu, H.; Fu, J. Multifunctional conductive hydrogels and their applications as smart wearable devices. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(11), 2561-2583.
[http://dx.doi.org/10.1039/D0TB02929G] [PMID: 33599653]
[100]
Masihi, S.; Panahi, M.; Maddipatla, D.; Hanson, A.J.; Bose, A.K.; Hajian, S.; Palaniappan, V.; Narakathu, B.B.; Bazuin, B.J.; Atashbar, M.Z. Highly sensitive porous pdms-based capacitive pressure sensors fabricated on fabric platform for wearable applications. ACS Sens., 2021, 6(3), 938-949.
[http://dx.doi.org/10.1021/acssensors.0c02122] [PMID: 33728910]
[101]
Zhang, Q.; Jin, T.; Cai, J.; Xu, L.; He, T.; Wang, T.; Tian, Y.; Li, L.; Peng, Y. Chengkuo, Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT‐Based smart healthcare applications. Adv. Sci., 2022, 9, 2103694.
[102]
Xu, Z.; Song, J.; Liu, B.; Lv, S.; Gao, F.; Luo, X.; Wang, P. A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sens. Actuators B Chem., 2021, 348, 130674.
[http://dx.doi.org/10.1016/j.snb.2021.130674]
[103]
Kukar, M.; Gunčar, G.; Vovko, T.; Podnar, S.; Černelč, P.; Brvar, M.; Zalaznik, M.; Moškon, S.M.; Notar, M. COVID-19 diagnosis by routine blood tests using machine learning. Sci. Rep., 2021, 11, 10738.
[http://dx.doi.org/10.1038/s41598-021-90265-9]
[104]
Garg, V.; Gupta, T.; Rani, S.; Bandyopadhyay-Ghosh, S.; Ghosh, S.B.; Qiao, L.; Liu, G. A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Compos. Sci. Technol., 2021, 213, 108894.
[http://dx.doi.org/10.1016/j.compscitech.2021.108894]
[105]
Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle size effects in biomedical applications. ACS Appl. Nano Mater., 2021, 4(7), 6471-6496.
[http://dx.doi.org/10.1021/acsanm.1c00987]
[106]
Hou, W.; Luan, Z.; Xie, D.; Zhang, X.; Yu, T.; Sui, K. High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel. Comput. Commun., 2021, 27, 100837.
[http://dx.doi.org/10.1016/j.coco.2021.100837]
[107]
Seddiqi, H.; Oliaei, E.; Honarkar, H.; Jin, J.; Geonzon, L.C.; Bacabac, R.G.; Klein-Nulend, J. Cellulose and its derivatives: towards biomedical applications. Cellulose, 2021, 28(4), 1893-1931.
[http://dx.doi.org/10.1007/s10570-020-03674-w]
[108]
Chang, Q.; Darabi, M.A.; Liu, Y.; He, Y.; Zhong, W.; Mequanin, K.; Li, B.; Lu, F.; Xing, M.M.Q. Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(42), 24626-24640.
[http://dx.doi.org/10.1039/C9TA06233E]
[109]
Rajabi, M.; McConnell, M.; Cabral, J.; Ali, M.A. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr. Polym., 2021, 260, 117768.
[http://dx.doi.org/10.1016/j.carbpol.2021.117768] [PMID: 33712126]
[110]
Lavrador, P.; Esteves, M.R.; Gaspar, V.M.; Mano, J.F. Stimuli‐responsive nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater., 2021, 31(8), 2005941.
[http://dx.doi.org/10.1002/adfm.202005941]
[111]
Lin, Y.; Bariya, M.; Javey, A. Wearable biosensors for body computing. Adv. Funct. Mater., 2021, 31, 2008087.
[http://dx.doi.org/10.1002/adfm.202008087]
[112]
Kumar, R.; Kumar, M.; Singh, J. The role of additive manufacturing for biomedical applications: A critical review. Sci. Direct, 2021, 64, 828-850.
[http://dx.doi.org/10.1016/j.jmapro.2021.02.022]
[113]
Wei, J.; Xie, J.; Zhang, P.; Zou, Z.; Ping, H.; Wang, W.; Xie, H.; Shen, J.Z.; Lei, L.; Fu, Z. Bioinspired 3D printable, self-healable, and stretchable hydrogels with multiple conductivities for skin-like wearable strain sensors. ACS Appl. Mater. Interfaces, 2021, 13(2), 2952-2960.
[http://dx.doi.org/10.1021/acsami.0c19512] [PMID: 33411490]
[114]
Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron., 2021, 176, 112946.
[http://dx.doi.org/10.1016/j.bios.2020.112946] [PMID: 33412429]
[115]
Chen, G.; Huang, J.; Gu, J.; Peng, S.; Xiang, X.; Chen, K.; Yang, X.; Guan, L.; Jiang, X.; Hou, L. Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(14), 6776-6784.
[http://dx.doi.org/10.1039/D0TA00002G]
[116]
Jin, R.; Xu, J.; Duan, L.; Gao, G. Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Carbohydr. Polym., 2021, 268, 118240.
[http://dx.doi.org/10.1016/j.carbpol.2021.118240] [PMID: 34127222]
[117]
Menges, J.; Kleinschmidt, P.; Bart, H-J.; Oesterschulze, E. A precision structured smart hydrogel for sensing applications. J. Appl. Phys., 2017, 122(13), 134501.
[http://dx.doi.org/10.1063/1.5006032]
[118]
Zhang, D.; Ren, B.; Zhang, Y.; Xu, L.; Huang, Q.; He, Y.; Li, X.; Wu, J.; Yang, J.; Chen, Q.; Chang, Y.; Zheng, J. From design to applications of stimuli-responsive hydrogel strain sensors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(16), 3171-3191.
[http://dx.doi.org/10.1039/C9TB02692D] [PMID: 31998926]
[119]
Chen, J.; Abbod, M.; Shieh, J.S. Pain and stress detection using wearable sensors and devices-A review. Sensors (Basel), 2021, 21(4), 1030.
[http://dx.doi.org/10.3390/s21041030] [PMID: 33546235]
[120]
Yin, R.; Zhang, D.; Wang, S.; Lou, Z.; Shen, G. Wearable sensors‐enabled human–machine interaction systems: from design to application. Adv. Funct. Mater., 2021, 31, 2008936.
[http://dx.doi.org/10.1002/adfm.202008936]
[121]
Tang, L.; Wu, S.; Qu, J.; Gong, L.; Tang, J. A review of conductive hydrogel used in flexible strain sensor. Materials (Basel), 2020, 13(18), 3947.
[http://dx.doi.org/10.3390/ma13183947] [PMID: 32906652]

© 2024 Bentham Science Publishers | Privacy Policy