Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Role of Apoptotic-targeted Phytoconstitutent-loaded Antipsoriatic Nanobiocomposites

Author(s): Pankaj Singh Patel, Rajnish Srivastava and Sunita Panchawat*

Volume 18, Issue 2, 2024

Published on: 27 February, 2023

Page: [220 - 236] Pages: 17

DOI: 10.2174/1872210517666230201103935

Price: $65

Abstract

Psoriasis is an inflammatory and proliferative autoimmune dermatological disorder. It is a skin ailment that is defined by particular, drab-red or peach-pink stiff areas with silvery scales patches. Other typical characteristics include the proliferation of epidermal layer, aberrant keratinization, hyperkeratosis, increased micro capillary vascularization, and infiltration of inflammatory mediator loaded cells. Conventional pharmacotherapies currently available can only provide minor advantages. Nanomedicines based on nanotechnology can potentially improve the efficacy and safety of psoriasis medications. Apoptosis plays an important pathogenetic role in many chronic inflammatory diseases, including those of dermatological interest, in particular, regarding psoriasis. In this regard, treatments with antioxidant properties could be appropriate therapeutic options. We reviewed the available studies on the efficacy of antiapoptotic therapies in psoriasis. We'll look at phytochemicals in this review, which are natural components found in plants with antiapoptotic activity that are frequently used to treat psoriasis. For improved topical treatment, we also take into consideration the advantages of loading phytoconstituents as medicines into lipid based nanocarriers. The utilization of herbal nanomedicines in psoriasis, as well as nano delivery carrier system for phytoconstituents with improved therapeutic profiles and decreased toxicity, are the subjects of this review. The study's purpose is to find more effective herbal nanomedicines for treating psoriasis. In the treatment of psoriasis, phytoconstituents that have shown antipsoriatic potential in recent years, as well as phytoconstituents loaded based nanomedicines, have a lot of promising roles to be explored. Furthermore, very few patents have been found in the field of nanotechnology utilizing lipid-based nanocarrier system for the treatment of psoriasis. Therefore, this review greatly compels the researcher to validate the process development of lipid-based drug delivery system for the patentability of the product. This should be in a view of shifting in the applicability of the drug delivery system for general public health as a potential treatment option in psoriasis.

Graphical Abstract

[1]
Griffiths CEM, van der Walt JM, Ashcroft DM, et al. The global state of psoriasis disease epidemiology: A workshop report. Br J Dermatol 2017; 177(1): e4-7.
[http://dx.doi.org/10.1111/bjd.15610] [PMID: 28555722]
[2]
World Health Organization. Global Report on Psoriasis Genova: World Health Organization. 2016. Available from: https://apps.who.int/iris/handle/10665/204417
[3]
Lima XT, Minnillo R, Spencer JM, Kimball AB. Psoriasis prevalence among the 2009 aad national melanoma/skin cancer screening program participants. J Eur Acad Dermatol Venereol 2013; 27(6): 680-5.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04531.x] [PMID: 22471885]
[4]
Min C, Kim M, Oh DJ, Choi HG. Bidirectional association between psoriasis and depression: Two longitudinal follow-up studies using a national sample cohort. J Affect Disord 2020; 262: 126-32.
[http://dx.doi.org/10.1016/j.jad.2019.10.043] [PMID: 31733456]
[5]
Na CH, Chung J, Simpson EL. Quality of life and disease impact of atopic dermatitis and psoriasis on children and their families. Children 2019; 6(12): 133.
[http://dx.doi.org/10.3390/children6120133] [PMID: 31810362]
[6]
Parnami N, Garg T, Rath G, Goyal AK. Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif Cells Nanomed Biotechnol 2014; 42(6): 406-12.
[http://dx.doi.org/10.3109/21691401.2013.837474] [PMID: 24079701]
[7]
Mabuchi T, Chang TW, Quinter S, Hwang ST. Chemokine receptors in the pathogenesis and therapy of psoriasis. J Dermatol Sci 2012; 65(1): 4-11.
[http://dx.doi.org/10.1016/j.jdermsci.2011.11.007] [PMID: 22177422]
[8]
Ahmad U, Ahmad Z, Khan A, Akhtar J, Singh S, Ahmad F. Strategies in development and delivery of nanotechnology based cosmetic products. Drug Res 2018; 68(10): 545-52.
[http://dx.doi.org/10.1055/a-0582-9372] [PMID: 29579762]
[9]
Yosita K, Wanna C, Kesara NB. Herbal medicine for psoriasis and their molecular targets: A systematic review. Afr J Pharm Pharmacol 2022; 16(3): 27-52.
[http://dx.doi.org/10.5897/AJPP2022.5292]
[10]
Rahman M, Alam K, Ahmad MZ, et al. Classical to current approach for treatment of psoriasis: A review. Endocr Metab Immune Disord Drug Targets 2012; 12(3): 287-302.
[http://dx.doi.org/10.2174/187153012802002901] [PMID: 22463723]
[11]
Ma Z, Zhang B, Fan Y, et al. Traditional chinese medicine combined with hepatic targeted drug delivery systems: A new strategy for the treatment of liver diseases. Biomed Pharmacother 2019; 117: 109128.
[http://dx.doi.org/10.1016/j.biopha.2019.109128] [PMID: 31234023]
[12]
Pradhan M, Alexander A, Singh MR, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018; 107: 447-63.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[13]
Abdelgawad R, Nasr M, Moftah NH, Hamza MY. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur J Pharm Sci 2017; 101: 258-68.
[http://dx.doi.org/10.1016/j.ejps.2017.02.030] [PMID: 28232140]
[14]
Öztürk AA. Kıyan HT. Treatment of oxidative stress-induced pain and inflammation with dexketoprofen trometamol loaded different molecular weight chitosan nanoparticles: Formulation, characterization and anti-inflammatory activity by using in vivo HET-CAM assay. Microvasc Res 2020; 128: 103961.
[http://dx.doi.org/10.1016/j.mvr.2019.103961] [PMID: 31758946]
[15]
Itoh T, Hatano R, Komiya E, et al. Biological effects of il-26 on t cell–mediated skin inflammation, including psoriasis. J Invest Dermatol 2019; 139(4): 878-89.
[http://dx.doi.org/10.1016/j.jid.2018.09.037] [PMID: 30423328]
[16]
Boehncke WH, Brembilla NC. Unmet needs in the field of psoriasis: Pathogenesis and treatment. Clin Rev Allergy Immunol 2018; 55(3): 295-311.
[http://dx.doi.org/10.1007/s12016-017-8634-3] [PMID: 28780731]
[17]
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32(1): 227-55.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[18]
Fuentes-Duculan J, Suárez-Fariñas M, Zaba LC, et al. A subpopulation of CD163-positive macrophages is classically activated in psoriasis. J Invest Dermatol 2010; 130(10): 2412-22.
[http://dx.doi.org/10.1038/jid.2010.165] [PMID: 20555352]
[19]
Song HS, Kim SJ, Park TI, Jang YH, Lee ES. Immunohistochemical comparison of il-36 and the il-23/th17 axis of generalized pustular psoriasis and acute generalized exanthematous pustulosis. Ann Dermatol 2016; 28(4): 451-6.
[http://dx.doi.org/10.5021/ad.2016.28.4.451] [PMID: 27489427]
[20]
Chiricozzi A, Romanelli P, Volpe E, Borsellino G, Romanelli M. Scanning the immunopathogenesis of psoriasis. Int J Mol Sci 2018; 19(1): 179.
[http://dx.doi.org/10.3390/ijms19010179] [PMID: 29316717]
[21]
Han G, Havnaer A, Lee HH, Carmichael DJ, Martinez LR. Biological depletion of neutrophils attenuates pro-inflammatory markers and the development of the psoriatic phenotype in a murine model of psoriasis. Clin Immunol 2020; 210: 108294.
[http://dx.doi.org/10.1016/j.clim.2019.108294] [PMID: 31678366]
[22]
Zhu Z, Chen J, Lin Y, et al. Aryl hydrocarbon receptor in cutaneous vascular endothelial cells restricts psoriasis development by negatively regulating neutrophil recruitment. J Invest Dermatol 2020; 140(6): 1233-1243.e9.
[http://dx.doi.org/10.1016/j.jid.2019.11.022] [PMID: 31899186]
[23]
Gabr SA, Al-Ghadir AH. Role of cellular oxidative stress and cytochrome c in the pathogenesis of psoriasis. Arch Dermatol Res 2012; 304(6): 451-7.
[http://dx.doi.org/10.1007/s00403-012-1230-8] [PMID: 22421888]
[24]
Cheng C, Yang Z, Yin X, Huang S, Yan J, Sun Q. CircEIF5 contributes to hyperproliferation and inflammation of keratinocytes in psoriasis via p‐NFκB and p‐STAT3 signaling pathway. Exp Dermatol 2022; 31(8): 1145-53.
[http://dx.doi.org/10.1111/exd.14565] [PMID: 35288970]
[25]
Chen R, Zhai YY, Sun L, et al. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating stat3 pathway and restricting immune cell recruitment. Asian J Pharm Sci 2022; 17(2): 268-83.
[http://dx.doi.org/10.1016/j.ajps.2022.02.003]
[26]
Xie S, Su Z, Zhang B, et al. SIRT1 activation ameliorates aldara-induced psoriasiform phenotype and histology in mice. J Invest Dermatol 2015; 135(7): 1915-8.
[http://dx.doi.org/10.1038/jid.2015.82] [PMID: 25734813]
[27]
Bovenschen HJ, Langewouters AMG, van de Kerkhof PCM. Dimethylfumarate for psoriasis. Am J Clin Dermatol 2010; 11(5): 343-50.
[http://dx.doi.org/10.2165/11533240-000000000-00000] [PMID: 20553063]
[28]
Antiga E, Bonciolini V, Volpi W, Del Bianco E, Caproni M. Oral curcumin (meriva) is effective as an adjuvant treatment and is able to reduce il-22 serum levels in patients with psoriasis vulgaris. BioMed Res Int 2015; 2015: 1-7.
[http://dx.doi.org/10.1155/2015/283634] [PMID: 26090395]
[29]
Gnanaraj P, Dayalan H, Elango T, Malligarjunan H, Raghavan V, Rao R. Downregulation of involucrin in psoriatic lesions following therapy with propylthiouracil, an anti-thyroid thioureylene: Immunohistochemistry and gene expression analysis. Int J Dermatol 2015; 54(3): 302-6.
[http://dx.doi.org/10.1111/ijd.12565] [PMID: 25267471]
[30]
Visvanathan S, Baum P, Vinisko R, et al. Psoriatic skin molecular and histopathologic profiles after treatment with risankizumab versus ustekinumab. J Allergy Clin Immunol 2019; 143(6): 2158-69.
[http://dx.doi.org/10.1016/j.jaci.2018.11.042] [PMID: 30578873]
[31]
Ortiz-Salvador JM, Saneleuterio-Temporal M, Magdaleno-Tapial J, et al. A prospective multicenter study assessing effectiveness and safety of secukinumab in a real-life setting in 158 patients. J Am Acad Dermatol 2019; 81(2): 427-32.
[http://dx.doi.org/10.1016/j.jaad.2019.02.062] [PMID: 30872150]
[32]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[33]
Reczek CR, Chandel NS. ROS-dependent signal transduction. Curr Opin Cell Biol 2015; 33: 8-13.
[http://dx.doi.org/10.1016/j.ceb.2014.09.010] [PMID: 25305438]
[34]
Harrison DG. Basic science. J Am Soc Hypertens 2014; 8(8): 601-3.
[http://dx.doi.org/10.1016/j.jash.2014.07.002] [PMID: 25151322]
[35]
Péter I, Jagicza A, Ajtay Z, Kiss I, Németh B. Psoriasis and oxidative stress. Hungarian 2016; 157(45): 1781-5.
[http://dx.doi.org/10.1556/650.2016.30589]
[36]
Barygina VV, Becatti M, Soldi G, et al. Altered redox status in the blood of psoriatic patients: Involvement of NADPH oxidase and role of anti-TNF-α therapy. Redox Rep 2013; 18(3): 100-6.
[http://dx.doi.org/10.1179/1351000213Y.0000000045] [PMID: 23601139]
[37]
Becatti M, Barygina V, Mannucci A, et al. Sirt1 protects against oxidative stress-induced apoptosis in fibroblasts from psoriatic patients: A new insight into the pathogenetic mechanisms of psoriasis. Int J Mol Sci 2018; 19(6): 1572.
[http://dx.doi.org/10.3390/ijms19061572] [PMID: 29799444]
[38]
Lin X, Huang T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic Res 2016; 50(6): 585-95.
[http://dx.doi.org/10.3109/10715762.2016.1162301] [PMID: 27098416]
[39]
Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: Novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep 2018; 23(1): 130-5.
[http://dx.doi.org/10.1080/13510002.2018.1462027] [PMID: 29630472]
[40]
Houshang N, Reza K, Masoud S, Ali E, Mansour R, Vaisi-Raygani A. Antioxidant status in patients with psoriasis. Cell Biochem Funct 2014; 32(3): 268-73.
[http://dx.doi.org/10.1002/cbf.3011] [PMID: 24895696]
[41]
Lei Y, Wang K, Deng L, Chen Y, Nice EC, Huang C. Redox regulation of inflammation: Old elements, a new story. Med Res Rev 2015; 35(2): 306-40.
[http://dx.doi.org/10.1002/med.21330] [PMID: 25171147]
[42]
Georgescu SR, Tampa M, Caruntu C, et al. Advances in understanding the immunological pathways in psoriasis. Int J Mol Sci 2019; 20(3): 739.
[http://dx.doi.org/10.3390/ijms20030739] [PMID: 30744173]
[43]
Richarz NA, Boada A, Carrascosa JM. Insights of molecular mechanisms and latest developments. Actas Dermosifiliogr 2017; 108(6): 515-23.
[http://dx.doi.org/10.1016/j.ad.2016.12.001] [PMID: 28162227]
[44]
Numasaki M, Watanabe M, Suzuki T, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005; 175(9): 6177-89.
[http://dx.doi.org/10.4049/jimmunol.175.9.6177] [PMID: 16237115]
[45]
Murdaca G, Spanò F, Cagnati P, Puppo F. Free radicals and endothelial dysfunction: Potential positive effects of TNF-α inhibitors. Redox Rep 2013; 18(3): 95-9.
[http://dx.doi.org/10.1179/1351000213Y.0000000046] [PMID: 23676793]
[46]
Murdaca G, Colombo BM, Cagnati P, Gulli R, Spanò F, Puppo F. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 2012; 224(2): 309-17.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.05.013] [PMID: 22673743]
[47]
Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in skin and skin cancers. Skin Pharmacol Physiol 2017; 30(4): 216-24.
[http://dx.doi.org/10.1159/000477417] [PMID: 28704830]
[48]
Serravallo M, Jagdeo J, Glick SA, Siegel DM, Brody NI. Sirtuins in dermatology: Applications for future research and therapeutics. Arch Dermatol Res 2013; 305(4): 269-82.
[http://dx.doi.org/10.1007/s00403-013-1320-2] [PMID: 23377138]
[49]
Vachharajani VT, Liu T, Wang X, Hoth JJ, Yoza BK, McCall CE. Sirtuins Link Inflammation and Metabolism. J Immunol Res 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/8167273] [PMID: 26904696]
[50]
Zhou M, Luo J, Zhang H. Role of sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 2018; 42(1): 13-20.
[http://dx.doi.org/10.3892/ijmm.2018.3623] [PMID: 29693113]
[51]
Singh CK, Chhabra G, Ndiaye MA, Garcia-Peterson LM, Mack NJ, Ahmad N. The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 2018; 28(8): 643-61.
[http://dx.doi.org/10.1089/ars.2017.7290] [PMID: 28891317]
[52]
Blander G, Bhimavarapu A, Mammone T, et al. SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 2009; 129(1): 41-9.
[http://dx.doi.org/10.1038/jid.2008.179] [PMID: 18563176]
[53]
Wu Z, Uchi H, Morino-Koga S, Shi W, Furue M. Resveratrol inhibition of human keratinocyte proliferation via SIRT1/ARNT/ERK dependent downregulation of aquaporin 3. J Dermatol Sci 2014; 75(1): 16-23.
[http://dx.doi.org/10.1016/j.jdermsci.2014.03.004] [PMID: 24726500]
[54]
Wang Y, Huo J, Zhang D, Hu G, Zhang Y. Chemerin/ChemR23 axis triggers an inflammatory response in keratinocytes through ROS‐sirt1‐NF‐κB signaling. J Cell Biochem 2019; 120(4): 6459-70.
[http://dx.doi.org/10.1002/jcb.27936] [PMID: 30426542]
[55]
Fan X, Yan K, Meng Q, et al. Abnormal expression of SIRTs in psoriasis: Decreased expression of SIRT 1-5 and increased expression of SIRT 6 and 7. Int J Mol Med 2019; 44(1): 157-71.
[http://dx.doi.org/10.3892/ijmm.2019.4173] [PMID: 31017270]
[56]
Yan T, Huang J, Nisar MF, Wan C, Huang W. The beneficial roles of sirt1 in drug-induced liver injury. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/8506195] [PMID: 31354914]
[57]
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10-year update. Physiol Rev 2012; 92(2): 689-737.
[http://dx.doi.org/10.1152/physrev.00028.2011] [PMID: 22535895]
[58]
Corsini E, Galbiati V, Nikitovic D, Tsatsakis AM. Role of oxidative stress in chemical allergens induced skin cells activation. Food Chem Toxicol 2013; 61: 74-81.
[http://dx.doi.org/10.1016/j.fct.2013.02.038] [PMID: 23454144]
[59]
Koren Carmi I, Haj R, Yehuda H, Tamir S, Reznick AZ. The role of oxidation in FSL-1 induced signaling pathways of an atopic dermatitis model in HaCaT keratinocytes. Adv Exp Med Biol 2014; 849: 1-10.
[http://dx.doi.org/10.1007/5584_2014_98] [PMID: 25510360]
[60]
Bak DH, Lee E, Lee BC, et al. Therapeutic potential of topically administered γ-AlOOH on 2,4-dinitrochlorobenzene-induced atopic dermatitis-like lesions in Balb/c mice. Exp Dermatol 2019; 28(2): 169-76.
[http://dx.doi.org/10.1111/exd.13865] [PMID: 30566262]
[61]
Koçtürk S, Yüksel Egrilmez M, Aktan Ş. et al. Melatonin attenuates the detrimental effects of UVA irradiation in human dermal fibroblasts by suppressing oxidative damage and MAPK / AP ‐1 signal pathway in vitro. Photodermatol Photoimmunol Photomed 2019; 35(4): phpp.12456.
[http://dx.doi.org/10.1111/phpp.12456] [PMID: 30739336]
[62]
Yu XJ, Li CY, Dai HY, et al. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp Mol Pathol 2007; 83(3): 413-8.
[http://dx.doi.org/10.1016/j.yexmp.2007.05.002] [PMID: 17599830]
[63]
Johansen C, Kragballe K, Westergaard M, Henningsen J, Kristiansen K, Iversen L. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br J Dermatol 2005; 152(1): 37-42.
[http://dx.doi.org/10.1111/j.1365-2133.2004.06304.x] [PMID: 15656798]
[64]
Takahashi H, Ibe M, Nakamura S, Ishida-Yamamoto A, Hashimoto Y, Iizuka H. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J Dermatol Sci 2002; 30(2): 94-9.
[http://dx.doi.org/10.1016/S0923-1811(02)00064-6] [PMID: 12413764]
[65]
Schumacher M, Schuster C, Rogon ZM, et al. Efficient keratinocyte differentiation strictly depends on JNK-induced soluble factors in fibroblasts. J Invest Dermatol 2014; 134(5): 1332-41.
[http://dx.doi.org/10.1038/jid.2013.535] [PMID: 24335928]
[66]
Yang B, Xu B, Zhao H, et al. Dioscin protects against coronary heart disease by reducing oxidative stress and inflammation via Sirt1/Nrf2 and p38 MAPK pathways. Mol Med Rep 2018; 18(1): 973-80.
[http://dx.doi.org/10.3892/mmr.2018.9024] [PMID: 29845299]
[67]
Gu X, Cai Z, Cai M, et al. AMPK/SIRT1/p38 MAPK signaling pathway regulates alcohol induced neurodegeneration by resveratrol. Mol Med Rep 2018; 17(4): 5402-8.
[http://dx.doi.org/10.3892/mmr.2018.8482] [PMID: 29393425]
[68]
Wang T, Takikawa Y. Carnosic acid protects normal mouse hepatocytes against H2O2 ‐induced cytotoxicity via sirtuin 1‐mediated signaling. Hepatol Res 2016; 46(2): 239-46.
[http://dx.doi.org/10.1111/hepr.12563] [PMID: 26223904]
[69]
Krueger JG, Suárez-Fariñas M, Cueto I, et al. A randomized, placebo-controlled study of srt2104, a sirt1 activator, in patients with moderate to severe psoriasis. PLoS One 2015; 10(11): e0142081.
[http://dx.doi.org/10.1371/journal.pone.0142081] [PMID: 26556603]
[70]
Nguyen TT, Ung TT, Li S, et al. Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-κB activity. Sci Rep 2019; 9(1): 2003.
[http://dx.doi.org/10.1038/s41598-019-38778-2] [PMID: 30765814]
[71]
Goldminz AM, Au SC, Kim N, Gottlieb AB, Lizzul PF. NF-κB: An essential transcription factor in psoriasis. J Dermatol Sci 2013; 69(2): 89-94.
[http://dx.doi.org/10.1016/j.jdermsci.2012.11.002] [PMID: 23219896]
[72]
Hara-Chikuma M, Satooka H, Watanabe S, et al. Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nat Commun 2015; 6(1): 7454.
[http://dx.doi.org/10.1038/ncomms8454] [PMID: 26100668]
[73]
Abdou AG, Hanout HM. Evaluation of survivin and NF-κB in psoriasis, an immunohistochemical study. J Cutan Pathol 2008; 35(5): 445-51.
[http://dx.doi.org/10.1111/j.1600-0560.2007.00841.x] [PMID: 18005174]
[74]
Yang H, Zhang W, Pan H, et al. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-κB activity. PLoS One 2012; 7(9): e46364.
[http://dx.doi.org/10.1371/journal.pone.0046364] [PMID: 23029496]
[75]
Kauppinen A, Suuronen T, Ojala J, Kaarniranta K, Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal 2013; 25(10): 1939-48.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.007] [PMID: 23770291]
[76]
Sano S, Chan KS, DiGiovanni J. Impact of Stat3 activation upon skin biology: A dichotomy of its role between homeostasis and diseases. J Dermatol Sci 2008; 50(1): 1-14.
[http://dx.doi.org/10.1016/j.jdermsci.2007.05.016] [PMID: 17601706]
[77]
Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med 2009; 47(7): 891-905.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.06.033] [PMID: 19577640]
[78]
Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: How intimate is the relationship? Ann N Y Acad Sci 2009; 1171(1): 59-76.
[http://dx.doi.org/10.1111/j.1749-6632.2009.04911.x] [PMID: 19723038]
[79]
Calautti E, Avalle L, Poli V. Psoriasis: A STAT3-Centric View. Int J Mol Sci 2018; 19(1): 171.
[http://dx.doi.org/10.3390/ijms19010171] [PMID: 29316631]
[80]
Zhang B, Xie S, Su Z, et al. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of Stat3 signaling. Sci Rep 2016; 6(1): 21132.
[http://dx.doi.org/10.1038/srep21132] [PMID: 26893174]
[81]
Sestito R, Madonna S, Scarponi C, et al. STAT3‐dependent effects of IL‐22 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB J 2011; 25(3): 916-27.
[http://dx.doi.org/10.1096/fj.10-172288] [PMID: 21098725]
[82]
Liu A, Zhang B, Zhao W, Tu Y, Wang Q, Li J. Catalpol ameliorates psoriasis-like phenotypes via SIRT1 mediated suppression of NF-κB and MAPKs signaling pathways. Bioengineered 2021; 12(1): 183-95.
[http://dx.doi.org/10.1080/21655979.2020.1863015] [PMID: 33323018]
[83]
Shi HJ, Zhou H, Ma AL, et al. Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. Br J Dermatol 2019; 181(5): 1028-37.
[http://dx.doi.org/10.1111/bjd.17852] [PMID: 30822359]
[84]
Kokolakis G, Giannikaki E, Stathopoulos E, Avramidis G, Tosca AD, Krüger-Krasagakis S. Infliximab restores the balance between pro- and anti-apoptotic proteins in regressing psoriatic lesions. Br J Dermatol 2012; 166(3): 491-7.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10689.x] [PMID: 21985184]
[85]
Yu Q, Tong Y, Cui L, et al. Efficacy and safety of etanercept combined plus methotrexate and comparison of expression of pro-inflammatory factors expression for the treatment of moderate-to-severe plaque psoriasis. Int Immunopharmacol 2019; 73: 442-50.
[http://dx.doi.org/10.1016/j.intimp.2019.05.042] [PMID: 31154289]
[86]
Elango T, Thirupathi A, Subramanian S, Ethiraj P, Dayalan H, Gnanaraj P. Methotrexate treatment provokes apoptosis of proliferating keratinocyte in psoriasis patients. Clin Exp Med 2017; 17(3): 371-81.
[http://dx.doi.org/10.1007/s10238-016-0431-4] [PMID: 27435483]
[87]
Aksoy M, Kirmit A. Thiol/disulphide balance in patients with psoriasis. Postepy Dermatol Alergol 2020; 37(1): 52-5.
[http://dx.doi.org/10.5114/ada.2018.77767] [PMID: 32467684]
[88]
Shao S, Gudjonsson JE. Epigenetics of psoriasis. Adv Exp Med Biol 2020; 1253: 209-21.
[http://dx.doi.org/10.1007/978-981-15-3449-2_8] [PMID: 32445097]
[89]
Baran A, Kiluk P. Myśliwiec H, Flisiak I. The role of lipids in psoriasis. Przegl Dermatol 2017; 104(6): 619-35.
[http://dx.doi.org/10.5114/dr.2017.71834]
[90]
Magenta A, Dellambra E, Ciarapica R, Capogrossi MC. Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium 2016; 60(3): 207-17.
[http://dx.doi.org/10.1016/j.ceca.2016.04.002] [PMID: 27103406]
[91]
Perera GK, Di Meglio P, Nestle FO. Psoriasis. Annu Rev Pathol 2012; 7(1): 385-422.
[http://dx.doi.org/10.1146/annurev-pathol-011811-132448] [PMID: 22054142]
[92]
Verhasselt V, Goldman M, Willems F. Oxidative stress up-regulates IL-8 and TNF-α synthesis by human dendritic cells. Eur J Immunol 1998; 28(11): 3886-90.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199811)28:11<3886:AID-IMMU3886>3.0.CO;2-M] [PMID: 9842932]
[93]
Rutault K, Alderman C, Chain BM, Katz DR. Reactive oxygen species activate human peripheral blood dendritic cells. Free Radic Biol Med 1999; 26(1-2): 232-8.
[http://dx.doi.org/10.1016/S0891-5849(98)00194-4] [PMID: 9890657]
[94]
Jain S, Kaur IR, Das S, Bhattacharya SN, Singh A. T helper 1 to T helper 2 shift in cytokine expression: An autoregulatory process in superantigen-associated psoriasis progression? J Med Microbiol 2009; 58(2): 180-4.
[http://dx.doi.org/10.1099/jmm.0.003939-0] [PMID: 19141734]
[95]
Gostner JM, Becker K, Fuchs D, Sucher R. Redox regulation of the immune response. Redox Rep 2013; 18(3): 88-94.
[http://dx.doi.org/10.1179/1351000213Y.0000000044] [PMID: 23601165]
[96]
Campanati A, Goteri G, Simonetti O, et al. Angiogenesis in psoriatic skin and its modifications after administration of etanercept: videocapillaroscopic, histological and immunohistochemical evaluation. Int J Immunopathol Pharmacol 2009; 22(2): 371-7.
[http://dx.doi.org/10.1177/039463200902200214] [PMID: 19505391]
[97]
Nofal A, Al-Makhzangy I, Attwa E, Nassar A, Abdalmoati A. Vascular endothelial growth factor in psoriasis: An indicator of disease severity and control. J Eur Acad Dermatol Venereol 2009; 23(7): 803-6.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03181.x] [PMID: 19309427]
[98]
Armstrong AW, Voyles SV, Armstrong EJ, Fuller EN, Rutledge JC. Angiogenesis and oxidative stress: Common mechanisms linking psoriasis with atherosclerosis. J Dermatol Sci 2011; 63(1): 1-9.
[http://dx.doi.org/10.1016/j.jdermsci.2011.04.007] [PMID: 21600738]
[99]
Svendsen MT, Jeyabalan J, Andersen KE, Andersen F, Johannessen H. Worldwide utilization of topical remedies in treatment of psoriasis: A systematic review. J Dermatolog Treat 2017; 28(5): 374-83.
[http://dx.doi.org/10.1080/09546634.2016.1254331] [PMID: 27786594]
[100]
Lee SY, Nam S, Hong IK, Kim H, Yang H, Cho HJ. Antiproliferation of keratinocytes and alleviation of psoriasis by the ethanol extract of Artemisia capillaris. Phytother Res 2018; 32(5): 923-32.
[http://dx.doi.org/10.1002/ptr.6032] [PMID: 29377339]
[101]
Lee SY, Nam S, Kim S, et al. Therapeutic efficacies of Artemisia capillaris extract cream formulation in imiquimod-induced psoriasis models. Evid Based Complement Alternat Med 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/3610494] [PMID: 30210571]
[102]
Yan X, Zhang H, Dang M, Chen X. Rehmannia radix extract ameliorates imiquimod-induced psoriasis-like skin inflammation in a mouse model via the janus-kinase signal transducer and activator of transcription pathway. Pharmacogn Mag 2020; 16(71): 613.
[http://dx.doi.org/10.4103/pm.pm_218_19]
[103]
Jia J, Mo X, Liu J, et al. Mechanism of danshensu-induced inhibition of abnormal epidermal proliferation in psoriasis. Eur J Pharmacol 2020; 868: 172881.
[http://dx.doi.org/10.1016/j.ejphar.2019.172881] [PMID: 31866405]
[104]
Tang L, He S, Wang X, et al. Cryptotanshinone reduces psoriatic epidermal hyperplasia via inhibiting the activation of STAT3. Exp Dermatol 2018; 27(3): 268-75.
[http://dx.doi.org/10.1111/exd.13511] [PMID: 29427477]
[105]
Lai CY, Su YW, Lin KI, Hsu LC, Chuang TH. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J Immunol Res 2017; 2017: 1-15.
[http://dx.doi.org/10.1155/2017/7807313] [PMID: 28894754]
[106]
Oliveira A, Monteiro V, Navegantes-Lima K, et al. Resveratrol role in autoimmune disease-A mini-review. Nutrients 2017; 9(12): 1306.
[http://dx.doi.org/10.3390/nu9121306] [PMID: 29194364]
[107]
Putic A, Stecher L, Prinz H, Müller K. Structure–activity relationship studies of acridones as potential antipsoriatic agents. 2. Synthesis and antiproliferative activity of 10-substituted hydroxy-10H-acridin-9-ones against human keratinocyte growth. Eur J Med Chem 2010; 45(11): 5345-52.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.059] [PMID: 20850910]
[108]
Xiong H, Xu Y, Tan G, et al. Glycyrrhizin ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice and inhibits TNF-α-induced ICAM-1 expression via NF-κB/MAPK in HaCaT cells. Cell Physiol Biochem 2015; 35(4): 1335-46.
[http://dx.doi.org/10.1159/000373955] [PMID: 25720416]
[109]
Kang HK, Ecklund D, Liu M, Datta SK. Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 2009; 11(2): R59.
[http://dx.doi.org/10.1186/ar2682] [PMID: 19405952]
[110]
Smolińska E, Moskot M, Jakóbkiewicz-Banecka J. et al. Molecular action of isoflavone genistein in the human epithelial cell line Ha-CaT. PLoS One 2018; 13(2): e0192297.
[http://dx.doi.org/10.1371/journal.pone.0192297] [PMID: 29444128]
[111]
Deenonpoe R, Prayong P, Thippamom N, Meephansan J, Na-Bangchang K. Anti-inflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complement Altern Med 2019; 19(1): 168.
[http://dx.doi.org/10.1186/s12906-019-2535-3] [PMID: 31291937]
[112]
Zhang S, Liu X, Mei L, Wang H, Fang F. Epigallocatechin-3-gallate (EGCG) inhibits imiquimod-induced psoriasis-like inflammation of BALB/c mice. BMC Complement Altern Med 2016; 16(1): 334.
[http://dx.doi.org/10.1186/s12906-016-1325-4] [PMID: 27581210]
[113]
Nguyen UT, Nguyen LTH, Kim BA, Choi MJ, Yang IJ, Shin HM. Natural compound mixture, containing emodin, genipin, chlorogenic acid, cimigenoside, and ginsenoside rb1, ameliorates psoriasis-like skin lesions by suppressing inflammation and proliferation in keratinocytes. Evid Based Complement Alternat Med 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/9416962] [PMID: 33149756]
[114]
Mok CF, Xie CM, Sham KWY, Lin ZX, Cheng CHK. 1,4-dihydroxy-2-naphthoic acid induces apoptosis in human keratinocyte: potential application for psoriasis treatment. Evid Based Complement Alternat Med 2013; 2013: 1-19.
[http://dx.doi.org/10.1155/2013/792840] [PMID: 23690852]
[115]
Zhou LL, Lin ZX, Fung KP, et al. Celastrol-induced apoptosis in human HaCaT keratinocytes involves the inhibition of NF-κB activity. Eur J Pharmacol 2011; 670(2-3): 399-408.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.014] [PMID: 21951963]
[116]
Yu S, Yan H, Zhang L, et al. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone, a naturally-occurring biflavonoid. Molecules 2017; 22(2): 299.
[http://dx.doi.org/10.3390/molecules22020299] [PMID: 28212342]
[117]
Tse WP, Cheng CH, Che CT, Zhao M, Lin ZX. Induction of apoptosis underlies the Radix Rubiae-mediated anti-proliferative action on human epidermal keratinocytes: Implications for psoriasis treatment. Int J Mol Med 2007; 20(5): 663-72.
[PMID: 17912459]
[118]
Rihn B, Saliou C, Bottin MC, Keith G, Packer L. From ancient remedies to modern therapeutics: Pine bark uses in skin disorders revisited. Phytother Res 2001; 15(1): 76-8.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<76:AID-PTR747>3.0.CO;2-O] [PMID: 11180529]
[119]
García-Pérez ME, Royer M, Duque-Fernandez A, Diouf PN, Stevanovic T, Pouliot R. Antioxidant, toxicological and antiproliferative properties of Canadian polyphenolic extracts on normal and psoriatic keratinocytes. J Ethnopharmacol 2010; 132(1): 251-8.
[http://dx.doi.org/10.1016/j.jep.2010.08.030] [PMID: 20727399]
[120]
Song X, Li Y, Zhang H, Yang Q. The anticancer effect of Huaier (Review). Oncol Rep 2015; 34(1): 12-21.
[http://dx.doi.org/10.3892/or.2015.3950] [PMID: 25955759]
[121]
Su D, Zhang X, Zhang L, Zhou J, Zhang F. A randomized, double-blind, controlled clinical study on the curative effect of huaier on mild-to-moderate psoriasis and an experimental study on the proliferation of hacat cells. BioMed Res Int 2018; 2018: 1-9.
[http://dx.doi.org/10.1155/2018/2372895] [PMID: 30246016]
[122]
Shraibom N, Madaan A, Joshi V, et al. Evaluation of in vitro anti-psoriatic activity of a novel polyherbal formulation by multiparametric analysis. Antiinflamm Antiallergy Agents Med Chem 2017; 16(2): 94-111.
[http://dx.doi.org/10.2174/1871523016666170720160037] [PMID: 28730954]
[123]
Gasparetto JC, Martins CAF, Hayashi SS, Otuky MF, Pontarolo R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J Pharm Pharmacol 2012; 64(2): 172-89.
[http://dx.doi.org/10.1111/j.2042-7158.2011.01383.x] [PMID: 22221093]
[124]
Moore DJ, Rawlings AV. The chemistry, function and (patho)physiology of stratum corneum barrier ceramides. Int J Cosmet Sci 2017; 39(4): 366-72.
[http://dx.doi.org/10.1111/ics.12399] [PMID: 28337779]
[125]
V’avrov’a KA. Kov’aˇcik and L. Op’alka, Ceramides in the skin barier. Eur Pharm J 2017; 64: 28-35.
[126]
Badhe Y, Gupta R, Rai B. Structural and barrier properties of the skin ceramide lipid bilayer: A molecular dynamics simulation study. J Mol Model 2019; 25(5): 140.
[http://dx.doi.org/10.1007/s00894-019-4008-5] [PMID: 31041534]
[127]
Arriagada F, Morales J. Limitations and opportunities in topical drug delivery: Interaction between silica nanoparticles and skin barrier. Curr Pharm Des 2019; 25(4): 455-66.
[http://dx.doi.org/10.2174/1381612825666190404121507] [PMID: 30947656]
[128]
Jiang T, Wang T, Li T, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018; 12(10): 9693-701.
[http://dx.doi.org/10.1021/acsnano.8b03800] [PMID: 30183253]
[129]
Tiwari N, Sonzogni AS, Calderón M. Can dermal delivery of therapeutics be improved using thermoresponsive nanogels? Nanomedicine (Lond) 2019; 14(22): 2891-5.
[http://dx.doi.org/10.2217/nnm-2019-0345] [PMID: 31755350]
[130]
Yadav K, Pradhan M, Singh D, Singh MR. Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. In:Translational Autoimmunity. Academic Press 2022; pp. 361-93.
[http://dx.doi.org/10.1016/B978-0-12-824390-9.00017-7]
[131]
Zhou X, Hao Y, Yuan L, et al. Nano-formulations for transdermal drug delivery: A review. Chin Chem Lett 2018; 29(12): 1713-24.
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[132]
Ali A, Ali S, Aqil M, Imam SS, Ahad A, Qadir A. Thymoquinone loaded dermal lipid nano particles: Box Behnken design optimization to preclinical psoriasis assessment. J Drug Deliv Sci Technol 2019; 52: 713-21.
[http://dx.doi.org/10.1016/j.jddst.2019.05.041]
[133]
Kang JH, Chon J, Kim YI, et al. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. Int J Nanomedicine 2019; 14: 5381-96.
[http://dx.doi.org/10.2147/IJN.S215153] [PMID: 31409994]
[134]
Wadhwa K, Kadian V, Puri V, et al. New insights into quercetin nanoformulations for topical delivery. Phytomedicine Plus 2022; 14: 100257.
[http://dx.doi.org/10.1016/j.phyplu.2022.100257]
[135]
Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol 2018; 120(Pt A): 1322-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.136] [PMID: 30171962]
[136]
Kumar R, Dogra S, Amarji B, et al. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis. JAMA Dermatol 2016; 152(7): 807-15.
[http://dx.doi.org/10.1001/jamadermatol.2016.0859] [PMID: 27096709]
[137]
Doppalapudi S, Jain A, Chopra DK, Khan W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur J Pharm Sci 2017; 96: 515-29.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[138]
Chen J, Ma Y, Tao Y, et al. Formulation and evaluation of a topical liposomal gel containing a combination of zedoary turmeric oil and tretinoin for psoriasis activity. J Liposome Res 2021; 31(2): 130-44.
[http://dx.doi.org/10.1080/08982104.2020.1748646] [PMID: 32223352]
[139]
Moghddam SRM, Ahad A, Aqil M, Imam SS, Sultana Y. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis. Mater Sci Eng C 2016; 69: 789-97.
[http://dx.doi.org/10.1016/j.msec.2016.07.043] [PMID: 27612773]
[140]
Abu Hashim I, Abo El-Magd N, El-Sheakh A, Hamed M, Abd El-Gawad AEG. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo–in vivo evaluation study. Int J Nanomedicine 2018; 13: 1059-79.
[http://dx.doi.org/10.2147/IJN.S156412] [PMID: 29503541]
[141]
Parkash V, Maan S, Chaudhary V, Jogpal V, Mittal G, Jain V. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J Bioequivalence Bioavailab 2018; 10(5): 98-105.
[http://dx.doi.org/10.4172/0975-0851.1000385]
[142]
Fathalla D, Youssef EMK, Soliman GM. Liposomal and ethosomal gels for the topical delivery of anthralin: Preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics 2020; 12(5): 446.
[http://dx.doi.org/10.3390/pharmaceutics12050446] [PMID: 32403379]
[143]
Musa SH, Basri M, Fard Masoumi HR, Shamsudin N, Salim N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int J Nanomedicine 2017; 12: 2427-41.
[http://dx.doi.org/10.2147/IJN.S125302] [PMID: 28405165]
[144]
Nair AB, Kumar S, Dalal P, et al. Novel dermal delivery cargos of clobetasol propionate: An update. Pharmaceutics 2022; 14(2): 383.
[http://dx.doi.org/10.3390/pharmaceutics14020383] [PMID: 35214115]
[145]
Rajitha P, Shammika P, Aiswarya S, Gopikrishnan A, Jayakumar R, Sabitha M. Chaulmoogra oil based methotrexate loaded topical nanoemulsion for the treatment of psoriasis. J Drug Deliv Sci Technol 2019; 49: 463-76.
[http://dx.doi.org/10.1016/j.jddst.2018.12.020]
[146]
Algahtani MS, Ahmad MZ, Ahmad J. Nanoemulsion loaded polymeric hydrogel for topical delivery of curcumin in psoriasis. J Drug Deliv Sci Technol 2020; 59: 101847.
[http://dx.doi.org/10.1016/j.jddst.2020.101847]
[147]
Bagchi D, Das A, Roy S, Eds. Wound healing, tissue repair and regeneration in diabetes. Academic Press Cambridge USA 2020.
[148]
Silva P, Bonifácio B, Ramos M, Negri K, Maria Bauab T, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2013; 9: 1-15.
[http://dx.doi.org/10.2147/IJN.S52634] [PMID: 24363556]
[149]
Onoue S, Yamada S, Chan K. Nanodrugs: Pharmacokinetics and safety. Int J Nanomedicine 2014; 9: 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[150]
Ansari SH, Sameem M, Islam F. Influence of nanotechnology on herbal drugs: A Review. J Adv Pharm Technol Res 2012; 3(3): 142-6.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[151]
Kingston DGI. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod 2011; 74(3): 496-511.
[http://dx.doi.org/10.1021/np100550t] [PMID: 21138324]
[152]
Kaur IP, Kakkar V, Deol PK, Yadav M, Singh M, Sharma I. Issues and concerns in nanotech product development and its commercialization. J Control Release 2014; 193: 51-62.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.005] [PMID: 24933600]
[153]
Khorasani AA, Weaver JL, Salvador-Morales C. Closing the gap: accelerating the translational process in nanomedicine by proposing standardized characterization techniques. Int J Nanomedicine 2014; 9: 5729-51.
[PMID: 25525356]
[154]
Wei A, Mehtala JG, Patri AK. Challenges and opportunities in the advancement of nanomedicines. J Control Release 2012; 164(2): 236-46.
[http://dx.doi.org/10.1016/j.jconrel.2012.10.007] [PMID: 23064314]
[155]
Patel S, Nanda R, Sahoo S. Nanotechnology in healthcare: Applications and challenges. Med Chem 2015; 5(21): 528-33.
[156]
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[157]
Gilani SJ, Beg S, Kala C, et al. Chemically nano-engineered theranostics for phytoconstituents as healthcare application. Curr Biochem Eng 2020; 6(1): 53-61.
[http://dx.doi.org/10.2174/2212711906666190723144111]
[158]
Rai VK, Gupta GD, Pottoo FH, Barkat M. Potential of nano-structured drug delivery system for phytomedicine delivery Nanophytomedicine. Singapore: Springer 2020; pp. 89-111.
[159]
Shukla R, Kakade S, Handa M, Kohli K. Emergence of nanophytomedicine in health care setting Nanophytomedicine. Singapore: Springer 2020; pp. 33-53.
[160]
Tapadiya GG, Kale MA, Saboo SS. Impact of nanotechnology on global trade of herbal drugs: An overview. International Journal of Green Pharmacy 2017; 11(3): S171.
[161]
Snehal B. Application of nanotechnology for phyto constituents: Review. Arch Nano Op Acc J 2018; 1(1)
[http://dx.doi.org/10.32474/ANOAJ.2018.01.000103]
[162]
Diterpenoid compound, preparation method and application thereof, and pharmaceutically acceptable derivative, pharmaceutical composition and application of diterpenoid compound. Patent N113788787A, 2020. Available from: https://patents.google.com/patent/CN113788787A/en?q=antipsoriasis&before=priority:20220829&after=priority:20191231
[163]
Srivastava AK, Chand Yadav T, Khera HK, et al. Insights into interplay of immunopathophysiological events and molecular mechanistic cascades in psoriasis and its associated comorbidities. J Autoimmun 2021; 118: 102614.
[http://dx.doi.org/10.1016/j.jaut.2021.102614] [PMID: 33578119]
[165]
Glycyrrhetinic acid-modified curcumin-loaded multifunctional ethosome as well as preparation method and application thereof. CN111617039B 2022.Available from: https://patents.google.com/patent/CN111617039B/en?q=antipsoriasis&before=priority:20220829&after=priority:20191231.
[166]
Zhao Z, Liu T, Zhu S, et al. Natural medicine combined with nanobased topical delivery systems: A new strategy to treat psoriasis. Drug Deliv Transl Res 2022; 12(6): 1326-38.
[PMID: 34287767]
[167]
Xu F, Xu J, Xiong X, Deng Y. Salidroside inhibits MAPK, NF-κB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Rep 2019; 24(1): 70-4.
[http://dx.doi.org/10.1080/13510002.2019.1658377] [PMID: 31495284]
[168]
Antipsoriatic cosmetic composition in a gel form. Patent RU2742411C1 2020. Available from: https://patents.google.com/patent/RU2742411C1/en?q=antipsoriasis&before=priority:20220829&after=priority:20191231
[169]
Nano drug delivery system with mimic enzyme activity, drugloaded nanoparticles, and preparation method and application thereof. Patent CN111467503A, 2020. Available from: https://patents.google.com/patent/CN111467503A/en?q=antipsoriasis&before=priority:20220829&after=priority:20191231
[170]
Method for evaluating the antipsoriatic effect of an external agent on a laboratory model of imiquimod-induced psoriasis. RU2764549C1, 2022. Available from: https://patents.google.com/patent/RU2764549C1/en?q=antipsoriasis&before=priority:20220829&after=priority:20191231
[171]
Krawczyk A. Miśkiewicz J, Strzelec K, Wcisło-Dziadecka D, Strzalka-Mrozik B. Apoptosis in autoimmunological diseases, with particular consideration of molecular aspects of psoriasis. Med Sci Monit 2020; 26: e922035.
[http://dx.doi.org/10.12659/MSM.922035] [PMID: 32567582]
[172]
Nowak-Perlak M, Szpadel K. Jabłońska I, Pizon M, Woźniak M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules 2022; 27(3): 591.
[http://dx.doi.org/10.3390/molecules27030591] [PMID: 35163855]
[173]
Huang TH, Lin CF, Alalaiwe A, Yang SC, Fang JY. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci 2019; 20(10): 2558.
[http://dx.doi.org/10.3390/ijms20102558] [PMID: 31137673]
[174]
Mohd NUU, Ahmad N, Salim N, Mohd YNS. Lipid-based nanoparticles for psoriasis treatment: a review on conventional treatments, recent works, and future prospects. RSC Advances 2021; 11(46): 29080-101.
[http://dx.doi.org/10.1039/D1RA06087B] [PMID: 35478537]
[175]
Yadav N, Aggarwal R, Targhotra M, Sahoo PK, Chauhan MK. Natural and nanotechnology based treatment: An alternative approach to psoriasis. Curr Nanomed 2021; 11(1): 21-39.
[http://dx.doi.org/10.2174/2468187310999201022192318]
[176]
Khan A, Qadir A, Ali F, Aqil M. Phytoconstituents based nanomedicines for the management of psoriasis. J Drug Deliv Sci Technol 2021; 64: 102663.
[http://dx.doi.org/10.1016/j.jddst.2021.102663]
[177]
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 2015; 10: 6055-74.
[PMID: 26451111]
[178]
Bilia A, Piazzini V, Guccione C, et al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs. Planta Med 2017; 83(5): 366-81.
[http://dx.doi.org/10.1055/s-0043-102949] [PMID: 28178749]
[179]
Karpuz M, Gunay MS, Ozer AY. Liposomes and phytosomes for phytoconstituents. In:Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Cambridge, USA: Academic Press 2020; pp. 525-53.
[http://dx.doi.org/10.1016/B978-0-12-819666-3.00018-3]
[180]
Kumar S, Singh KK, Rao R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J Microencapsul 2019; 36(2): 140-55.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[181]
Agrawal U, Gupta M, Vyas SP. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif Cells Nanomed Biotechnol 2015; 43(1): 33-9.
[http://dx.doi.org/10.3109/21691401.2013.832683] [PMID: 24040836]
[182]
Gupta R, Gupta M, Mangal S, Agrawal U, Vyas SP. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif Cells Nanomed Biotechnol 2016; 44(3): 825-34.
[PMID: 25465045]
[183]
Negi P, Sharma I, Hemrajani C, et al. Thymoquinone-loaded lipid vesicles: a promising nanomedicine for psoriasis. BMC Complement Altern Med 2019; 19(1): 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[184]
Qadir A, Aqil M, Ali A, et al. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J Drug Deliv Sci Technol 2020; 57: 101775.
[http://dx.doi.org/10.1016/j.jddst.2020.101775]
[185]
Sahu S, Katiyar SS, Kushwah V, Jain S. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine (Lond) 2018; 13(16): 1985-98.
[http://dx.doi.org/10.2217/nnm-2018-0135] [PMID: 30188761]
[186]
Zhang Y, Xia Q, Li Y, et al. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics 2019; 9(1): 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[187]
Iriventi P, Gupta NV, Osmani RAM, Balamuralidhara V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru 2020; 28(2): 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy