Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Hydrogel-based Treatment Strategies to Accelerate Diabetic Foot Ulcer Healing

Author(s): Sadgi Mehta, Sheetu Wadhwa*, Sammisla R. Nayak and Rajesh Kumar

Volume 19, Issue 8, 2023

Published on: 03 March, 2023

Article ID: e270123213221 Pages: 14

DOI: 10.2174/1573399819666230127150328

Price: $65

Abstract

A diabetic foot ulcer is a chronic clinical manifestation of diabetes that exacerbates the condition of a patient and has a considerable socioeconomic impact. A diabetic foot ulcer (DFU) impacts around 25% of patients with diabetes mellitus at a certain point in their lives, and the underlying cause of the condition appears to be linked to neuropathic, ischaemic, and/or neuroischaemic pathologies. For the effective treatment of DFU, a variety of conventional treatments are used. However, in recent years, a range of innovative materials have been studied to bolster standard treatment tactics and promote the desired biological response by transcending the impediments of current wound healing approaches. Inorganic/organic hydrogel hybrids for tissue regeneration are among the most promising materials. This review article outlines the current treatment options for DFU, applications of hydrogel with an emphasis on wound healing, polymeric materials used to fabricate hydrogel, and the role of emerging technologies.

[1]
Habtemariam S. Pathophysiology of type 2 diabetes complications. In: Medicinal Foods as Potential Therapies for Type-2 Diabetes and Associated Diseases. Amsterdam: Elsevier 2019; pp. 69-88.
[http://dx.doi.org/10.1016/B978-0-08-102922-0.00004-3]
[2]
Setacci C, Benevento D, De Donato G, et al. Focusing on diabetic ulcers. Transl Med UniSa 2020; 21: 7-9.
[PMID: 32123673]
[3]
Hearts D: diagnosis and management of type 2 diabetes. Whoint 2022. Available from: http://www.who.int/publications/i/item/who-ucn-ncd-20.1
[4]
Diabetes A, diabetes W, figures F. Facts & figures. 2022. Available from: http://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures. html
[5]
Magliano DJ, Islam RM, Barr ELM, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ 2019; 366: l5003.
[http://dx.doi.org/10.1136/bmj.l5003] [PMID: 31511236]
[6]
Boulton AJM. The diabetic foot: from art to science. The 18th Camillo Golgi lecture. Diabetologia 2004; 47(8): 1343-53.
[http://dx.doi.org/10.1007/s00125-004-1463-y] [PMID: 15309286]
[7]
Vileikyte L. Diabetic foot ulcers: a quality of life issue. Diabetes Metab Res Rev 2001; 17(4): 246-9.
[http://dx.doi.org/10.1002/dmrr.216] [PMID: 11544609]
[8]
Glover K, Stratakos AC, Varadi A, Lamprou DA. 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. Int J Pharm 2021; 599: 120423.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120423] [PMID: 33647412]
[9]
Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surg 2005; 31(6): 674-86.
[http://dx.doi.org/10.1097/00042728-200506000-00011] [PMID: 15996419]
[10]
The Four Stages of Wound Healing. Wound Source 2022. Available from: https://www.woundsource.com/blog/four-stages-wound-healing
[11]
Szycher M, Lee SJ. Modern wound dressings: a systematic approach to wound healing. J Biomater Appl 1992; 7(2): 142-213.
[http://dx.doi.org/10.1177/088532829200700204] [PMID: 1447701]
[12]
Kähäri VM, Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol 1997; 6(5): 199-213.
[http://dx.doi.org/10.1111/j.1600-0625.1997.tb00164.x] [PMID: 9450622]
[13]
Lobmann R, Ambrosch A, Schultz G, Waldmann K, Schiweck S, Lehnert H. Expression of matrix-metalloproteinases and their inhibitors in the wounds of diabetic and non-diabetic patients. Diabetologia 2002; 45(7): 1011-6.
[http://dx.doi.org/10.1007/s00125-002-0868-8] [PMID: 12136400]
[14]
Menke NB, Ward KR, Witten TM, Bonchev DG, Diegelmann RF. Impaired wound healing. Clin Dermatol 2007; 25(1): 19-25.
[http://dx.doi.org/10.1016/j.clindermatol.2006.12.005] [PMID: 17276197]
[15]
Ellis S, Lin EJ, Tartar D. Immunology of wound healing. Curr Dermatol Rep 2018; 7(4): 350-8.
[http://dx.doi.org/10.1007/s13671-018-0234-9] [PMID: 30524911]
[16]
Uivaraseanu B, Bungau S, Tit DM, et al. Clinical, pathological and microbiological evaluation of diabetic foot syndrome. Medicina (Kaunas) 2020; 56(8): 380.
[http://dx.doi.org/10.3390/medicina56080380] [PMID: 32731610]
[17]
Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis. Ann Med 2017; 49(2): 106-16.
[http://dx.doi.org/10.1080/07853890.2016.1231932] [PMID: 27585063]
[18]
Pataky Z, Vischer U. Diabetic foot disease in the elderly. Diabetes Metab 2007; 33 (Suppl. 1): S56-65.
[http://dx.doi.org/10.1016/S1262-3636(07)80057-7] [PMID: 17702099]
[19]
Kumar S, Ashe HA, Parnell LN, et al. The prevalence of foot ulceration and its correlates in type 2 diabetic patients: a population-based study. Diabet Med 1994; 11(5): 480-4.
[http://dx.doi.org/10.1111/j.1464-5491.1994.tb00310.x] [PMID: 8088127]
[20]
Reiber GE, Ledoux WR. Epidemiology of Diabetic Foot Ulcers and Amputations: Evidence for Prevention. In: Williams, R., Herman, W., Kinmonth, A.L., Wareham, N.J. The Evidence Base for Diabetes Care. 641-65.
[http://dx.doi.org/10.1002/0470846585.ch28]
[21]
Rathur HM, Boulton AJM. The neuropathic diabetic foot. Nat Clin Pract Endocrinol Metab 2007; 3(1): 14-25.
[http://dx.doi.org/10.1038/ncpendmet0347] [PMID: 17179926]
[22]
Frykberg RG. Diabetic foot ulcers: pathogenesis and management. Am Fam Physician 2002; 66(9): 1655-62.
[PMID: 12449264]
[23]
Jeffcoate WJ, Harding KG. Diabetic foot ulcers. Lancet 2003; 361(9368): 1545-51.
[http://dx.doi.org/10.1016/S0140-6736(03)13169-8] [PMID: 12737879]
[24]
Boulton AJM. Management of diabetic peripheral neuropathy. Clin Diabetes 2005; 23(1): 9-15.
[http://dx.doi.org/10.2337/diaclin.23.1.9]
[25]
Tesfaye S, Selvarajah D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 2012; 28 (Suppl. 1): 8-14.
[http://dx.doi.org/10.1002/dmrr.2239] [PMID: 22271716]
[26]
American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care 2003; 26(12): 3333-41.
[http://dx.doi.org/10.2337/diacare.26.12.3333] [PMID: 14633825]
[27]
Jude EB, Oyibo SO, Chalmers N, Boulton AJM. Peripheral arterial disease in diabetic and nondiabetic patients: a comparison of severity and outcome. Diabetes Care 2001; 24(8): 1433-7.
[http://dx.doi.org/10.2337/diacare.24.8.1433] [PMID: 11473082]
[28]
Alexiadou K, Doupis J. Management of diabetic foot ulcers. Diabetes Ther 2012; 3(1): 4.
[http://dx.doi.org/10.1007/s13300-012-0004-9] [PMID: 22529027]
[29]
Brem H, Sheehan P, Boulton AJM. Protocol for treatment of diabetic foot ulcers. Am J Surg 2004; 187(5): S1-S10.
[http://dx.doi.org/10.1016/S0002-9610(03)00299-X] [PMID: 15147985]
[30]
Fard AS, Esmaelzadeh M, Larijani B. Assessment and treatment of diabetic foot ulcer. Int J Clin Pract 2007; 61(11): 1931-8.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01534.x] [PMID: 17935551]
[31]
Boulton AJM. The diabetic foot-An update. Foot Ankle Surg 2008; 14(3): 120-4.
[http://dx.doi.org/10.1016/j.fas.2008.05.004] [PMID: 19083628]
[32]
Hoffman AF. Evaluation of arterial blood flow in the lower extremity. Clin Podiatr Med Surg 1992; 9(1): 19-56.
[PMID: 1735062]
[33]
Bowering CK. Diabetic foot ulcers. Pathophysiology, assessment, and therapy. Can Fam Physician 2001; 47(5): 1007-16.
[PMID: 11398715]
[34]
Abbott CA, Carrington AL, Ashe H, et al. The North-West Diabetes Foot Care Study: incidence of, and risk factors for, new diabetic foot ulceration in a community-based patient cohort. Diabet Med 2002; 19(5): 377-84.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00698.x] [PMID: 12027925]
[35]
Wagner FW Jr. The diabetic foot. Orthopedics 1987; 10(1): 163-72.
[http://dx.doi.org/10.3928/0147-7447-19870101-28] [PMID: 3809012]
[36]
Jeon BJ, Choi HJ, Kang JS, Tak MS, Park ES. Comparison of five systems of classification of diabetic foot ulcers and predictive factors for amputation. Int Wound J 2017; 14(3): 537-45.
[http://dx.doi.org/10.1111/iwj.12642] [PMID: 27723246]
[37]
Oyen ML. Mechanical characterisation of hydrogel materials. Int Mater Rev 2014; 59(1): 44-59.
[http://dx.doi.org/10.1179/1743280413Y.0000000022]
[38]
Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. J Mater Sci 2016; 51(1): 271-310.
[http://dx.doi.org/10.1007/s10853-015-9382-5]
[39]
Motley TA, Gilligan AM, Lange DL, Waycaster CR, Dickerson JE Jr. Cost-effectiveness of clostridial collagenase ointment on wound closure in patients with diabetic foot ulcers: economic analysis of results from a multicenter, randomized, open-label trial. J Foot Ankle Res 2015; 8(1): 7.
[http://dx.doi.org/10.1186/s13047-015-0065-x] [PMID: 25767565]
[40]
Chen S, Shi J, Zhang M, et al. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing. Sci Rep 2016; 5(1): 18104.
[http://dx.doi.org/10.1038/srep18104] [PMID: 26643550]
[41]
Hajimiri M, Shahverdi S, Esfandiari MA, et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev Ind Pharm 2016; 42(5): 707-19.
[http://dx.doi.org/10.3109/03639045.2015.1075030]
[42]
Sirousazar M, Yari M. Dehydration kinetics of polyvinyl alcohol hydrogel wound dressings during wound healing process. Chin J Polym Sci 2010; 28(4): 573-80.
[http://dx.doi.org/10.1007/s10118-010-9099-5]
[43]
Higa OZ, Rogero SO, Machado LDB, Mathor MB, Lugão AB. Biocompatibility study for PVP wound dressing obtained in different conditions. Radiat Phys Chem 1999; 55(5-6): 705-7.
[http://dx.doi.org/10.1016/S0969-806X(99)00215-7]
[44]
Weller C, Team V. Interactive dressings and their role in moist wound management. In:Advanced textiles for wound care. Woodhead Publishing 2019; pp. 105-34.
[http://dx.doi.org/10.1016/B978-0-08-102192-7.00004-7]
[45]
Rezvanian M, Ng SF, Alavi T, Ahmad W. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats. Int J Biol Macromol 2021; 171: 308-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.221] [PMID: 33421467]
[46]
Li Z, Zhao Y, Liu H, et al. pH-responsive hydrogel loaded with insulin as a bioactive dressing for enhancing diabetic wound healing. Mater Des 2021; 210: 110104.
[http://dx.doi.org/10.1016/j.matdes.2021.110104]
[47]
Yang L, Liang F, Zhang X, et al. Remodeling microenvironment based on MOFs-Hydrogel hybrid system for improving diabetic wound healing. Chem Eng J 2022; 427: 131506.
[http://dx.doi.org/10.1016/j.cej.2021.131506]
[48]
Razzak MT, Darwis D. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys Chem 2001; 62(1): 107-13.
[http://dx.doi.org/10.1016/S0969-806X(01)00427-3]
[49]
Lee YH, Hong YL, Wu TL. Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Mater Sci Eng C 2021; 118: 111385.
[http://dx.doi.org/10.1016/j.msec.2020.111385] [PMID: 33254992]
[50]
Motawea A, Abd El-Gawad AEGH, Borg T, Motawea M, Tarshoby M. The impact of topical phenytoin loaded nanostructured lipid carriers in diabetic foot ulceration. Foot 2019; 40: 14-21.
[http://dx.doi.org/10.1016/j.foot.2019.03.007] [PMID: 30999080]
[51]
Wei S, Xu P, Yao Z, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes. Acta Biomater 2021; 124: 205-18.
[http://dx.doi.org/10.1016/j.actbio.2021.01.046] [PMID: 33524559]
[52]
Liu P, Jin K, Wong W, et al. Ionic liquid functionalized non-releasing antibacterial hydrogel dressing coupled with electrical stimulation for the promotion of diabetic wound healing. Chem Eng J 2021; 415: 129025.
[http://dx.doi.org/10.1016/j.cej.2021.129025]
[53]
Jones V, Grey JE, Harding KG. Wound dressings. BMJ 2006; 332(7544): 777-80.
[http://dx.doi.org/10.1136/bmj.332.7544.777] [PMID: 16575081]
[54]
Dumville JC, O’Meara S, Deshpande S, Speak K. Hydrogel dressings for healing diabetic foot ulcers. In: Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd 2011.
[55]
Weller CD, Team V, Sussman G. First-line interactive wound dressing update: A comprehensive review of the evidence. Front Pharmacol 2020; 11: 155.
[http://dx.doi.org/10.3389/fphar.2020.00155] [PMID: 32180720]
[57]
Neoheal®. Hydrogel dressing for wound management. Available from: https://kikgel.com.pl/en/products/neoheal/#-4
[58]
AMERIGEL Hydrogel Wound Dressing. Available from: http://amerigel.com/product/wound-dressing/
[61]
Johnson and Johnson Nu-Gel Hydrogel with Alginate 15g. Available from: http://www.amtech.co.nz/wc983.html
[62]
Purilon® Gel. Available from: http://www.coloplast.in/products/purilon-gel/#
[63]
SMTL Dressings Datacard. Available from: http://www.dressings.org/Dressings/vigilon.html
[64]
Gupta A, Kowalczuk M, Heaselgrave W, Britland ST, Martin C, Radecka I. The production and application of hydrogels for wound management: A review. Eur Polym J 2019; 111: 134-51.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.12.019]
[65]
Farhat W, Hasan A, Lucia L, Becquart F, Ayoub A, Kobeissy F. Hydrogels for advanced stem cell therapies: a biomimetic materials approach for enhancing natural tissue function. IEEE Rev Biomed Eng 2019; 12: 333-51.
[http://dx.doi.org/10.1109/RBME.2018.2824335] [PMID: 29993840]
[66]
Hussain Z, Thu HE, Shuid AN, Katas H, Hussain F. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: an overview of state-of-the-art. Curr Drug Targets 2018; 19(5): 527-50.
[http://dx.doi.org/10.2174/1389450118666170704132523] [PMID: 28676002]
[67]
Aderibigbe BA. Hybrid-based wound dressings: Combination of synthetic and biopolymers. In: Polymers MDPI. 2022; p. 14.
[68]
Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science 1979; 336(6085): 1124-8.
[69]
Engel J, Bächinger HP. Structure, stability and folding of the collagen triple helix. 2005; 7-33.
[70]
Park SN, Kim JK, Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials 2004; 25(17): 3689-98.
[http://dx.doi.org/10.1016/j.biomaterials.2003.10.072] [PMID: 15020144]
[71]
Dong C, Lv Y. Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers (Basel) 2016; 8(2): 42.
[http://dx.doi.org/10.3390/polym8020042] [PMID: 30979136]
[72]
Gurumurthy B, Bierdeman PC, Janorkar AV. Composition of elastin like polypeptide-collagen composite scaffold influences in vitro osteogenic activity of human adipose derived stem cells. Dent Mater 2016; 32(10): 1270-80.
[http://dx.doi.org/10.1016/j.dental.2016.07.009] [PMID: 27524229]
[73]
Bou-Akl T, Banglmaier R, Miller R, VandeVord P. Effect of crosslinking on the mechanical properties of mineralized and non-mineralized collagen fibers. J Biomed Mater Res A 2013; 101A(9): 2507-14.
[http://dx.doi.org/10.1002/jbm.a.34549] [PMID: 23359539]
[74]
Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45-53.
[http://dx.doi.org/10.1016/S0142-9612(98)00107-0] [PMID: 9916770]
[75]
Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication 2015; 7(4): 045012.
[http://dx.doi.org/10.1088/1758-5090/7/4/045012] [PMID: 26689257]
[76]
Sarker B, Papageorgiou DG, Silva R, et al. Fabrication of alginate-gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B Mater Biol Med 2014; 2(11): 1470-82.
[http://dx.doi.org/10.1039/c3tb21509a] [PMID: 32261366]
[77]
Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol 2015; 72: 269-81.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.07.008] [PMID: 25020082]
[78]
Thomas D, Nath MS, Mathew N, Reshmy R, Philip E, Latha MS. Alginate film modified with aloevera gel and cellulose nanocrystals for wound dressing application: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2020; 59: 101894.
[http://dx.doi.org/10.1016/j.jddst.2020.101894]
[79]
Han F, Dong Y, Song A, Yin R, Li S. Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl Surf Sci 2014; 311: 626-34.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.125]
[80]
Chang G, Dang Q, Liu C, et al. Carboxymethyl chitosan and carboxymethyl cellulose based self-healing hydrogel for accelerating diabetic wound healing. Carbohydr Polym 2022; 292: 119687.
[http://dx.doi.org/10.1016/j.carbpol.2022.119687] [PMID: 35725178]
[81]
Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 2015; 10(1): 1-16.
[PMID: 26430453]
[82]
Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 2004; 57(1): 19-34.
[http://dx.doi.org/10.1016/S0939-6411(03)00161-9] [PMID: 14729078]
[83]
Zhou Z, Zhang X, Xu L, et al. A self-healing hydrogel based on crosslinked hyaluronic acid and chitosan to facilitate diabetic wound healing. Int J Biol Macromol 2022; 220: 326-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.08.076] [PMID: 35981678]
[84]
Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010; 62(1): 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[85]
Kamaci M. Polyurethane-based hydrogels for controlled drug delivery applications. Eur Polym J 2020; 123: 109444.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109444]
[86]
Hsieh CT, Hsu S. Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D Bioprinting. ACS Appl Mater Interfaces 2019; 11(36): 32746-57.
[http://dx.doi.org/10.1021/acsami.9b10784] [PMID: 31407899]
[87]
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. Trends Analyt Chem 2016; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[88]
Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des Devel Ther 2018; 12: 3117-45.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[89]
Lanao RPF, Jonker AM, Wolke JGC, Jansen JA, van Hest JCM, Leeuwenburgh SCG. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B Rev 2013; 19(4): 380-90.
[http://dx.doi.org/10.1089/ten.teb.2012.0443] [PMID: 23350707]
[90]
Pan Z, Ding J. Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2012; 2(3): 366-77.
[http://dx.doi.org/10.1098/rsfs.2011.0123] [PMID: 23741612]
[91]
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138: 73-91.
[http://dx.doi.org/10.1016/j.actbio.2021.10.045] [PMID: 34728428]
[92]
Wang S, Xiong Y, Chen J, et al. Three dimensional printing bilayer membrane scaffold promotes wound healing. Front Bioeng Biotechnol 2019; 7: 348.
[http://dx.doi.org/10.3389/fbioe.2019.00348] [PMID: 31803738]
[93]
Kamoun EA, Kenawy ERS, Chen X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 2017; 8(3): 217-33.
[http://dx.doi.org/10.1016/j.jare.2017.01.005] [PMID: 28239493]
[94]
Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010; 31(17): 4639-56.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.044] [PMID: 20303169]
[95]
de Oliveira ALM, Moore Z. Treatment of the diabetic foot by offloading: a systematic review. J Wound Care 2015; 24(12): 560-570, 562-.
[http://dx.doi.org/10.12968/jowc.2015.24.12.560] [PMID: 26654736]
[96]
Sahu B, Prusty A, Tudu B. Total contact casting versus traditional dressing in diabetic foot ulcers. J Orthop Surg (Hong Kong) 2018; 26(3): 2309499018802486.
[http://dx.doi.org/10.1177/2309499018802486] [PMID: 30295168]
[97]
Morona JK, Buckley ES, Jones S, Reddin EA, Merlin TL. Comparison of the clinical effectiveness of different off-loading devices for the treatment of neuropathic foot ulcers in patients with diabetes: a systematic review and meta-analysis. Diabetes Metab Res Rev 2013; 29(3): 183-93.
[http://dx.doi.org/10.1002/dmrr.2386] [PMID: 23303652]
[98]
Cavanagh PR, Bus SA. Off-loading the diabetic foot for ulcer prevention and healing. J Vasc Surg 2010; 52(3) (Suppl.): 37S-43S.
[http://dx.doi.org/10.1016/j.jvs.2010.06.007] [PMID: 20804932]
[99]
Armstrong DG, Lavery LA, Wu S, Boulton AJM. Evaluation of removable and irremovable cast walkers in the healing of diabetic foot wounds: a randomized controlled trial. Diabetes Care 2005; 28(3): 551-4.
[http://dx.doi.org/10.2337/diacare.28.3.551] [PMID: 15735186]
[100]
Lebrun E, Tomic-Canic M, Kirsner RS. The role of surgical debridement in healing of diabetic foot ulcers. Wound Repair Regen 2010; 18(5): 433-8.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00619.x] [PMID: 20840517]
[101]
Margolin L, Gialanella P. Assessment of the antimicrobial properties of maggots. Int Wound J 2010; 7(3): 202-4.
[http://dx.doi.org/10.1111/j.1742-481X.2010.00234.x] [PMID: 20455959]
[102]
Jimenez JC, Agnew PS, Mayer P, et al. Enzymatic debridement of chronic nonischemic diabetic foot ulcers: results of a randomized, controlled trial. Wounds 2017; 29(5): 133-9.
[PMID: 28267678]
[103]
Apelqvist J. Diagnostics and treatment of the diabetic foot. Endocrine 2012; 41(3): 384-97.
[http://dx.doi.org/10.1007/s12020-012-9619-x] [PMID: 22367583]
[104]
Lepäntalo M, Apelqvist J, Setacci C, et al. Chapter V: Diabetic foot. Eur J Vasc Endovasc Surg 2011; 42 (Suppl. 2): S60-74.
[http://dx.doi.org/10.1016/S1078-5884(11)60012-9] [PMID: 22172474]
[105]
Borys S, Hohendorff J, Frankfurter C, Kiec-Wilk B, Malecki MT. Negative pressure wound therapy use in diabetic foot syndrome-from mechanisms of action to clinical practice. Eur J Clin Invest 2019; 49(4): e13067.
[http://dx.doi.org/10.1111/eci.13067] [PMID: 30600541]
[106]
Karam RA, Rezk NA, Abdel Rahman TM, Al Saeed M. Effect of negative pressure wound therapy on molecular markers in diabetic foot ulcers. Gene 2018; 667: 56-61.
[http://dx.doi.org/10.1016/j.gene.2018.05.032] [PMID: 29758297]
[107]
Ma Z, Li Z, Shou K, et al. Negative pressure wound therapy: Regulating blood flow perfusion and microvessel maturation through microvascular pericytes. Int J Mol Med 2017; 40(5): 1415-25.
[http://dx.doi.org/10.3892/ijmm.2017.3131] [PMID: 28901392]
[108]
Jung JA, Yoo KH, Han SK, et al. Influence of negative-pressure wound therapy on tissue oxygenation in diabetic Feet. Adv Skin Wound Care 2016; 29(8): 364-70.
[http://dx.doi.org/10.1097/01.ASW.0000483038.18331.a4] [PMID: 27429242]
[109]
Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care (New Rochelle) 2013; 2(7): 348-56.
[http://dx.doi.org/10.1089/wound.2012.0412] [PMID: 24587972]
[110]
Li Y, Xu T, Tu Z, et al. Bioactive antibacterial silica-based nanocomposites hydrogel scaffolds with high angiogenesis for promoting diabetic wound healing and skin repair. Theranostics 2020; 10(11): 4929-43.
[http://dx.doi.org/10.7150/thno.41839] [PMID: 32308759]
[111]
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer (Guildf) 2008; 49(8): 1993-2007.
[http://dx.doi.org/10.1016/j.polymer.2008.01.027]
[112]
Cyrus BW. 2021.Hydrogel, methods of fabrication and uses thereof. WO2021206629A1,
[113]
Masaya I, Kasahara S, Ping GJ, Takayuki K, Takayuki N. 2021.Hydrogel and method for producing hydrogel. US Patent 20210054153A1,
[114]
Alessandro S, Luigi A, Luigi N, Christian D. 2014.Polymer hydrogels and methods of preparation thereof. US Patent 8658147B2,
[115]
Kumar A. 2012.Hydrogel scaffolds for tissue engineering. WO Patent 2012176023A1,
[116]
Siol W. 2012.Hydrogel. US Patent 8329763B2,
[117]
Laure D, Marc BJ. 2011.Combination of chitosan film and hydrogel, and surgical uses thereof. EP Patent 2288744A1,
[118]
Dong PK, Ki JY, Min PK. 2011.In situ forming hydrogel and biomedical uses thereof. WO Patent 2011002249A2,
[119]
Ron ES, Eric E, Yishai Z. 2007.Use of polymeric materials with other substances for improved performance. CA Patent 2646066A1,
[120]
Schneider JP, Pochan DJ. 2006.Novel hydrogel and uses thereof. WO Patent 2006076042A2,
[121]
Dvaid BM, Xuan Z. 2003.Hydrogel derived from chitosan and poly(ethylene glycol) or related polymers. US Patent 6602952B1,
[122]
Rehman SR, Augustine R, Zahid AA, Ahmed R, Tariq M, Hasan A. Reduced graphene oxide incorporated gelma hydrogel promotes angiogenesis for wound healing applications. Int J Nanomedicine 2019; 14: 9603-17.
[http://dx.doi.org/10.2147/IJN.S218120] [PMID: 31824154]
[123]
Naahidi S, Jafari M, Logan M, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. In: Biotechnology Advances. Elsevier Inc. 2017; 35: pp. 530-44.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.006]
[124]
Huang LC, Wang HC, Chen LH, et al. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics 2019; 9(23): 7072-87.
[http://dx.doi.org/10.7150/thno.35803] [PMID: 31660087]
[125]
Wang Z, Li W, Gou L, et al. Biodegradable and antioxidant dna hydrogel as a cytokine delivery system for diabetic wound healing. Adv Healthc Mater 2022; 11(21): 2200782.
[http://dx.doi.org/10.1002/adhm.202200782] [PMID: 36101484]
[126]
Buwalda SJ, Vermonden T, Hennink WE. Hydrogels for therapeutic delivery: current developments and future directions. Biomacromolecules 2017; 18(2): 316-30.
[http://dx.doi.org/10.1021/acs.biomac.6b01604] [PMID: 28027640]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy