Generic placeholder image

Current Aging Science

Editor-in-Chief

ISSN (Print): 1874-6098
ISSN (Online): 1874-6128

Review Article

Non-coding RNAs as Biomarkers for Survival in Colorectal Cancer Patients

Author(s): Mohammad Qasim Andrabi, Yasodha Kesavan and Satish Ramalingam*

Volume 17, Issue 1, 2024

Published on: 04 April, 2023

Page: [5 - 15] Pages: 11

DOI: 10.2174/1874609816666230202101054

Price: $65

Abstract

Colorectal cancer (CRC) has a high incidence and fatality rate worldwide. It ranks second concerning death worldwide. Cancer patients are diagnosed with the disease at a later stage due to the absence of early diagnostic methods, which leads to increased death. With the help of recent advancements in the fields of diagnosis and therapy, the development of novel methods using new targets could be helpful for the long-term survival of CRC patients when CRC is detected early. However, the prognosis for the advanced stage of CRC is abysmal. New biomarkers are emerging as promising alternatives since they can be utilized for early detection of CRC, are simple to use, and non-invasive. Non-coding RNAs (ncRNAs) have been seen to have an aberrant expression in the development of many malignancies, including CRC. In the past two decades, much research has been done on non-coding RNAs, which may be valuable as biomarkers and targets for antitumor therapy. Non-coding RNAs can be employed in detecting and treating CRC. Non-coding RNAs play an essential role in regulating gene expression. This article reviews ncRNAs and their expression levels in CRC patients that could be used as potential biomarkers. Various ncRNAs have been associated with CRC, such as microRNAs, long non-coding RNAs, circular RNAs, etc. The expression of these non-coding RNAs may provide insights into the stages of cancer and the prognosis of cancer patients and therefore proper precautionary measures can be taken to decrease cancer-related deaths.

Graphical Abstract

[1]
Yamashita R, Long J, Longacre T, et al. Deep learning model for the prediction of microsatellite instability in colorectal cancer: A diagnostic study. Lancet Oncol 2021; 22(1): 132-41.
[http://dx.doi.org/10.1016/S1470-2045(20)30535-0] [PMID: 33387492]
[2]
Muzny DM, Bainbridge MN, Chang K, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487(7407): 330-7.
[http://dx.doi.org/10.1038/nature11252] [PMID: 22810696]
[3]
Zhou XY, Luo B, Jiang ZK, et al. Non-coding RNAS and colorectal cancer liver metastasis. Mol Cell Biochem 2020; 475(1-2): 151-9.
[http://dx.doi.org/10.1007/s11010-020-03867-8] [PMID: 32767228]
[4]
Ogunwobi OO, Mahmood F, Akingboye A. Biomarkers in colorectal cancer: Current research and future prospects. Int J Mol Sci 2020; 21(15): 5311.
[http://dx.doi.org/10.3390/ijms21155311] [PMID: 32726923]
[5]
Campos-da-Paz M, Dórea JG, Galdino AS, Lacava ZGM, de Fatima MASM. Carcinoembryonic antigen (CEA) and hepatic metastasis in colorectal cancer: Update on biomarker for clinical and biotechnological approaches. Recent Pat Biotechnol 2018; 12(4): 269-79.
[http://dx.doi.org/10.2174/1872208312666180731104244] [PMID: 30062978]
[6]
Yang G, Lu X, Yuan L. LncRNA: A link between RNA and cancer. Biochim Biophys Acta Gene Regul Mech 2014; 1839(11): 1097-109.
[http://dx.doi.org/10.1016/j.bbagrm.2014.08.012] [PMID: 25159663]
[7]
Kung JTY, Colognori D, Lee JT. Long noncoding RNAs: Past, present, and future. Genetics 2013; 193(3): 651-69.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[8]
Lei B, Tian Z, Fan W, Ni B. Circular RNA: A novel biomarker and therapeutic target for human cancers. Int J Med Sci 2019; 16(2): 292-301.
[http://dx.doi.org/10.7150/ijms.28047] [PMID: 30745810]
[9]
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[10]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[11]
Sati S, Ghosh S, Jain V, Scaria V, Sengupta S. Genome-wide analysis reveals distinct patterns of epigenetic features in long non-coding RNA loci. Nucleic Acids Res 2012; 40(20): 10018-31.
[http://dx.doi.org/10.1093/nar/gks776] [PMID: 22923516]
[12]
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20(8): 629-51.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[13]
Macfarlane L-A, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics 2010; 11(7): 537-61.
[http://dx.doi.org/10.2174/138920210793175895] [PMID: 21532838]
[14]
Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform 2014; 15(1): 1-19.
[http://dx.doi.org/10.1093/bib/bbs075] [PMID: 23175680]
[15]
Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014; 505(7483): 344-52.
[http://dx.doi.org/10.1038/nature12986] [PMID: 24429633]
[16]
Yao R, Zou H, Liao W. Prospect of circular RNA in hepatocellular carcinoma: A novel potential biomarker and therapeutic target. Front Oncol 2018; 8: 332.
[http://dx.doi.org/10.3389/fonc.2018.00332] [PMID: 30191143]
[17]
Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 2013; 19(2): 141-57.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[18]
Yin Y, Long J, He Q, et al. Emerging roles of circRNA in formation and progression of cancer. J Cancer 2019; 10(21): 5015-21.
[http://dx.doi.org/10.7150/jca.30828] [PMID: 31602252]
[19]
Zhang M, Xin Y. Circular RNAs: A new frontier for cancer diagnosis and therapy. J Hematol Oncol 2018; 11(1): 21.
[http://dx.doi.org/10.1186/s13045-018-0569-5] [PMID: 29433541]
[20]
Mannoor K, Liao J, Jiang F. Small nucleolar RNAs in cancer. Biochim Biophys Acta Rev Cancer 2012; 1826(1): 121-8.
[http://dx.doi.org/10.1016/j.bbcan.2012.03.005] [PMID: 22498252]
[21]
Dhamodharan S, Rose MM, Chakkarappan SR, et al. Genetic variant rs10251977 (G > A) in EGFR-AS1 modulates the expression of EGFR isoforms A and D. Sci Rep 2021; 11(1): 8808.
[http://dx.doi.org/10.1038/s41598-021-88161-3] [PMID: 33888812]
[22]
Huang L, Liang XZ, Deng Y, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract 2020; 216(6): 152937.
[http://dx.doi.org/10.1016/j.prp.2020.152937] [PMID: 32312483]
[23]
Iwasaki YW, Siomi MC, Siomi H. PIWI-interacting RNA: Its biogenesis and functions. Annu Rev Biochem 2015; 84(1): 405-33.
[http://dx.doi.org/10.1146/annurev-biochem-060614-034258] [PMID: 25747396]
[24]
Chalbatani GM, Dana H, Memari F, et al. Biological function and molecular mechanism of piRNA in cancer. Pract Lab Med 2019; 13: e00113.
[http://dx.doi.org/10.1016/j.plabm.2018.e00113] [PMID: 30705933]
[25]
Chu H, Hui G, Yuan L, et al. Identification of novel piRNAs in bladder cancer. Cancer Lett 2015; 356(2): 561-7.
[http://dx.doi.org/10.1016/j.canlet.2014.10.004] [PMID: 25305452]
[26]
Peng L, Song L, Liu C, et al. piR-55490 inhibits the growth of lung carcinoma by suppressing mTOR signaling. Tumour Biol 2016; 37(2): 2749-56.
[http://dx.doi.org/10.1007/s13277-015-4056-0] [PMID: 26408181]
[27]
Ji Q, Zhang L, Liu X, et al. Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex. Br J Cancer 2014; 111(4): 736-48.
[http://dx.doi.org/10.1038/bjc.2014.383] [PMID: 25025966]
[28]
Zheng HT, Shi DB, Wang YW, et al. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int J Clin Exp Pathol 2014; 7(6): 3174-81.
[PMID: 25031737]
[29]
Jin L, Pan YL, Zhang J, Cao PG. LncRNA HOTAIR recruits SNAIL to inhibit the transcription of HNF4α and promote the viability, migration, invasion and EMT of colorectal cancer. Transl Oncol 2021; 14(4): 101036.
[http://dx.doi.org/10.1016/j.tranon.2021.101036] [PMID: 33588137]
[30]
Zhang Z, Zhou C, Chang Y, et al. Long non-coding RNA CASC11 interacts with hnRNP-K and activates the WNT/β-catenin pathway to promote growth and metastasis in colorectal cancer. Cancer Lett 2016; 376(1): 62-73.
[http://dx.doi.org/10.1016/j.canlet.2016.03.022] [PMID: 27012187]
[31]
Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, et al. Colon cancer associated transcript-1: A novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 2012; 130(7): 1598-606.
[http://dx.doi.org/10.1002/ijc.26170] [PMID: 21547902]
[32]
Yang C, Pan Y, Deng SP. Downregulation of lncRNA CCAT1 enhances 5-fluorouracil sensitivity in human colon cancer cells. BMC Mol Cell Biol 2019; 20(1): 9.
[http://dx.doi.org/10.1186/s12860-019-0188-1] [PMID: 31039730]
[33]
Zhang Y, Sun J, Qi Y, et al. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging 2020; 12(7): 6191-205.
[http://dx.doi.org/10.18632/aging.103016] [PMID: 32248186]
[34]
Han D, Gao X, Wang M, et al. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 2016; 7(16): 22159-73.
[http://dx.doi.org/10.18632/oncotarget.8063] [PMID: 26989025]
[35]
Chen R, Zhou S, Chen J, Lin S, Ye F, Jiang P. Lncrna blacat1/mir-519d-3p/creb1 axis mediates proliferation, apoptosis, migration, invasion, and drug-resistance in colorectal cancer progression. Cancer Manag Res 2020; 12: 13137-48.
[http://dx.doi.org/10.2147/CMAR.S274447] [PMID: 33376405]
[36]
Fan H, Zhu J, Yao X. Long non-coding RNA PVT1 as a novel potential biomarker for predicting the prognosis of colorectal cancer. Int J Biol Markers 2018; 33(4): 415-22.
[http://dx.doi.org/10.1177/1724600818777242] [PMID: 29888675]
[37]
Duan W, Kong X, Li J, et al. LncRNA AC010789.1 promotes colorectal cancer progression by targeting microrna-432-3p/zeb1 axis and the wnt/β-catenin signaling pathway. Front Cell Dev Biol 2020; 8: 565355.
[http://dx.doi.org/10.3389/fcell.2020.565355] [PMID: 33178684]
[38]
Yang P, Li J, Peng C, et al. TCONS_00012883 promotes proliferation and metastasis via DDX3/YY1/MMP1/PI3KAKT axis in colorectal cancer. Clin Transl Med 2020; 10(6): e211.
[http://dx.doi.org/10.1002/ctm2.211] [PMID: 33135346]
[39]
Tang Y, Tang R, Tang M, et al. LncRNA DNAJC3-AS1 regulates fatty acid synthase via the egfr pathway to promote the progression of colorectal cancer. Front Oncol 2021; 10: 604534.
[http://dx.doi.org/10.3389/fonc.2020.604534] [PMID: 33604287]
[40]
Silva-Fisher JM, Dang HX, White NM, et al. Long non-coding RNA RAMS11 promotes metastatic colorectal cancer progression. Nat Commun 2020; 11(1): 2156.
[http://dx.doi.org/10.1038/s41467-020-15547-8] [PMID: 32358485]
[41]
Khan MZI, Law HKW. RAMS11 promotes CRC through mTOR-dependent inhibition of autophagy, suppression of apoptosis, and promotion of epithelial-mesenchymal transition. Cancer Cell Int 2021; 21(1): 321.
[http://dx.doi.org/10.1186/s12935-021-02023-6] [PMID: 34174900]
[42]
Li C, Wang P, Du J, Chen J, Liu W, Ye K. LncRNA RAD51AS1/miR29b/c3p/NDRG2 crosstalk repressed proliferation, invasion and glycolysis of colorectal cancer. IUBMB Life 2021; 73(1): 286-98.
[http://dx.doi.org/10.1002/iub.2427] [PMID: 33314669]
[43]
Liu L, Wang HJ, Meng T, et al. RETRACTED: lncRNA GAS5 inhibits cell migration and invasion and promotes autophagy by targeting mir-222-3p via the gas5/pten-signaling pathway in CRC. Mol Ther Nucleic Acids 2019; 17: 644-56.
[http://dx.doi.org/10.1016/j.omtn.2019.06.009] [PMID: 31400607]
[44]
Zhuang L, Ding W, Ding W, Zhang Q, Xu X, Xi D. lncRNA ZNF667AS1 (NR_036521.1) inhibits the progression of colorectal cancer via regulating ANK2/JAK2 expression. J Cell Physiol 2021; 236(3): 2178-93.
[http://dx.doi.org/10.1002/jcp.30004] [PMID: 32853419]
[45]
Balacescu O, Sur D, Cainap C, et al. The impact of miRNA in colorectal cancer progression and its liver metastases. Int J Mol Sci 2018; 19(12): 3711.
[http://dx.doi.org/10.3390/ijms19123711] [PMID: 30469518]
[46]
Deng S, Wang H, Fan H, et al. Over-expressed miRNA-200b ameliorates ulcerative colitis-related colorectal cancer in mice through orchestrating epithelial-mesenchymal transition and inflammatory responses by channel of AKT2. Int Immunopharmacol 2018; 61: 346-54.
[http://dx.doi.org/10.1016/j.intimp.2018.06.024] [PMID: 29933193]
[47]
Michael MZ, O’ Connor SM, van Holst PNG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003; 1(12): 882-91.
[PMID: 14573789]
[48]
Li C, Yan G, Yin L, Liu T, Li C, Wang L. Prognostic roles of microRNA 143 and microRNA 145 in colorectal cancer: A meta-analysis. Int J Biol Markers 2019; 34(1): 6-14.
[http://dx.doi.org/10.1177/1724600818807492] [PMID: 30854930]
[49]
Yuan W, Sui C, Liu Q, Tang W, An H, Ma J. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer. PLoS One 2014; 9(7): e102017.
[http://dx.doi.org/10.1371/journal.pone.0102017] [PMID: 25019299]
[50]
Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun 2018; 9(1): 5395.
[http://dx.doi.org/10.1038/s41467-018-07810-w] [PMID: 30568162]
[51]
Lai X, Friedman A. Exosomal microRNA concentrations in colorectal cancer: A mathematical model. J Theor Biol 2017; 415: 70-83.
[http://dx.doi.org/10.1016/j.jtbi.2016.12.006] [PMID: 27993628]
[52]
Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci 2014; 59(1): 98-107.
[http://dx.doi.org/10.1007/s10620-013-2858-8] [PMID: 24026406]
[53]
Tsukamoto M, Iinuma H, Yagi T, Matsuda K, Hashiguchi Y. Circulating exosomal MicroRNA-21 as a biomarker in each tumor stage of colorectal cancer. Oncol 2017; 92: 360-70.
[http://dx.doi.org/10.1159/000463387]
[54]
Xu K, Liang X, Cui D, Wu Y, Shi W, Liu J. miR-1915 inhibits Bcl-2 to modulate multidrug resistance by increasing drug-sensitivity in human colorectal carcinoma cells. Mol Carcinog 2013; 52(1): 70-8.
[http://dx.doi.org/10.1002/mc.21832] [PMID: 22121083]
[55]
Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor−κb and up-regulating expression of microRNA-21. Gastroenterology 2017; 152(4): 851-866.e24.
[http://dx.doi.org/10.1053/j.gastro.2016.11.018] [PMID: 27876571]
[56]
Wu CW, Ng SSM, Dong YJ, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut 2012; 61(5): 739-45.
[http://dx.doi.org/10.1136/gut.2011.239236] [PMID: 21930727]
[57]
Wu CW, Ng SC, Dong Y, et al. Identification of microRNA-135b in stool as a potential noninvasive biomarker for colorectal cancer and adenoma. Clin Cancer Res 2014; 20(11): 2994-3002.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1750] [PMID: 24691020]
[58]
Ahmed FE, Ahmed NC, Vos PW, et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genomics Proteomics 2013; 10(3): 93-113.
[PMID: 23741026]
[59]
Shahmohamadnejad S, et al. Aberrant methylation of miR-124 upregulates DNMT3B in colorectal cancer to accelerate invasion and migration. Arch Physiol Biochem 2020; 128(6): 1503-9.
[http://dx.doi.org/10.1080/13813455.2020.1779311] [PMID: 32552060]
[60]
Sun L, Fang Y, Wang X, et al. miR-302a inhibits metastasis and cetuximab resistance in colorectal cancer by targeting NFIB and CD44. Theranostics 2019; 9(26): 8409-25.
[http://dx.doi.org/10.7150/thno.36605] [PMID: 31754405]
[61]
Qiao PF, Yao L, Zeng ZL. Catalpol mediated microRNA 34a suppresses autophagy and malignancy by regulating SIRT1 in colorectal cancer. Oncol Rep 2020; 43(4): 1053-66.
[http://dx.doi.org/10.3892/or.2020.7494] [PMID: 32323786]
[62]
Fan M, Ma X, Wang F, et al. MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b. Cancer Lett 2020; 477: 144-56.
[http://dx.doi.org/10.1016/j.canlet.2020.02.021] [PMID: 32112903]
[63]
Bleau AM, Redrado M, Nistal-Villan E, et al. miR-146a targets c-met and abolishes colorectal cancer liver metastasis. Cancer Lett 2018; 414: 257-67.
[http://dx.doi.org/10.1016/j.canlet.2017.11.008] [PMID: 29133238]
[64]
Zhou Z, Wu L, Liu Z, et al. MicroRNA-214-3p targets the PLAGL2-MYH9 axis to suppress tumor proliferation and metastasis in human colorectal cancer. Aging 2020; 12(10): 9633-57.
[http://dx.doi.org/10.18632/aging.103233] [PMID: 32413870]
[65]
Ma Z, Shuai Y, Gao X, Wen X, Ji J. Circular RNAs in the tumour microenvironment. Mol Cancer 2020; 19(1): 8.
[http://dx.doi.org/10.1186/s12943-019-1113-0] [PMID: 31937318]
[66]
Guo L, Yang G, Kang Y, et al. Construction and analysis of a cerna network reveals potential prognostic markers in colorectal cancer. Front Genet 2020; 11: 418.
[http://dx.doi.org/10.3389/fgene.2020.00418] [PMID: 32457800]
[67]
He C, Huang C, Zhou R, Yu H. CircLMNB1 promotes colorectal cancer by regulating cell proliferation, apoptosis and epithelial-mesenchymal transition. OncoTargets Ther 2019; 12: 6349-59.
[http://dx.doi.org/10.2147/OTT.S204741] [PMID: 31496737]
[68]
Chen LY, Wang L, Ren YX, et al. The circular RNA circ-ERBIN promotes growth and metastasis of colorectal cancer by miR-125a-5p and miR-138-5p/4EBP-1 mediated cap-independent HIF-1α translation. Mol Cancer 2020; 19(1): 164.
[http://dx.doi.org/10.1186/s12943-020-01272-9] [PMID: 33225938]
[69]
Wu M, Kong C, Cai M, et al. Hsa_circRNA_002144 promotes growth and metastasis of colorectal cancer through regulating miR-615-5p/LARP1/mTOR pathway. Carcinogenesis 2021; 42(4): 601-10.
[http://dx.doi.org/10.1093/carcin/bgaa140] [PMID: 33347535]
[70]
Wang X, Zhang Y, Huang L, et al. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int J Clin Exp Pathol 2015; 8(12): 16020-5.
[PMID: 26884878]
[71]
Li C, Zhou H. Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through mir761-mediated ras and rab interactor 1 signaling. Cancer Med 2020; 9(18): 6710-25.
[http://dx.doi.org/10.1002/cam4.3332] [PMID: 32706154]
[72]
Du J, Xu J, Chen J, Liu W, Wang P, Ye K. circRAE1 promotes colorectal cancer cell migration and invasion by modulating miR-338-3p/TYRO3 axis. Cancer Cell Int 2020; 20(1): 430.
[http://dx.doi.org/10.1186/s12935-020-01519-x] [PMID: 32908453]
[73]
Fang G, Ye BL, Hu BR, Ruan XJ, Shi YX. circRNA_100290 promotes colorectal cancer progression through miR-516b-induced downregulation of FZD4 expression and Wnt/β-catenin signaling. Biochem Biophys Res Commun 2018; 504(1): 184-9.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.152] [PMID: 30173892]
[74]
Pan B, Qin J, Liu X, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet 2019; 10: 1096.
[http://dx.doi.org/10.3389/fgene.2019.01096] [PMID: 31737058]
[75]
Zhang L, Dong X, Yan B, Yu W, Shan L. circAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis 2020; 11(7): 542.
[http://dx.doi.org/10.1038/s41419-020-2707-6] [PMID: 32681092]
[76]
Wang X, Ren Y, Ma S, Wang S. Circular rna 0060745, a novel circrna, promotes colorectal cancer cell proliferation and metastasis through mir-4736 sponging. OncoTargets Ther 2020; 13: 1941-51.
[http://dx.doi.org/10.2147/OTT.S240642] [PMID: 32273712]
[77]
Zeng W, Liu Y, Li WT, Li Y, Zhu JF. circFNDC3B sequestrates miR9375p to derepress TIMP3 and inhibit colorectal cancer progression. Mol Oncol 2020; 14(11): 2960-84.
[http://dx.doi.org/10.1002/1878-0261.12796] [PMID: 32896063]
[78]
Yuan Y, Liu W, Zhang Y, Zhang Y, Sun S. CircRNA circ_0026344 as a prognostic biomarker suppresses colorectal cancer progression via microRNA-21 and microRNA-31. Biochem Biophys Res Commun 2018; 503(2): 870-5.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.089] [PMID: 29928882]
[79]
Zhang X, Zhao Y, Kong P, Han M, Li B. Expression of circZNF609 is down-regulated in colorectal cancer tissue and promotes apoptosis in colorectal cancer cells by upregulating p53. Med Sci Monit 2019; 25: 5977-85.
[http://dx.doi.org/10.12659/MSM.915926] [PMID: 31401644]
[80]
Mai D, Ding P, Tan L, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics 2018; 8(19): 5213-30.
[http://dx.doi.org/10.7150/thno.28001] [PMID: 30555542]
[81]
Weng W, Liu N, Toiyama Y, et al. Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer 2018; 17(1): 16.
[http://dx.doi.org/10.1186/s12943-018-0767-3] [PMID: 29382334]
[82]
Qu A, Wang W, Yang Y, et al. A serum piRNA signature as promising non-invasive diagnostic and prognostic biomarkers for colorectal cancer. Cancer Manag Res 2019; 11: 3703-20.
[http://dx.doi.org/10.2147/CMAR.S193266] [PMID: 31118791]
[83]
Yoshida K, Toden S, Weng W, et al. SNORA21 - An oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. EBioMedicine 2017; 22: 68-77.
[http://dx.doi.org/10.1016/j.ebiom.2017.07.009] [PMID: 28734806]
[84]
Okugawa Y, Toiyama Y, Toden S, et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut 2017; 66(1): 107-17.
[http://dx.doi.org/10.1136/gutjnl-2015-309359] [PMID: 26475630]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy