Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Deep Learning Based on Enhanced MRI T1 Imaging to Differentiate Small-cell and Non-small-cell Primary Lung Cancers in Patients with Brain Metastases

Author(s): Lianyu Sui, Shilong Chang, LinYan Xue, Jianing Wang, Yu Zhang, Kun Yang*, Bu-Lang Gao and Xiaoping Yin*

Volume 19, Issue 13, 2023

Published on: 21 February, 2023

Article ID: e300123213256 Pages: 8

DOI: 10.2174/1573405619666230130124408

Price: $65

Abstract

Objectives: To differentiate the primary small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) for patients with brain metastases (BMs) based on a deep learning (DL) model using contrast-enhanced magnetic resonance imaging (MRI) T1 weighted (T1CE) images.

Methods: Out of 711 patients with BMs of lung cancer origin (SCLC 232, NSCLC 479), the MRI datasets of 192 patients (lesions’ widths and heights > 30 pixels) with BMs from lung cancer (73 SCLC and 119 NSCLC) confirmed pathologically were enrolled, retrospectively. A typical convolutional neural network ResNet18 was applied for the automatic classification of BMs lesions from lung cancer based on T1CE images, with training and testing groups randomized per patient to eliminate learning bias. A 5-fold cross-validation was performed to evaluate the classification of the model. The receiver operating characteristic (ROC) curve, accuracy, precision, recall and f1 score were calculated.

Results: For a 5-fold cross-validation test, the DL model achieved AUCs of 0.8019 and 0.8024 for SCLC and NSCLC patients with BMs, respectively, and a mean overall accuracy of 0.7515±0.04. The DL model performed well in differentiating the primary SCLC and NSCLC with BMs.

Conclusion: The proposed DL model is feasible and effective in differentiating the pathological subtypes of SCLC and NSCLC causing BMs, which may be used as a new tool for oncologists to diagnose noninvasively BMs and guide therapy based on the imaging structure of tumors.

Graphical Abstract

[1]
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022; 72(1): 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[2]
Le Rhun E, Guckenberger M, Smits M, et al. EANO–ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann Oncol 2021; 32(11): 1332-47.
[http://dx.doi.org/10.1016/j.annonc.2021.07.016] [PMID: 34364998]
[3]
Fecci PE, Champion CD, Hoj J, et al. The evolving modern management of brain metastasis. Clin Cancer Res 2019; 25(22): 6570-80.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1624] [PMID: 31213459]
[4]
Zheng M. Classification and pathology of lung cancer. Surg Oncol Clin N Am 2016; 25(3): 447-68.
[http://dx.doi.org/10.1016/j.soc.2016.02.003] [PMID: 27261908]
[5]
Ernani V, Stinchcombe TE. Management of brain metastases in non–small-cell lung cancer. J Oncol Pract 2019; 15(11): 563-70.
[http://dx.doi.org/10.1200/JOP.19.00357] [PMID: 31715122]
[6]
Lassen U, Kristjansen PEG, Hansen HH. Brain metastases in small-cell lung cancer. Ann Oncol 1995; 6(9): 941-4.
[http://dx.doi.org/10.1093/oxfordjournals.annonc.a059363] [PMID: 8624299]
[7]
Nicholson AG, Tsao MS, Beasley MB, et al. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J Thorac Oncol 2022; 17(3): 362-87.
[http://dx.doi.org/10.1016/j.jtho.2021.11.003] [PMID: 34808341]
[8]
Dregely I, Prezzi D, Kelly-Morland C, Roccia E, Neji R, Goh V. Imaging biomarkers in oncology: Basics and application to MRI. J Magn Reson Imaging 2018; 48(1): 13-26.
[http://dx.doi.org/10.1002/jmri.26058] [PMID: 29969192]
[9]
Chiu HY, Chao HS, Chen YM. Application of artificial intelligence in lung cancer. Cancers 2022; 14(6): 1370.
[http://dx.doi.org/10.3390/cancers14061370] [PMID: 35326521]
[10]
Amemiya S, Takao H, Kato S, Yamashita H, Sakamoto N, Abe O. Automatic detection of brain metastases on contrast-enhanced CT with deep-learning feature-fused single-shot detectors. Eur J Radiol 2021; 136: 109577.
[http://dx.doi.org/10.1016/j.ejrad.2021.109577] [PMID: 33550213]
[11]
Xue J, Wang B, Ming Y, et al. Deep learning–based detection and segmentation-assisted management of brain metastases. Neuro-oncol 2020; 22(4): 505-14.
[http://dx.doi.org/10.1093/neuonc/noz234] [PMID: 31867599]
[12]
Grossman R, Haim O, Abramov S, Shofty B, Artzi M. Differentiating small-cell lung cancer from non-small-cell lung cancer brain metastases based on MRI using efficientnet and transfer learning approach. Technol Cancer Res Treat 2021; 20: 15330338211004919.
[http://dx.doi.org/10.1177/15330338211004919] [PMID: 34030542]
[13]
Joel MZ, Umrao S, Chang E, et al. Using adversarial images to assess the robustness of deep learning models trained on diagnostic images in oncology. JCO Clin Cancer Inform 2022; 6(6): e2100170.
[http://dx.doi.org/10.1200/CCI.21.00170] [PMID: 35271304]
[14]
Ziebart A, Stadniczuk D, Roos V, et al. Deep neural network for differentiation of brain tumor tissue displayed by confocal laser endomicroscopy. Front Oncol 2021; 11: 668273.
[http://dx.doi.org/10.3389/fonc.2021.668273] [PMID: 34046358]
[15]
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis 2020; 128(2): 336-59.
[http://dx.doi.org/10.1007/s11263-019-01228-7]
[16]
van der Laak J, Litjens G, Ciompi F. Deep learning in histopathology: The path to the clinic. Nat Med 2021; 27(5): 775-84.
[http://dx.doi.org/10.1038/s41591-021-01343-4] [PMID: 33990804]
[17]
Zhang J, Jin J, Ai Y, et al. Differentiating the pathological subtypes of primary lung cancer for patients with brain metastases based on radiomics features from brain CT images. Eur Radiol 2021; 31(2): 1022-8.
[http://dx.doi.org/10.1007/s00330-020-07183-z] [PMID: 32822055]
[18]
Li Z, Mao Y, Li H, Yu G, Wan H, Li B. Differentiating brain metastases from different pathological types of lung cancers using texture analysis of T1 postcontrast MR. Magn Reson Med 2016; 76(5): 1410-9.
[http://dx.doi.org/10.1002/mrm.26029] [PMID: 26621795]
[19]
Dikici E, Ryu JL, Demirer M, et al. Automated brain metastases detection framework for T1-weighted contrast-enhanced 3D MRI. IEEE J Biomed Health Inform 2020; 24(10): 2883-93.
[http://dx.doi.org/10.1109/JBHI.2020.2982103] [PMID: 32203040]
[20]
Amemiya S, Takao H, Kato S, Yamashita H, Sakamoto N, Abe O. Feature‐fusion improves MRI single‐shot deep learning detection of small brain metastases. J Neuroimaging 2022; 32(1): 111-9.
[http://dx.doi.org/10.1111/jon.12916] [PMID: 34388855]
[21]
Tandel GS, Tiwari A, Kakde OG. Performance optimisation of deep learning models using majority voting algorithm for brain tumour classification. Comput Biol Med 2021; 135: 104564.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104564] [PMID: 34217980]
[22]
Swati ZNK, Zhao Q, Kabir M, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph 2019; 75: 34-46.
[http://dx.doi.org/10.1016/j.compmedimag.2019.05.001] [PMID: 31150950]
[23]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[24]
Kanavati F, Toyokawa G, Momosaki S, et al. Weakly-supervised learning for lung carcinoma classification using deep learning. Sci Rep 2020; 10(1): 9297.
[http://dx.doi.org/10.1038/s41598-020-66333-x] [PMID: 32518413]
[25]
Wang S, Dong L, Wang X, Wang X. Classification of pathological types of lung cancer from CT images by deep residual neural networks with transfer learning strategy. Open Med 2020; 15(1): 190-7.
[http://dx.doi.org/10.1515/med-2020-0028] [PMID: 32190744]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy