Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Mini-Review Article

A Critical Review of Two-Dimensional Nanomaterial MXenes and their Applications in Water Treatment

Author(s): Yingchun Chen*, Bei Yu and Lingling Peng

Volume 18, Issue 2, 2024

Published on: 21 March, 2023

Article ID: e130223213605 Pages: 23

DOI: 10.2174/1872212117666230213111014

Price: $65

Abstract

Environmental pollution has accelerated and intensified because of the acceleration of industrialization, therefore fabricating excellent materials to remove hazardous pollutants has become inevitable. MXenes as emerging transition metal nitrides, carbides, or carbonitrides with high conductivity, hydrophilicity, excellent structural stability, and versatile surface chemistry, become ideal candidates for water treatment. This review summarizes recent advances in the synthesis and applications of MXenes as adsorbents, photocatalysts, and separation membranes for water purification. Extensive information related to the synthesis and applications of MXenes for water treatment and their associated patents were collected. This review has given a comprehensive survey of the recently reported 2D nanomaterial (NM) MXenes which are used in various water treatment applications. The effects of structure control, surface modification and composite of MXene on the adsorption performance of MXene and the formation of effective heterojunction, photocatalysts separation membrane were discussed in detail. The existing problems in the water treatment applications of MXene were summarized and analyzed. The overview also features discussions on the computational attempts, biocompatibility, and environmental impact in the exploration of MXenes for applications of water treatment, highlighting the challenges and opportunities of these advanced 2D NMs. The prospects of designing MXene based water treatment materials with excellent performance were put forward.

Graphical Abstract

[1]
S. Yu, H. Tang, D. Zhang, S. Wang, M. Qiu, G. Song, D. Fu, B. Hu, and X. Wang, "MXenes as emerging nanomaterials in water purification and environmental remediation", Sci. Total Environ., vol. 811, p. 152280, 2022.
[http://dx.doi.org/10.1016/j.scitotenv.2021.152280] [PMID: 34896484]
[2]
S. Ye, G. Zeng, H. Wu, C. Zhang, J. Dai, J. Liang, J. Yu, X. Ren, H. Yi, M. Cheng, and C. Zhang, "Biological technologies for the remediation of co-contaminated soil", Crit. Rev. Biotechnol., vol. 37, no. 8, pp. 1062-1076, 2017.
[http://dx.doi.org/10.1080/07388551.2017.1304357] [PMID: 28427272]
[3]
S. Ye, G. Zeng, H. Wu, J. Liang, C. Zhang, J. Dai, W. Xiong, B. Song, S. Wu, and J. Yu, "The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil", Resour. Conserv. Recycling, vol. 140, pp. 278-285, 2019.
[http://dx.doi.org/10.1016/j.resconrec.2018.10.004]
[4]
S. Ye, G. Zeng, H. Wu, C. Zhang, J. Liang, J. Dai, Z. Liu, W. Xiong, J. Wan, P. Xu, and M. Cheng, "Co-occurrence and interactions of pollutants, and their impacts on soil remediation-a review", Crit. Rev. Environ. Sci. Technol., vol. 47, no. 16, pp. 1528-1553, 2017.
[http://dx.doi.org/10.1080/10643389.2017.1386951]
[5]
S. Miri, M. Naghdi, T. Rouissi, S. Kaur Brar, and R. Martel, "Recent biotechnological advances in petroleum hydrocarbons degradation under cold climate conditions: A review", Crit. Rev. Environ. Sci. Technol., vol. 49, no. 7, pp. 553-586, 2019.
[http://dx.doi.org/10.1080/10643389.2018.1552070]
[6]
M. Bagheri, and S.A. Mirbagheri, "Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater", Bioresour. Technol., vol. 258, pp. 318-334, 2018.
[http://dx.doi.org/10.1016/j.biortech.2018.03.026] [PMID: 29548641]
[7]
G. Crini, E. Lichtfouse, L.D. Wilson, and N. Morin-Crini, "Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment", In: G. Crini, E. Lichtfouse, Eds., Green Adsorbents for Pollutant Removal: Fundamentals and Design., Springer International Publishing: Cham, 2018, pp. 23-71.
[http://dx.doi.org/10.1007/978-3-319-92111-2_2]
[8]
C. Santhosh, V. Velmurugan, G. Jacob, S.K. Jeong, A.N. Grace, and A. Bhatnagar, "Role of nanomaterials in water treatment applications: A review", Chem. Eng. J., vol. 306, pp. 1116-1137, 2016.
[http://dx.doi.org/10.1016/j.cej.2016.08.053]
[9]
K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, and K.A. Mahmoud, "Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)", Mater. Today, vol. 30, pp. 80-102, 2019.
[http://dx.doi.org/10.1016/j.mattod.2019.05.017]
[10]
X. Zhang, X. Zhao, D. Wu, Y. Jing, and Z. Zhou, "High and anisotropic carrier mobility in experimentally possible Ti2CO2 (MXene) monolayers and nanoribbons", Nanoscale, vol. 7, no. 38, pp. 16020-16025, 2015.
[http://dx.doi.org/10.1039/C5NR04717J] [PMID: 26370829]
[11]
Y. Ying, Y. Liu, X. Wang, Y. Mao, W. Cao, P. Hu, and X. Peng, "Two-dimensional titanium carbide for efficiently reductive removal of highly toxic chromium(VI) from water", ACS Appl. Mater. Interfaces, vol. 7, no. 3, pp. 1795-1803, 2015.
[http://dx.doi.org/10.1021/am5074722] [PMID: 25559042]
[12]
J. Wang, P. Chen, B. Shi, W. Guo, M. Jaroniec, and S.Z. Qiao, "Regularly channeled lamellar membrane for unparalleled water and organics permeation", Angew. Chem. Int. Ed., vol. 57, no. 23, pp. 6814-6818, 2018.
[http://dx.doi.org/10.1002/anie.201801094] [PMID: 29508511]
[13]
J.C. Lei, X. Zhang, and Z. Zhou, "Recent advances in MXene: Preparation, properties, and applications", Front. Phys., vol. 10, no. 3, pp. 276-286, 2015.
[http://dx.doi.org/10.1007/s11467-015-0493-x]
[14]
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, "Two-dimensional transition metal carbides", ACS Nano, vol. 6, no. 2, pp. 1322-1331, 2012.
[http://dx.doi.org/10.1021/nn204153h] [PMID: 22279971]
[15]
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, "Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide", Science, vol. 341, no. 6153, pp. 1502-1505, 2013.
[http://dx.doi.org/10.1126/science.1241488] [PMID: 24072919]
[16]
M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J.L. Billinge, and M.W. Barsoum, "Synthesis and characterization of two-dimensional Nb4C3 (MXene)", Chem. Commun., vol. 50, no. 67, pp. 9517-9520, 2014.
[http://dx.doi.org/10.1039/C4CC03366C] [PMID: 25010704]
[17]
M.W. Barsoum, "Electronic, optical, and magnetic properties", In: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley-VCH Verlag GmbH & Co. KGaA., 2013, pp. 155-186.
[http://dx.doi.org/10.1002/9783527654581.ch5]
[18]
M.W. Barsoum, "Structure, bonding, and defects", In: MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, vol. 13. Wiley-VCH Verlag GmbH & Co. KGaA, 2013, p. 64.
[http://dx.doi.org/10.1002/9783527654581.ch2]
[19]
Z. Fu, N. Wang, D. Legut, C. Si, Q. Zhang, S. Du, T.C. Germann, J.S. Francisco, and R. Zhang, "Rational design of flexible two-dimensional MXenes with multiple functionalities", Chem. Rev., vol. 119, no. 23, pp. 11980-12031, 2019.
[http://dx.doi.org/10.1021/acs.chemrev.9b00348] [PMID: 31710485]
[20]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., vol. 23, no. 37, pp. 4248-4253, 2011.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[21]
X. Guo, X. Zhang, S. Zhao, Q. Huang, and J. Xue, "High adsorption capacity of heavy metals on two-dimensional MXenes: an ab initio study with molecular dynamics simulation", Phys. Chem. Chem. Phys., vol. 18, no. 1, pp. 228-233, 2016.
[http://dx.doi.org/10.1039/C5CP06078H] [PMID: 26602974]
[22]
L. Wu, X. Lu, Z.S. Dhanjai, Z.S. Wu, Y. Dong, X. Wang, S. Zheng, and J. Chen, "2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol", Biosens. Bioelectron., vol. 107, pp. 69-75, 2018.
[http://dx.doi.org/10.1016/j.bios.2018.02.021] [PMID: 29448223]
[23]
I. Ihsanullah, "Potential of MXenes in water desalination: Current status and perspectives", Nano-Micro Lett., vol. 12, no. 1, p. 72, 2020.
[http://dx.doi.org/10.1007/s40820-020-0411-9] [PMID: 34138292]
[24]
R. Chen, Y. Cheng, P. Wang, Y. Wang, Q. Wang, Z. Yang, C. Tang, S. Xiang, S. Luo, S. Huang, and C. Su, "Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH) complexing solutions", Chem. Eng. J., vol. 421, p. 129682, 2021.
[http://dx.doi.org/10.1016/j.cej.2021.129682]
[25]
X. Tong, S. Liu, D. Qu, H. Gao, L. Yan, Y. Chen, and J. Crittenden, "Tannic acid-metal complex modified MXene membrane for contaminants removal from water", J. Membr. Sci., vol. 622, p. 119042, 2021.
[http://dx.doi.org/10.1016/j.memsci.2020.119042]
[26]
Y. Wu, X. Li, H. Zhao, F. Yao, J. Cao, Z. Chen, X. Huang, D. Wang, and Q. Yang, "Recent advances in transition metal carbides and nitrides (MXenes): Characteristics, environmental remediation and challenges", Chem. Eng. J., vol. 418, p. 129296, 2021.
[http://dx.doi.org/10.1016/j.cej.2021.129296]
[27]
H.E. Karahan, K. Goh, C.J. Zhang, and E. Yang, "C. Yıldırım, C.Y. Chuah, M.G. Ahunbay, J. Lee, Ş.B. Tantekin-Ersolmaz, Y. Chen, and T.H. Bae, “MXene materials for designing advanced separation membranes”", Adv. Mater., vol. 32, no. 29, p. 1906697, 2020.
[http://dx.doi.org/10.1002/adma.201906697] [PMID: 32484267]
[28]
W. Zheng, L. Yang, P.G. Zhang, J. Chen, W.B. Tian, Y.M. Zhang, and Z.M. Sun, "Energy storage and application for 2D nano-material MXenes", Mater. Rep, vol. 32, no. 15, pp. 2513-2537, 2018.
[29]
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, and M.W. Barsoum, "Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance", Nature, vol. 516, no. 7529, pp. 78-81, 2014.
[http://dx.doi.org/10.1038/nature13970] [PMID: 25470044]
[30]
D.H. Lin, and T. Ke, "In-situ synthesizing titanium dioxide-titanium carbide powder by using dimethyl sulfoxide intercalation and layering of titanium carbide powder comprises e.g. dispersing titanium aluminum carbide-MAX phase ceramic powder, and etching", CN Patent 109261180–A, 2018.
[31]
D.H. Lin, and T. Ke, "Synthesizing titanium oxide-titanium carbide in in situ by isopropylamine intercalation and layering of titanium carbide comprises e.g. dispersing titanium-aluminum carbide-MAX phase ceramic powder in hydrogen fluoride solution and etching", CN Patent 109261181–A, 2018.
[32]
B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, "2D metal carbides and nitrides (MXenes) for energy storage", Nat. Rev. Mater., vol. 2, no. 2, p. 16098, 2017.
[http://dx.doi.org/10.1038/natrevmats.2016.98]
[33]
M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, and Y. Gogotsi, "Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)", Chem. Mater., vol. 29, no. 18, pp. 7633-7644, 2017.
[http://dx.doi.org/10.1021/acs.chemmater.7b02847]
[34]
O. Mashtalir, M. Naguib, V.N. Mochalin, Y. Dall’Agnese, M. Heon, M.W. Barsoum, and Y. Gogotsi, "Intercalation and delamination of layered carbides and carbonitrides", Nat. Commun., vol. 4, no. 1, p. 1716, 2013.
[http://dx.doi.org/10.1038/ncomms2664] [PMID: 23591883]
[35]
Y. Su, B. Wang, X.T. Guo, B.B. Wu, N. Li, R.X. Ti, D.P. Liu, C. Liu, J.N. Chen, and X.Y. Chen, "Preparing BiOBrxI1–x/MXene composite catalyst involves synthesizing MXene by liquid phase etching method, ball milling commercially available Ti3AlC2 powder and putting ball milled powder into alumina crucible, and then putting crucible", CN Patent 112121833–A, 2020.
[36]
P.G. Ren, F.D. Zhang, Z.Z. Guo, and F. Ren, "Preparing cellulose nanofiber/MXene-silver nanowire composite film, involves using hydrochloric acid/lithium fluoride to synthesize layered MXene dispersion, dispersing ultrasonically in deionized water, stirring, and filtering", CN Patent 113004556–A, 2021.
[37]
J.B. Jiang, R. Sun, X. Huang, W.X. Xu, Y. Wei, S.B. Zhou, M.J. Li, Y.L. Li, X.M. Chen, T.T. Li, Y.N. Xuan, and S. Han, "Synthesis of zinc-doped cobalt phosphide MXene/nickel foam composite material used for electro-catalysis integral water decomposition by etching inorganic salt with titanium aluminum carbide, adding nickel foam into MXene, and reacting", CN Patent 114059093-A, 2021.
[38]
M.W. Barsoum, and V.R. Natu, "Manufacturing two-dimensional inorganic compound (MXene) material by contacting a metal carbide or nitride (MAX)-phase material with an etchant containing salt, polar solvent and non-polar solvent and crown ether", WO Patent 2021076639-A1, 2019.
[39]
M. Li, J. Lu, K. Luo, Y. Li, K. Chang, K. Chen, J. Zhou, J. Rosen, L. Hultman, P. Eklund, P.O.Å. Persson, S. Du, Z. Chai, Z. Huang, and Q. Huang, "Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes", J. Am. Chem. Soc., vol. 141, no. 11, pp. 4730-4737, 2019.
[http://dx.doi.org/10.1021/jacs.9b00574] [PMID: 30821963]
[40]
V. Kamysbayev, A.S. Filatov, H. Hu, X. Rui, F. Lagunas, D. Wang, R.F. Klie, and D.V. Talapin, "Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes", Science, vol. 369, no. 6506, pp. 979-983, 2020.
[http://dx.doi.org/10.1126/science.aba8311] [PMID: 32616671]
[41]
H.J. Liu, L.X. Yang, and C.L. Zeng, "Preparing laminated MXene material for battery material by directly mixing carbon material powder and second raw material to form multi-element conductive ceramic material, reacting in molten salt, cooling, removing molten salt, and etching", CN Patent 110304632-A, 2018.
[42]
C. Si, J. Zhou, and Z. Sun, "Half-metallic ferromagnetism and surface functionalization-induced metal–insulator transition in graphene-like two-dimensional Cr2C crystals", ACS Appl. Mater. Interfaces, vol. 7, no. 31, pp. 17510-17515, 2015.
[http://dx.doi.org/10.1021/acsami.5b05401] [PMID: 26203779]
[43]
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, and F. Peng, "Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity", ACS Appl. Mater. Interfaces, vol. 8, no. 9, pp. 6051-6060, 2016.
[http://dx.doi.org/10.1021/acsami.5b11973] [PMID: 26859317]
[44]
X.G. Li, X.L. Ma, J. Sun, and M.R. Huang, "Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles", Langmuir, vol. 25, no. 3, pp. 1675-1684, 2009.
[http://dx.doi.org/10.1021/la802410p] [PMID: 19132885]
[45]
A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, and D.S. Lee, "Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water", ACS Sustain. Chem.& Eng., vol. 5, no. 12, pp. 11481-11488, 2017.
[http://dx.doi.org/10.1021/acssuschemeng.7b02695]
[46]
J. Guo, Q. Peng, H. Fu, G. Zou, and Q. Zhang, "Heavy-metal adsorption behavior of two-dimensional alkalization-intercalated MXene by first-principles calculations", J. Phys. Chem. C, vol. 119, no. 36, pp. 20923-20930, 2015.
[http://dx.doi.org/10.1021/acs.jpcc.5b05426]
[47]
J. Xu, Z. Cao, Y. Zhang, Z. Yuan, Z. Lou, X. Xu, and X. Wang, "A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism", Chemosphere, vol. 195, pp. 351-364, 2018.
[http://dx.doi.org/10.1016/j.chemosphere.2017.12.061] [PMID: 29272803]
[48]
L. Zhao, J. Deng, P. Sun, J. Liu, Y. Ji, N. Nakada, Z. Qiao, H. Tanaka, and Y. Yang, "Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis", Sci. Total Environ., vol. 627, pp. 1253-1263, 2018.
[http://dx.doi.org/10.1016/j.scitotenv.2018.02.006] [PMID: 30857090]
[49]
J.Y. Lim, N.M. Mubarak, E.C. Abdullah, S. Nizamuddin, and M. Khalid, Inamuddin, "Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals-A review", J. Ind. Eng. Chem., vol. 66, pp. 29-44, 2018.
[http://dx.doi.org/10.1016/j.jiec.2018.05.028]
[50]
M. Stefaniuk, P. Oleszczuk, and Y.S. Ok, "Review on nano zerovalent iron (nZVI): From synthesis to environmental applications", Chem. Eng. J., vol. 287, pp. 618-632, 2016.
[http://dx.doi.org/10.1016/j.cej.2015.11.046]
[51]
L. Zhang, Y. Zeng, and Z. Cheng, "Removal of heavy metal ions using chitosan and modified chitosan: A review", J. Mol. Liq., vol. 214, pp. 175-191, 2016.
[http://dx.doi.org/10.1016/j.molliq.2015.12.013]
[52]
Z. Othman, H.R. Mackey, and K.A. Mahmoud, "A critical overview of MXenes adsorption behavior toward heavy metals", Chemosphere, vol. 295, p. 133849, 2022.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133849] [PMID: 35124080]
[53]
G. Zou, J. Guo, Q. Peng, A. Zhou, Q. Zhang, and B. Liu, "Synthesis of urchin-like rutile titania carbon nanocomposites by iron-facilitated phase transformation of MXene for environmental remediation", J. Mater. Chem. A Mater. Energy Sustain., vol. 4, no. 2, pp. 489-499, 2016.
[http://dx.doi.org/10.1039/C5TA07343J]
[54]
J. Zhu, E. Ha, G. Zhao, Y. Zhou, D. Huang, G. Yue, L. Hu, N. Sun, Y. Wang, L.Y.S. Lee, C. Xu, K.Y. Wong, D. Astruc, and P. Zhao, "Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption", Coord. Chem. Rev., vol. 352, pp. 306-327, 2017.
[http://dx.doi.org/10.1016/j.ccr.2017.09.012]
[55]
Y. Zhang, L. Wang, N. Zhang, and Z. Zhou, "Adsorptive environmental applications of MXene nanomaterials: A review", RSC Advances, vol. 8, no. 36, pp. 19895-19905, 2018.
[http://dx.doi.org/10.1039/C8RA03077D] [PMID: 35541640]
[56]
B.M. Jun, S. Kim, J. Heo, C.M. Park, N. Her, M. Jang, Y. Huang, J. Han, and Y. Yoon, "Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications", Nano Res., vol. 12, no. 3, pp. 471-487, 2019.
[http://dx.doi.org/10.1007/s12274-018-2225-3]
[57]
D.S. Lee, and J.J. Sun, "Three dimensional MXene film useful in adsorbent for adsorbing radionuclides including cesium, strontium and cobalt, comprises two-dimensional single-layer MXene nanosheets", KR Patent 2199670-B1, 2020.
[58]
C.P. Li, Y. Cai, Z. Li, X.Y. Wen, and J.C. Zheng, "MXene/polymer composite material used as chromium (VI) adsorbent comprises MXene nanosheet and poly(4-vinylpyridine) salt", CN Patent 111518353-B, 2020.
[59]
Q.M. Peng, J.X. Guo, Q.R. Zhang, J.Y. Xiang, B.Z. Liu, A.G. Zhou, R.P. Liu, and Y.J. Tian, "Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide", J. Am. Chem. Soc., vol. 136, no. 11, pp. 4113-4116, 2014.
[http://dx.doi.org/10.1021/ja500506k] [PMID: 24588686]
[60]
W. Zhang, P.G. Zhang, W.B. Tian, and X. Qin, "Y.M. hag and Z.M. Sun,“Alkali treated Ti3C2Tx MXenes and their dye adsorption performance”", Mater. Chem. Phys., vol. 206, pp. 270-276, 2018.
[http://dx.doi.org/10.1016/j.matchemphys.2017.12.034]
[61]
P.X. Zhao, L.L. He, Y. Wang, G.Z. Yue, J. Zhu, and D.S. Huang, "Two-dimensional nano-material titanium carbide-loaded nano zero-valent iron composite material used for e.g. preparing heavy metal adsorbent, is prepared by loading nano zero-valent iron using two-dimensional nano-material titanium carbide", CN Patent 110237801-A, 2019.
[62]
J. Ma, and J.R. Ren, "Preparing organogel balls involves forming aqueous solution of MXene in aqueous solution, adding sodium alginate to formed MXene aqueous solution to obtain mixed solution, and then adding cobalt iron oxide and sodium bicarbonate", CN Patent 112973645-B, 2021.
[63]
X.L. Hu, Y.W. Xue, D.W. Zhang, and C.H. Chen, "Preparing polyaniline-sulfur nitrogen MXene/sodium alginate composite gel adsorbent useful to adsorb and remove heavy metal ions in water environment, comprises e.g. dispersing hydroxy-rich MXene into absolute ethyl alcohol, heating, and dropping ammonium persulfate solution and freeze-drying", CN Patent 113426428-B, 2021.
[64]
B.M. Jun, N. Her, C.M. Park, and Y. Yoon, "Effective removal of Pb(II) from synthetic wastewater using Ti3C2Tx MXene", Environ. Sci. Water Res. Technol., vol. 6, no. 1, pp. 173-180, 2020.
[http://dx.doi.org/10.1039/C9EW00625G]
[65]
E.R. Nightingale Jr, "Phenomenological Theory of Ion Solvation. Effective radii of hydrated ions", J. Phys. Chem., vol. 63, no. 9, pp. 1381-1387, 1959.
[http://dx.doi.org/10.1021/j150579a011]
[66]
A. Shahzad, K. Rasool, W. Miran, M. Nawaz, J. Jang, K.A. Mahmoud, and D.S. Lee, "Mercuric ion capturing by recoverable titanium carbide magnetic nanocomposite", J. Hazard. Mater., vol. 344, pp. 811-818, 2018.
[http://dx.doi.org/10.1016/j.jhazmat.2017.11.026] [PMID: 29172167]
[67]
A. Shahzad, M. Nawaz, M. Moztahida, J. Jang, K. Tahir, J. Kim, Y. Lim, V.S. Vassiliadis, S.H. Woo, and D.S. Lee, "Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions", Chem. Eng. J., vol. 368, pp. 400-408, 2019.
[http://dx.doi.org/10.1016/j.cej.2019.02.160]
[68]
X. Chen, X. Tong, J.B. Gao, L.J. Yang, J.N. Ren, and W.J. Yang, "Simultaneous Nitrite Resourcing and Mercury Ion Removal Using MXene-Anchored Goethite Heterogeneous Fenton Composite", Environ. Sci. Technol., vol. 56, no. 7, pp. 4542-4552, 2022.
[http://dx.doi.org/10.1021/acs.est.2c00786]
[69]
Q. Zhang, J. Teng, G. Zou, Q. Peng, Q. Du, T. Jiao, and J. Xiang, "Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites", Nanoscale, vol. 8, no. 13, pp. 7085-7093, 2016.
[http://dx.doi.org/10.1039/C5NR09303A] [PMID: 26961506]
[70]
J.F. Zhu, Y. Tang, C.H. Yang, F. Wang, D. Xiao, Z.J. Wang, and X. Wang, "Preparation of two-dimensional titanium carbide adsorbent for absorbing hexavalent chromium ion, involves immersing ternary-layered titanium ceramic powder in hydrogen fluoride solution, and forming two-dimensional layered nanomaterial", CN Patent 104587947-A, 2014.
[71]
K. Li, G. Zou, T. Jiao, R. Xing, L. Zhang, J. Zhou, Q. Zhang, and Q. Peng, "Self-assembled MXene-based nanocomposites via layer-by-layer strategy for elevated adsorption capacities", Colloids Surf. A Physicochem. Eng. Asp., vol. 553, pp. 105-113, 2018.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.044]
[72]
L. Wang, L. Yuan, K. Chen, Y. Zhang, Q. Deng, S. Du, Q. Huang, L. Zheng, J. Zhang, Z. Chai, M.W. Barsoum, X. Wang, and W. Shi, "Loading actinides in multilayered structures for nuclear waste treatment: The first case study of uranium capture with vanadium carbide MXene", ACS Appl. Mater. Interfaces, vol. 8, no. 25, pp. 16396-16403, 2016.
[http://dx.doi.org/10.1021/acsami.6b02989] [PMID: 27267649]
[73]
N.G. Zhou, X.Y. Zhang, X.F. Sha, and M.Y. Liu, "Preparing adsorbent comprises e.g. mixing titanium carbide and hydrofluoric acid, taking solid phase by centrifugation, dissolving MXene material, oscillating ultrasonically, sealing, stirring, centrifuging, washing and drying", CN Patent 110801819-B, 2020.
[74]
L. Wang, W. Tao, L. Yuan, Z. Liu, Q. Huang, Z. Chai, J.K. Gibson, and W. Shi, "Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment", Chem. Commun., vol. 53, no. 89, pp. 12084-12087, 2017.
[http://dx.doi.org/10.1039/C7CC06740B] [PMID: 29067363]
[75]
Y.J. Zhang, Z.J. Zhou, J.H. Lan, C.C. Ge, Z.F. Chai, P. Zhang, and W.Q. Shi, "Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene", Appl. Surf. Sci., vol. 426, pp. 572-578, 2017.
[http://dx.doi.org/10.1016/j.apsusc.2017.07.227]
[76]
L. Cheng, X. Li, H. Zhang, and Q. Xiang, "Two-dimensional transition metal mxene-based photocatalysts for solar fuel generation", J. Phys. Chem. Lett., vol. 10, no. 12, pp. 3488-3494, 2019.
[http://dx.doi.org/10.1021/acs.jpclett.9b00736] [PMID: 31184911]
[77]
Y.C. Zhu, and E. Li, "Two-dimensional transition metal carbides, carbonitrides and nitride (MXene)/cadmium sulfide composite photocatalyst used for water splitting to produce hydrogen, comprises cadmium sulfide and single-layer two-dimensional nanomaterial MXene", CN Patent 112121834-A, 2020.
[78]
W.B. Zhang, and C. Si, "Preparing trisilver phosphate/MXene composite photocatalyst used in photocatalytic material comprises e.g. dispersing MXene in water, dispersing silver nitrate in water, adding hydrogen peroxide solution, and performing in-situ oxidation reaction to grow trisilver phosphate tetrahedrons", CN Patent 113546657-A, 2021.
[79]
Y. Gao, L. Wang, A. Zhou, Z. Li, J. Chen, H. Bala, Q. Hu, and X. Cao, "Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity", Mater. Lett., vol. 150, pp. 62-64, 2015.
[http://dx.doi.org/10.1016/j.matlet.2015.02.135]
[80]
Q.H. Zhang, Y. Hu, X. Han, H.Z. Wang, Y.G. Li, and C.Y. Hou, "Preparing carbon-nitrogen co-doped nano titanium dioxide photocatalyst, comprises e.g. adding MAX phase in acid solution, centrifuging, washing, drying and grinding to obtain powder, calcining, grinding and then nitriding", CN Patent 109794281-A, 2019.
[81]
S.T. Cai, L. Yuan, Z. Wu, S.J. Zeng, J.X. Luo, Z.Y. Wu, and Y.X. Dai, "Preparing a metal-supported MXene/carbon nitride heterogeneous microsphere photocatalyst for catalytic degradation of p-nitrophenol involves mixing the MXene nanosheet dispersion and carbon nitride nanosheet dispersion uniformly in proportion to obtain a MXene carbon nitride mixed solution", CN Patent 114308108-A, 2022.
[82]
C.Q. Zhang, G. Chen, F. Ji, Y.Y. Shen, J. Peng, and Y.H. Mi, "Composite photocatalyst in degradation of organic pollutants, comprises substrate and photocatalytic material layer on substrate, where substrate comprises silica, photocatalytic material layer comprises MXene connected to metal ions", CN Patent 113083342-A, 2021.
[83]
X. Wang, L.Q. Yang, and Z.H. Chen, "Zinc indium sulfide/MXene quantum dots composite photocatalyst used field of photocatalysis for photocatalytic hydrogen evolution materials, includes MXene quantum dots and zinc indium sulfide", CN Patent 112844412-A, 2021.
[84]
L. Ding, S. Zeng, W. Zhang, C. Guo, X. Chen, B. Peng, Z. Lv, H. Zhou, and Q. Xu, "Nitrogen-doped Ti3C2 MXene quantum dots/1D CdS nanorod heterostructure photocatalyst of highly efficient hydrogen evolution", ACS Appl. Energy Mater., vol. 5, no. 9, pp. 11540-11552, 2022.
[http://dx.doi.org/10.1021/acsaem.2c02001]
[85]
S. Chen, C.Y. Yuan, Q. Zhang, G.L. Wie, and X. Quan, "Preparing self-supporting MXene rigid separation membrane comprises hot-pressing mixed powder of MXene and metal inorganic salt to form film and obtaining self-supporting MXene rigid separation membrane", CN Patent 114247306-A, 2021.
[86]
L. Ding, L. Li, Y. Liu, Y. Wu, Z. Lu, J. Deng, Y. Wei, J. Caro, and H. Wang, "Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater", Nat. Sustain., vol. 3, no. 4, pp. 296-302, 2020.
[http://dx.doi.org/10.1038/s41893-020-0474-0]
[87]
T. Tian, "Preparing modified nanofiltration membrane based on MXene-TiO2 used in seawater desalination technology, involves performing pre-treatment, and spraying MXene-titanium dioxide solution uniformly on polysulfone ultrafiltration membrane", CN Patent 113578065-A, 2021.
[88]
Y.Y. Wei, Z. Lu, H.H. Wang, L.B. Li, and J.J. Deng, "Preparation of two-dimensional self-crosslinking MXene film used in ion separation and seawater desalination comprises self-crosslinking two-dimensional MXene film", CN Patent 109569319-B, 2019.
[89]
X. Ma, X. Zhu, C. Huang, and J. Fan, "Revealing the effects of terminal groups of MXene on the water desalination performance", J. Membr. Sci., vol. 647, no. 120334, p. 120334, 2022.
[http://dx.doi.org/10.1016/j.memsci.2022.120334]
[90]
C.E. Ren, M. Alhabeb, B.W. Byles, M.Q. Zhao, B. Anasori, E. Pomerantseva, K.A. Mahmoud, and Y. Gogotsi, "Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes", ACS Appl. Nano Mater., vol. 1, no. 7, pp. 3644-3652, 2018.
[http://dx.doi.org/10.1021/acsanm.8b00762]
[91]
X.F. Chen, H.T. Huang, and G. Simon, "Preparation of microporous channel membrane used for e.g. ion screening, involves dissolving lithium fluoride in hydrochloric acid, adding titanium-aluminum carbide, heating, ultrasonically reacting, centrifuging, taking supernatant, diluting, performing vacuum filtration and calcining", CN Patent 113772619-A, 2020.
[92]
J. Ma, "Preparing titanium-MXene-derived sodium titanium phosphate/graphene composite material used in hybrid capacitive deionization technology, by mixing titanium carbide and graphene to form solution, adding hydrogen peroxide and sodium acetate, stirring, hydrothermally heating, washing, and annealing", CN Patent 113213598-A, 2021.
[93]
R. Li, L. Zhang, L. Shi, and P. Wang, "MXene Ti3C2: An effective 2D light-to-heat conversion material", ACS Nano, vol. 11, no. 4, pp. 3752-3759, 2017.
[http://dx.doi.org/10.1021/acsnano.6b08415] [PMID: 28339184]
[94]
J. Zhao, Y. Yang, C. Yang, Y. Tian, Y. Han, J. Liu, X. Yin, and W. Que, "A hydrophobic surface enabled salt-blocking 2D Ti3C2 M Xene membrane for efficient and stable solar desalination", J. Mater. Chem. A Mater. Energy Sustain., vol. 6, no. 33, pp. 16196-16204, 2018.
[http://dx.doi.org/10.1039/C8TA05569F]
[95]
L. Ding, Y. Wei, Y. Wang, H. Chen, J. Caro, and H. Wang, "A two-dimensional lamellar membrane: MXene nanosheet stacks", Angew. Chem. Int. Ed., vol. 56, no. 7, pp. 1825-1829, 2017.
[http://dx.doi.org/10.1002/anie.201609306] [PMID: 28071850]
[96]
R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, and K.A. Mahmoud, "Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets", J. Mater. Chem. A Mater. Energy Sustain., vol. 6, no. 8, pp. 3522-3533, 2018.
[http://dx.doi.org/10.1039/C7TA10888E]
[97]
M.B. Wu, H. Ye, S.C. Liu, L.L. Ma, and J.M. Yao, "Preparation of Mxene membrane adsorption material based on polyamidoxime by treating raw materials with hydrogen fluoride, soaking in dimethylsulfoxide solution, soaking film in polyamidoxime solution, vacuum filtering, and drying", CN Patent 112973653-B, 2021.
[98]
K.M. Kang, D.W. Kim, C.E. Ren, K.M. Cho, S.J. Kim, J.H. Choi, Y.T. Nam, Y. Gogotsi, and H.T. Jung, "Selective molecular separation on Ti3C2Tx –graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes", ACS Appl. Mater. Interfaces, vol. 9, no. 51, pp. 44687-44694, 2017.
[http://dx.doi.org/10.1021/acsami.7b10932] [PMID: 29098847]
[99]
M. Li, Y.J. Yao, X. Zhang, and L.J. Wang, "Nanomaterials for enhancing thin-film composite: design, fabrication, and application", Chem. Ind. Prog, vol. 38, no. 1, pp. 365-381, 2019.
[100]
G.Y. Zeng, J. Yan, D.L. Yang, X.D. Zeng, K. Wei, S.J. He, Y.Q. Zhan, J. Zhang, X.Y. Wan, and Q.B. Yang, "Preparing reduced grapheme oxide/MXene composite film useful in industrial wastewater treatment comprises e.g. adding titanium aluminum carbide and lithium fluoride powder, centrifuging, and ultrasonicating at room temperature", CN Patent 110975655-B, 2019.
[101]
T. Li, W. Wang, and H. Wang, "Preparing two-dimensional MXene/carbon quantum dot composite film used in industrial wastewater treatment, involves dissolving lithium fluoride in hydrochloric acid solution, adding titanium-aluminum carbide powder and stirring and reacting", CN Patent 114272763-A, 2021.
[102]
J. Xiang, X. Wang, M. Ding, X. Tang, S. Zhang, X. Zhang, and Z. Xie, "The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance", Chemosphere, vol. 294, no. 133728, p. 133728, 2022.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133728] [PMID: 35085609]
[103]
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, and K.A. Mahmoud, "Antibacterial activity of Ti3C2Tx MXene", ACS Nano, vol. 10, no. 3, pp. 3674-3684, 2016.
[http://dx.doi.org/10.1021/acsnano.6b00181] [PMID: 26909865]
[104]
X. Zhou, Y.F. Zheng, Q.L. Jia, and F.R. Zhang, "Advances in antibacterial research based on two-dimensional nanomaterials", Mater. Des., vol. 49, no. 1, pp. 55-64, 2021.
[105]
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, and Y. Gogotsi, "Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets", Sci. Rep., vol. 7, no. 1, p. 1598, 2017.
[http://dx.doi.org/10.1038/s41598-017-01714-3] [PMID: 28487521]
[106]
X. Cheng, J. Liao, Y. Xue, Q. Lin, Z. Yang, G. Yan, G. Zeng, and A. Sengupta, "Ultrahigh-flux and self-cleaning composite membrane based on BiOCl-PPy modified MXene nanosheets for contaminants removal from wastewater", J. Membr. Sci., vol. 644, p. 120188, 2022.
[http://dx.doi.org/10.1016/j.memsci.2021.120188]
[107]
P.A. Rasheed, R.P. Pandey, K. Rasool, and K.A. Mahmoud, "Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode", Sens. Actuators B Chem., vol. 265, pp. 652-659, 2018.
[http://dx.doi.org/10.1016/j.snb.2018.03.103]
[108]
X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu, and J. Yang, "Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II)", Electrochim. Acta, vol. 248, pp. 46-57, 2017.
[http://dx.doi.org/10.1016/j.electacta.2017.07.084]
[109]
H. Liu, C. Duan, C. Yang, W. Shen, F. Wang, and Z. Zhu, "A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2", Sens. Actuators B Chem., vol. 218, pp. 60-66, 2015.
[http://dx.doi.org/10.1016/j.snb.2015.04.090]
[110]
R. Zhang, J. Liu, and Y. Li, "MXene with great adsorption ability toward organic dye: An excellent material for constructing a ratiometric electrochemical sensing platform", ACS Sens., vol. 4, no. 8, pp. 2058-2064, 2019.
[http://dx.doi.org/10.1021/acssensors.9b00654] [PMID: 31264407]
[111]
Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)", Desalination, vol. 228, no. 1-3, pp. 10-29, 2008.
[http://dx.doi.org/10.1016/j.desal.2007.08.005]
[112]
X. Xie, M.Q. Zhao, B. Anasori, K. Maleski, C.E. Ren, J. Li, B.W. Byles, E. Pomerantseva, G. Wang, and Y. Gogotsi, "Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices", Nano Energy, vol. 26, pp. 513-523, 2016.
[http://dx.doi.org/10.1016/j.nanoen.2016.06.005]
[113]
M.D. Levi, M.R. Lukatskaya, S. Sigalov, M. Beidaghi, N. Shpigel, L. Daikhin, D. Aurbach, M.W. Barsoum, and Y. Gogotsi, "Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements", Adv. Energy Mater., vol. 5, no. 1, p. 1400815, 2015.
[http://dx.doi.org/10.1002/aenm.201400815]
[114]
M.E. Suss, and V. Presser, "Water desalination with energy storage electrode materials", Joule, vol. 2, no. 1, pp. 10-15, 2018.
[http://dx.doi.org/10.1016/j.joule.2017.12.010]
[115]
P. Srimuk, F. Kaasik, B. Krüner, A. Tolosa, S. Fleischmann, N. Jäckel, M.C. Tekeli, M. Aslan, M.E. Suss, and V. Presser, "MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization", J. Mater. Chem. A Mater. Energy Sustain., vol. 4, no. 47, pp. 18265-18271, 2016.
[http://dx.doi.org/10.1039/C6TA07833H]
[116]
W. Bao, X. Tang, X. Guo, S. Choi, C. Wang, Y. Gogotsi, and G. Wang, "Porous cryo-dried MXene for efficient capacitive deionization", Joule, vol. 2, no. 4, pp. 778-787, 2018.
[http://dx.doi.org/10.1016/j.joule.2018.02.018]
[117]
P. Srimuk, J. Halim, J. Lee, Q. Tao, J. Rosen, and V. Presser, "Two-Dimensional Molybdenum Carbide (MXene) with divacancy ordering for brackish and seawater desalination via cation and anion intercalation", ACS Sustain. Chem.& Eng., vol. 6, no. 3, pp. 3739-3747, 2018.
[http://dx.doi.org/10.1021/acssuschemeng.7b04095]
[118]
L. Guo, X. Wang, Z.Y. Leong, R. Mo, L. Sun, and H.Y. Yang, "Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination", FlatChem, vol. 8, pp. 17-24, 2018.
[http://dx.doi.org/10.1016/j.flatc.2018.01.001]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy