Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Systematic Review Article

Gold Nanoparticles and Wound Healing in Rodents: A Systematic Study

Author(s): Hamideh Dehghan, Mahsa Sedighi, Amir Masoud Jafari-Nozad, Shima Jafari, Esmat Alemzadeh, Tahereh Farkhondeh* and Saeed Samarghandian*

Volume 19, Issue 6, 2023

Published on: 15 March, 2023

Page: [840 - 849] Pages: 10

DOI: 10.2174/1573413719666230214104302

Price: $65

Abstract

Background: Wound healing remains a challenge that has not yet been solved. Researchers are more interested in gold nanoparticles (AuNPs) than other nanoparticles because of their size-related chemical, electrical, and magnetic properties that may be useful in biological applications. Due to their antioxidant, anti-inflammatory, antibacterial qualities, and their capacity to destroy free radicals, AuNPs are also advantageous in lowering inflammation and promoting quicker wound healing.

Method: In this study, we analyzed all pertinent papers up to April 2021 to study the impact of AuNPs on the wound healing process in animal experiments based on scientific data, as wound healing is still one of the most significant medical difficulties. Based on the keywords "Gold, Nanoparticles, and wound healing," we carried out a systematic evaluation of the literature in PubMed, Ovid Medline, Google Scholar, Scopus, and Web of Science databases.

Result: This analysis shows that in all 13 studies reviewed, AuNPs significantly accelerated wound healing, decreased wound size, and produced complete epithelialization.

Discussion: AuNPs reduced inflammatory factors at the location of the lesion. Additionally, groups exposed to AuNPs showed an increase in connective tissue as well as an increase in the deposition of collagen in the wound. Different events such as the production of hair follicles, angiogenesis, antioxidant, and antibacterial actions of AuNPs have also been observed in the healing process of wounds. AuNPs are auspicious substances that may offer a therapeutic option for treating wounds.

Conclusion: To validate these results, however, an additional large sample of experimental human research is required.

Graphical Abstract

[1]
Sharma, M.; Yadav, S.; Ganesh, N.; Srivastava, M.M.; Srivastava, S. Biofabrication and characterization of flavonoid-loaded Ag, Au, Au–Ag bimetallic nanoparticles using seed extract of the plant Madhuca longifolia for the enhancement in wound healing bio-efficacy. Prog. Biomater., 2019, 8(1), 51-63.
[http://dx.doi.org/10.1007/s40204-019-0110-0] [PMID: 30790231]
[2]
Ravindran Girija, A.; Balasubramanian, S.; Bright, R.; Cowin, A.J.; Goswami, N.; Vasilev, K. Ultrasmall gold nanocluster based antibacterial nanoaggregates for infectious wound healing. ChemNanoMat, 2019, 5(9), 1176-1181.
[http://dx.doi.org/10.1002/cnma.201900366]
[3]
Zangeneh, M.M.; Saneei, S.; Zangeneh, A.; Toushmalani, R.; Haddadi, A.; Almasi, M.; Amiri-Paryan, A. Preparation, characterization, and evaluation of cytotoxicity, antioxidant, cutaneous wound healing, antibacterial, and antifungal effects of gold nanoparticles using the aqueous extract of Falcaria vulgaris leaves. Appl. Organomet. Chem., 2019, 33(11), e5216.
[http://dx.doi.org/10.1002/aoc.5216]
[4]
Childs, D.R.; Murthy, A.S. Overview of wound healing and management. Surg. Clin. North Am., 2017, 97(1), 189-207.
[http://dx.doi.org/10.1016/j.suc.2016.08.013] [PMID: 27894427]
[5]
Teller, P.; White, T.K. The physiology of wound healing: Injury through maturation. Perioper. Nurs. Clin., 2011, 6(2), 159-170.
[http://dx.doi.org/10.1016/j.cpen.2011.04.001]
[6]
Reinke, J.M.; Sorg, H. Wound repair and regeneration. Eur. Surg. Res., 2012, 49(1), 35-43.
[http://dx.doi.org/10.1159/000339613] [PMID: 22797712]
[7]
Liu, M.; Duan, X.P.; Li, Y.M.; Yang, D.P.; Long, Y.Z. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C, 2017, 76, 1413-1423.
[http://dx.doi.org/10.1016/j.msec.2017.03.034] [PMID: 28482508]
[8]
Maliha, Y.; Masoumeh, N.Z.; Fatemeh, A. Modern wound dressings and their use., 2017.
[9]
Chhabra, S.; Chhabra, N.; Kaur, A.; Gupta, N. Wound healing concepts in clinical practice of OMFS. J. Maxillofac. Oral Surg., 2017, 16(4), 403-423.
[http://dx.doi.org/10.1007/s12663-016-0880-z] [PMID: 29038623]
[10]
Liang, J.; Cui, L.; Li, J.; Guan, S.; Zhang, K.; Li, J. Aloe vera: A medicinal plant used in skin wound healing. Tissue Eng. Part B Rev., 2021, 27(5), 455-474.
[http://dx.doi.org/10.1089/ten.teb.2020.0236] [PMID: 33066720]
[11]
Okan, D.; Woo, K.; Ayello, E.A.; Sibbald, G. The role of moisture balance in wound healing. Adv. Skin Wound Care, 2007, 20(1), 39-53.
[http://dx.doi.org/10.1097/00129334-200701000-00013] [PMID: 17195786]
[12]
Sarhan, W.A.; Azzazy, H.M.E. High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym., 2015, 122, 135-143.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.051] [PMID: 25817652]
[13]
Lee, J.; Kim, J.; Go, J.; Lee, J.H.; Han, D.W.; Hwang, D.; Lee, J. Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids Surf. B Biointerfaces, 2015, 135, 166-174.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.058] [PMID: 26263209]
[14]
Siddiqui, A.A.; Turkyilmazoglu, M. A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids. Micromachines, 2019, 10(6), 373.
[http://dx.doi.org/10.3390/mi10060373] [PMID: 31167483]
[15]
Siddiqui, A.A.; Turkyilmazoglu, M. Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf., 2020, 113, 104499.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104499]
[16]
Turkyilmazoglu, M. Algebraic solutions of flow and heat for some nanofluids over deformable and permeable surfaces. Int. J. Numer. Methods Heat Fluid Flow, 2017, 27(10), 2259-2267.
[http://dx.doi.org/10.1108/HFF-09-2016-0358]
[17]
Wahid, N.S. MHD hybrid Cu-Al2O3/water nanofluid flow with thermal radiation and partial slip past a permeable stretching surface: Analytical solution. J. Nano Res., 2020, 64, 75-91.
[http://dx.doi.org/10.4028/www.scientific.net/JNanoR.64.75]
[18]
Zdorovets, M.V.; Kozlovskiy, A.L.; Shlimas, D.I.; Borgekov, D.B. Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application. J. Mater. Sci. Mater. Electron., 2021, 32(12), 16694-16705.
[http://dx.doi.org/10.1007/s10854-021-06226-5]
[19]
Sharko, S.A.; Serokurova, A.I.; Novitskii, N.N.; Ketsko, V.A.; Smirnova, M.N.; Almuqrin, A.H.; Sayyed, M.I.; Trukhanov, S.V.; Trukhanov, A.V. A new approach to the formation of nanosized gold and beryllium films by ion-beam sputtering deposition. Nanomaterials, 2022, 12(3), 470.
[http://dx.doi.org/10.3390/nano12030470] [PMID: 35159815]
[20]
Raghuwanshi, N.; Kumari, P.; Srivastava, A.K.; Vashisth, P.; Yadav, T.C.; Prasad, R.; Pruthi, V. Synergistic effects of Woodfordia fruticosa gold nanoparticles in preventing microbial adhesion and accelerating wound healing in Wistar albino rats in vivo. Mater. Sci. Eng. C, 2017, 80, 252-262.
[http://dx.doi.org/10.1016/j.msec.2017.05.134] [PMID: 28866163]
[21]
Kozlovskiy, A.L.; Zdorovets, M.V. Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron., 2019, 30(12), 11819-11832.
[http://dx.doi.org/10.1007/s10854-019-01556-x]
[22]
Zubar, T.I.; Usovich, T.I.; Tishkevich, D.I.; Kanafyev, O.D.; Fedkin, V.A.; Kotelnikova, A.N.; Panasyuk, M.I.; Kurochka, A.S.; Nuriev, A.V.; Idris, A.M.; Khandaker, M.U.; Trukhanov, S.V.; Fedosyuk, V.M.; Trukhanov, A.V. Features of galvanostatic electrodeposition of nife films with composition gradient: Influence of substrate characteristics. Nanomaterials, 2022, 12(17), 2926.
[http://dx.doi.org/10.3390/nano12172926] [PMID: 36079964]
[23]
Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys., 2011, 113(5), 819-825.
[http://dx.doi.org/10.1134/S1063776111130127]
[24]
Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, Z.V.; Kadyrzhanov, K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors (Basel), 2020, 20(17), 4851.
[http://dx.doi.org/10.3390/s20174851] [PMID: 32867214]
[25]
Silveira, P.C.L.; Venâncio, M.; Souza, P.S.; Victor, E.G.; de Souza Notoya, F.; Paganini, C.S.; Streck, E.L.; da Silva, L.; Pinho, R.A.; Paula, M.M.S. Iontophoresis with gold nanoparticles improves mitochondrial activity and oxidative stress markers of burn wounds. Mater. Sci. Eng. C, 2014, 44, 380-385.
[http://dx.doi.org/10.1016/j.msec.2014.08.045] [PMID: 25280718]
[26]
Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M. Phyto-engineered gold nanoparticles (aunps) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int. J. Nanomedicine, 2020, 15, 7553-7568.
[http://dx.doi.org/10.2147/IJN.S257499] [PMID: 33116487]
[27]
Leu, J.G.; Chen, S.A.; Chen, H.M.; Wu, W.M.; Hung, C.F.; Yao, Y.D.; Tu, C.S.; Liang, Y.J. The effects of gold nanoparticles in wound healing with antioxidant epigallocatechin gallate and α-lipoic acid. Nanomedicine, 2012, 8(5), 767-775.
[http://dx.doi.org/10.1016/j.nano.2011.08.013] [PMID: 21906577]
[28]
Lau, P.; Bidin, N.; Islam, S.; Shukri, W.N.B.W.M.; Zakaria, N.; Musa, N.; Krishnan, G. Influence of gold nanoparticles on wound healing treatment in rat model: Photobiomodulation therapy. Lasers Surg. Med., 2017, 49(4), 380-386.
[http://dx.doi.org/10.1002/lsm.22614] [PMID: 27859389]
[29]
Usman, A.I.; Abdul Aziz, A.; Abu Noqta, O. Application of green synthesis of gold nanoparticles: A review. J. Teknol., 2018, 81(1), 171-182.
[http://dx.doi.org/10.11113/jt.v81.11409]
[30]
Teimuri-Mofrad, R. Green synthesis of gold nanoparticles using plant extract: Mini-review. Nanochem. Res., 2017, 2(1), 8-19.
[31]
Li, W.; Cao, J.; Du, Y.; Ye, H.; Shan, W.; Chen, X.; Wu, H.; Murakonda, G.; Xu, X. Ampelopsis grossedentata leaf extract induced gold nanoparticles as wound healing dressing for abdominal wound dehiscence in nursing care. J. Cluster Sci., 2022, 33(3), 1139-1147.
[http://dx.doi.org/10.1007/s10876-021-02040-5]
[32]
Hu, X.; Ahmeda, A.; Zangeneh, M.M. Chemical characterization and evaluation of antimicrobial and cutaneous wound healing potentials of gold nanoparticles using Allium saralicum R.M. Fritsch. Appl. Organomet. Chem., 2020, 34(4), e5484.
[http://dx.doi.org/10.1002/aoc.5484]
[33]
Zhaleh, M.; Zangeneh, A.; Goorani, S.; Seydi, N.; Zangeneh, M.M.; Tahvilian, R.; Pirabbasi, E. In vitro and in vivo evaluation of cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound healing properties of gold nanoparticles produced via a green chemistry synthesis using Gundelia tournefortii L. as a capping and reducing agent. Appl. Organomet. Chem., 2019, 33(9), e5015.
[http://dx.doi.org/10.1002/aoc.5015]
[34]
Nie, S.; Wei, R.; Zhou, H.; Zhang, L.; Chen, Z.; Hou, L. Eco-friendly synthesis of AuNPs for cutaneous wound-healing applications in nursing care after surgery. Green Process. Synth., 2020, 9(1), 366-374.
[http://dx.doi.org/10.1515/gps-2020-0037]
[35]
Layeghi-Ghalehsoukhteh, S. Evaluation of ‘green’synthesis and biological activity of gold nanoparticles using Tragopogon dubius leaf extract as an antibacterial agent. IET Nanobiotechnol., 2018, 12(8), 1118-1124.
[http://dx.doi.org/10.1049/iet-nbt.2018.5073] [PMID: 30964024]
[36]
Ponnanikajamideen, M. In vivo type 2 diabetes and wound-healing effects of antioxidant gold nanoparticles synthesized using the insulin plant Chamaecostus cuspidatus in albino rats. Canadian J. diabetes, 2019, 43(2), 82-89.
[http://dx.doi.org/10.1016/j.jcjd.2018.05.006]
[37]
Naraginti, S.; Kumari, P.L.; Das, R.K.; Sivakumar, A.; Patil, S.H.; Andhalkar, V.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater. Sci. Eng. C, 2016, 62, 293-300.
[http://dx.doi.org/10.1016/j.msec.2016.01.069] [PMID: 26952426]
[38]
Sivakumar, A.S.; Krishnaraj, C.; Sheet, S.; Rampa, D.R.; Kang, D.R.; Belal, S.A.; Kumar, A.; Hwang, I.H.; Yun, S.I.; Lee, Y.S.; Shim, K.S. Interaction of silver and gold nanoparticles in mammalian cancer: As real topical bullet for wound healing— A comparative study. In Vitro Cell. Dev. Biol. Anim., 2017, 53(7), 632-645.
[http://dx.doi.org/10.1007/s11626-017-0150-5] [PMID: 28462492]
[39]
Korani, S.; Rashidi, K.; Hamelian, M.; Jalalvand, A.R.; Tajehmiri, A.; Korani, M.; Sathyapalan, T.; Sahebkar, A. Evaluation of antimicrobial and wound healing effects of gold nanoparticles containing Abelmoschus esculentus (l.) aqueous extract. Bioinorg. Chem. Appl., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/7019130] [PMID: 34721559]
[40]
Huang, Y.; Yu, F.; Park, Y.S.; Wang, J.; Shin, M.C.; Chung, H.S.; Yang, V.C. Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 2010, 31(34), 9086-9091.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.046] [PMID: 20828812]
[41]
Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharm. J., 2016, 24(4), 473-484.
[http://dx.doi.org/10.1016/j.jsps.2014.11.013] [PMID: 27330378]
[42]
Boomi, P.; Ganesan, R.M.; Poorani, G.; Gurumallesh Prabu, H.; Ravikumar, S.; Jeyakanthan, J. Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater. Sci. Eng. C, 2019, 99, 202-210.
[http://dx.doi.org/10.1016/j.msec.2019.01.105] [PMID: 30889692]
[43]
Abdel-Raouf, N.; Al-Enazi, N.M.; Ibraheem, I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem., 2017, 10, S3029-S3039.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.044]
[44]
Cui, Y.; Zhao, Y.; Tian, Y.; Zhang, W.; Lü, X.; Jiang, X. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 2012, 33(7), 2327-2333.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.057] [PMID: 22182745]
[45]
Glišić B.Đ.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans., 2014, 43(16), 5950-5969.
[http://dx.doi.org/10.1039/C4DT00022F] [PMID: 24598838]
[46]
Gu, H.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[47]
Geethalakshmi, R. Evaluation of antioxidant and wound healing potentials of Sphaeranthus amaranthoides burm. BioMed Res. Int., 2013, 2013, 607109.
[http://dx.doi.org/10.1155/2013/607109] [PMID: 23509751]
[48]
Guerrini, L.; Alvarez-Puebla, R.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials, 2018, 11(7), 1154.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[49]
Salatin, S.; Maleki Dizaj, S.; Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int., 2015, 39(8), 881-890.
[http://dx.doi.org/10.1002/cbin.10459] [PMID: 25790433]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy