Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Mini-Review Article

Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease

Author(s): Tong Wang* and Zi-hui Xu

Volume 26, Issue 11, 2023

Published on: 14 February, 2023

Page: [1929 - 1944] Pages: 16

DOI: 10.2174/1386207326666230119101011

Price: $65

Abstract

Fatty liver disease (FLD), which includes both non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), is a worldwide health concern. The etiology of ALD is long-term alcohol consumption, while NAFLD is defined as an abnormal amount of lipid present in liver cells, which is not caused by alcohol intake and has recently been identified as a hepatic manifestation of metabolic syndrome (such as type 2 diabetes, obesity, hypertension, and obesity). Inflammation, oxidative stress, and lipid metabolic dysregulation are all known to play a role in FLD progression. Alternative and natural therapies are desperately needed to treat this disease since existing pharmaceuticals are mostly ineffective. The aldose reductase (AR)/polyol pathway has recently been shown to play a role in developing FLD by contributing to inflammation, oxidative stress, apoptosis, and fat accumulation. Herein, we review the effects of plantderived compounds capable of inhibiting AR in FLD models. Natural AR inhibitors have been found to improve FLD in part by suppressing inflammation, oxidative stress, and steatosis via the regulation of several critical pathways, including the peroxisome proliferator-activated receptor (PPAR) pathway, cytochrome P450 2E1 (CYP2E1) pathway, AMP-activated protein kinase (AMPK) pathway, etc. This review revealed that natural compounds with AR inhibitory effects are a promising class of therapeutic agents for FLD.

Next »
Graphical Abstract

[1]
Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Primers, 2018, 4(1), 16.
[http://dx.doi.org/10.1038/s41572-018-0014-7] [PMID: 30115921]
[2]
Nagy, L.E.; Ding, W.X.; Cresci, G.; Saikia, P.; Shah, V.H. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology, 2016, 150(8), 1756-1768.
[http://dx.doi.org/10.1053/j.gastro.2016.02.035] [PMID: 26919968]
[3]
Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[4]
Huang, S.; Mu, F.; Li, F.; Wang, W.; Chen, H.; Lei, L.; Ma, Y.; Ding, Y.; Wang, J. A Network-based approach to explore the mechanism and bioactive compounds of erzhi pill against metabolic dysfunction-associated fatty liver disease. J. Diabetes Res., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/7867245] [PMID: 32724826]
[5]
Pais, R.; Barritt, A.S., IV; Calmus, Y.; Scatton, O.; Runge, T.; Lebray, P.; Poynard, T.; Ratziu, V.; Conti, F. NAFLD and liver transplantation: Current burden and expected challenges. J. Hepatol., 2016, 65(6), 1245-1257.
[http://dx.doi.org/10.1016/j.jhep.2016.07.033] [PMID: 27486010]
[6]
Xue, L.J.; Han, J.Q.; Zhou, Y.C.; Peng, H.Y.; Yin, T.F.; Li, K.M.; Yao, S.K. Untargeted metabolomics characteristics of nonobese nonalcoholic fatty liver disease induced by high-temperature-processed feed in Sprague-Dawley rats. World J. Gastroenterol., 2020, 26(46), 7299-7311.
[http://dx.doi.org/10.3748/wjg.v26.i46.7299] [PMID: 33362385]
[7]
Giorda, C.; Forlani, G.; Manti, R.; Mazzella, N.; De Cosmo, S.; Rossi, M.C.; Nicolucci, A.; Russo, G.; Di Bartolo, P.; Ceriello, A.; Guida, P. Occurrence over time and regression of nonalcoholic fatty liver disease in type 2 diabetes. Diabetes Metab. Res. Rev., 2017, 33(4), e2878.
[http://dx.doi.org/10.1002/dmrr.2878] [PMID: 28032449]
[8]
Filipovic, B.; Lukic, S.; Mijac, D.; Marjanovic-Haljilji, M.; Vojnovic, M.; Bogdanovic, J.; Glisic, T.; Filipovic, N.; Al Kiswani, J.; Djokovic, A.; Kapor, S.; Kapor, S.; Bukumiric, Z.; Starcevic, A. The new therapeutic approaches in the treatment of non-alcoholic fatty liver disease. Int. J. Mol. Sci., 2021, 22(24), 13219.
[http://dx.doi.org/10.3390/ijms222413219] [PMID: 34948020]
[9]
Gyamfi, M.A.; Damjanov, I.; French, S.; Wan, Y.J.Y. The pathogenesis of ethanol versus methionine and choline deficient diet-induced liver injury. Biochem. Pharmacol., 2008, 75(4), 981-995.
[http://dx.doi.org/10.1016/j.bcp.2007.09.030] [PMID: 18036573]
[10]
Qiu, L.; Guo, C.; Hua, B. Aldose reductase inhibitors of plant origin in the prevention and treatment of alcoholic liver disease: A minireview. BioMed Res. Int., 2019, 2019, 1-8.
[http://dx.doi.org/10.1155/2019/3808594] [PMID: 31321234]
[11]
Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(1), 32-42.
[http://dx.doi.org/10.1038/nrgastro.2016.147] [PMID: 27729660]
[12]
Oates, P. Aldose reductase, still a compelling target for diabetic neuropathy. Curr. Drug Targets, 2008, 9(1), 14-36.
[http://dx.doi.org/10.2174/138945008783431781] [PMID: 18220710]
[13]
Penning, T.M. The aldo-keto reductases (AKRs): Overview. Chem. Biol. Interact., 2015, 234, 236-246.
[http://dx.doi.org/10.1016/j.cbi.2014.09.024] [PMID: 25304492]
[14]
Cumbie, B.C.; Hermayer, K.L. Current concepts in targeted therapies for the pathophysiology of diabetic microvascular complications. Vasc. Health Risk Manag., 2007, 3(6), 823-832.
[PMID: 18200803]
[15]
Wang, M.; Chen, W.Y.; Zhang, J.; Gobejishvili, L.; Barve, S.S.; McClain, C.J.; Joshi-Barve, S. Elevated fructose and uric acid through aldose reductase contribute to experimental and human alcoholic liver disease. Hepatology, 2020, 72(5), 1617-1637.
[http://dx.doi.org/10.1002/hep.31197] [PMID: 32086945]
[16]
Sanchez-Lozada, L.G.; Andres-Hernando, A.; Garcia-Arroyo, F.E.; Cicerchi, C.; Li, N.; Kuwabara, M.; Roncal-Jimenez, C.A.; Johnson, R.J.; Lanaspa, M.A. Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. J. Biol. Chem., 2019, 294(11), 4272-4281.
[http://dx.doi.org/10.1074/jbc.RA118.006158] [PMID: 30651350]
[17]
Qiu, L.; Lin, J.; Ying, M.; Chen, W.; Yang, J.; Deng, T.; Chen, J.; Shi, D.; Yang, J.Y. Aldose reductase is involved in the development of murine diet-induced nonalcoholic steatohepatitis. PLoS One, 2013, 8(9), e73591.
[http://dx.doi.org/10.1371/journal.pone.0073591] [PMID: 24066058]
[18]
Shi, C.; Wang, Y.; Gao, J.; Chen, S.; Zhao, X.; Cai, C.; Guo, C.; Qiu, L. Inhibition of aldose reductase ameliorates alcoholic liver disease by activating AMPK and modulating oxidative stress and inflammatory cytokines. Mol. Med. Rep., 2017, 16(3), 2767-2772.
[http://dx.doi.org/10.3892/mmr.2017.6895] [PMID: 28677809]
[19]
Chen, T.; Shi, D.; Chen, J.; Yang, Y.; Qiu, M.; Wang, W.; Qiu, L. Inhibition of aldose reductase ameliorates diet-induced nonalcoholic steatohepatitis in mice via modulating the phosphorylation of hepatic peroxisome proliferator-activated receptor α. Mol. Med. Rep., 2015, 11(1), 303-308.
[http://dx.doi.org/10.3892/mmr.2014.2713] [PMID: 25333350]
[20]
Qiu, L.; Cai, C.; Zhao, X.; Fang, Y.; Tang, W.; Guo, C. Inhibition of aldose reductase ameliorates ethanol-induced steatosis in HepG2 cells. Mol. Med. Rep., 2017, 15(5), 2732-2736.
[http://dx.doi.org/10.3892/mmr.2017.6313] [PMID: 28447762]
[21]
Le, Y.; Chen, L.; Zhang, Y.; Bu, P.; Dai, G.; Cheng, X. Epalrestat stimulated oxidative stress, inflammation, and fibrogenesis in mouse liver. Toxicol. Sci., 2018, 163(2), 397-408.
[http://dx.doi.org/10.1093/toxsci/kfx038]
[22]
Veeresham, C.; Rama Rao, A.; Asres, K. Aldose reductase inhibitors of plant origin. Phytother. Res., 2014, 28(3), 317-333.
[http://dx.doi.org/10.1002/ptr.5000] [PMID: 23674239]
[23]
Manzanaro, S.; Salvá, J.; de la Fuente, J.Á. Phenolic marine natural products as aldose reductase inhibitors. J. Nat. Prod., 2006, 69(10), 1485-1487.
[http://dx.doi.org/10.1021/np0503698] [PMID: 17067167]
[24]
Yang, H.; Yang, T.; Heng, C.; Zhou, Y.; Jiang, Z.; Qian, X.; Du, L.; Mao, S.; Yin, X.; Lu, Q. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice. Phytother. Res., 2019, 33(12), 3140-3152.
[http://dx.doi.org/10.1002/ptr.6486] [PMID: 31452288]
[25]
Devipriya, N.; Sudheer, A.R.; Srinivasan, M.; Menon, V.P. Effect of ellagic acid, a plant polyphenol, on fibrotic markers (MMPs and TIMPs) during alcohol-induced hepatotoxicity. Toxicol. Mech. Methods, 2007, 17(6), 349-356.
[http://dx.doi.org/10.1080/15376510601077003] [PMID: 20020958]
[26]
Lee, H.I.; McGregor, R.A.; Choi, M.S.; Seo, K.I.; Jung, U.J.; Yeo, J.; Kim, M.J.; Lee, M.K. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci., 2013, 93(18-19), 693-699.
[http://dx.doi.org/10.1016/j.lfs.2013.09.014] [PMID: 24063989]
[27]
Yan, H.; Gao, Y.Q.; Zhang, Y.; Wang, H.; Liu, G.S.; Lei, J.Y. Chlorogenic acid alleviates autophagy and insulin resistance by suppressing JNK pathway in a rat model of nonalcoholic fatty liver disease. J. Biosci., 2018, 43(2), 287-294.
[http://dx.doi.org/10.1007/s12038-018-9746-5] [PMID: 29872017]
[28]
Sharma, P.; Arora, A. Clinical presentation of alcoholic liver disease and non-alcoholic fatty liver disease: Spectrum and diagnosis. Transl. Gastroenterol. Hepatol., 2020, 5, 19.
[http://dx.doi.org/10.21037/tgh.2019.10.02] [PMID: 32258523]
[29]
Xiao, J.; Wang, F.; Wong, N.K.; Lv, Y.; Liu, Y.; Zhong, J.; Chen, S.; Li, W.; Koike, K.; Liu, X.; Wang, H. Epidemiological realities of alcoholic liver disease: Global burden, research trends, and therapeutic promise. Gene Expr., 2020, 20(2), 105-118.
[http://dx.doi.org/10.3727/105221620X15952664091823] [PMID: 32690129]
[30]
Tsukamoto, H.; Machida, K.; Dynnyk, A.; Mkrtchyan, H. “Second hit” models of alcoholic liver disease. Semin. Liver Dis., 2009, 29(2), 178-187.
[http://dx.doi.org/10.1055/s-0029-1214373] [PMID: 19387917]
[31]
Namachivayam, A.; Valsala Gopalakrishnan, A. A review on molecular mechanism of alcoholic liver disease. Life Sci., 2021, 274, 119328.
[http://dx.doi.org/10.1016/j.lfs.2021.119328] [PMID: 33711388]
[32]
Petagine, L.; Zariwala, M.G.; Patel, V.B. Alcoholic liver disease: Current insights into cellular mechanisms. World J. Biol. Chem., 2021, 12(5), 87-103.
[http://dx.doi.org/10.4331/wjbc.v12.i5.87] [PMID: 34630912]
[33]
Seitz, H.K.; Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer, 2007, 7(8), 599-612.
[http://dx.doi.org/10.1038/nrc2191] [PMID: 17646865]
[34]
Bailey, S.M.; Cunningham, C.C. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. The full list of papers may be found on the homepage of the journal. Free Radic. Biol. Med., 2002, 32(1), 11-16.
[http://dx.doi.org/10.1016/S0891-5849(01)00769-9] [PMID: 11755312]
[35]
Cederbaum, A.I. Nrf2 and antioxidant defense against CYP2E1 toxicity. Subcell. Biochem., 2013, 67, 105-130.
[http://dx.doi.org/10.1007/978-94-007-5881-0_2] [PMID: 23400918]
[36]
Sheriff, L.; Khan, R.S.; Saborano, R.; Wilkin, R.; Luu, N.T.; Gunther, U.L.; Hubscher, S.G.; Newsome, P.N.; Lalor, P.F. Alcoholic hepatitis and metabolic disturbance in female mice : A more tractable model than Nrf2-/- animals. Dis. Model. Mech., 2020, 13(12), dmm.046383.
[http://dx.doi.org/10.1242/dmm.046383] [PMID: 33067186]
[37]
Mueller, S.; Peccerella, T.; Qin, H.; Glassen, K.; Waldherr, R.; Flechtenmacher, C.; Straub, B.K.; Millonig, G.; Stickel, F.; Bruckner, T.; Bartsch, H.; Seitz, H.K. Carcinogenic etheno DNA adducts in alcoholic liver disease: Correlation with cytochrome P-4502E1 and fibrosis. Alcohol. Clin. Exp. Res., 2018, 42(2), 252-259.
[http://dx.doi.org/10.1111/acer.13546] [PMID: 29120493]
[38]
You, M.; Fischer, M.; Deeg, M.A.; Crabb, D.W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem., 2002, 277(32), 29342-29347.
[http://dx.doi.org/10.1074/jbc.M202411200] [PMID: 12036955]
[39]
Galli, A.; Pinaire, J.; Fischer, M.; Dorris, R.; Crabb, D.W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor alpha is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem., 2001, 276(1), 68-75.
[http://dx.doi.org/10.1074/jbc.M008791200] [PMID: 11022051]
[40]
Parker, R.; Kim, S.J.; Gao, B. Alcohol, adipose tissue and liver disease: Mechanistic links and clinical considerations. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 50-59.
[http://dx.doi.org/10.1038/nrgastro.2017.116] [PMID: 28930290]
[41]
Dolganiuc, A.; Thomes, P.G.; Ding, W.X.; Lemasters, J.J.; Donohue, T.M., Jr Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res., 2012, 36(8), 1301-1308.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01742.x] [PMID: 22551004]
[42]
Kesar, V.; Odin, J.A. Toll-like receptors and liver disease. Liver International, 2014, 34(2), 184-196.
[http://dx.doi.org/10.1111/liv.12315]
[43]
Mihm, S. Danger-associated molecular patterns (DAMPs): Molecular triggers for sterile inflammation in the liver. Int. J. Mol. Sci., 2018, 19(10), 3104.
[http://dx.doi.org/10.3390/ijms19103104] [PMID: 30309020]
[44]
Cotter, T.G.; Rinella, M. Nonalcoholic fatty liver disease 2020: The state of the disease. Gastroenterology, 2020, 158(7), 1851-1864.
[http://dx.doi.org/10.1053/j.gastro.2020.01.052] [PMID: 32061595]
[45]
Day, C.P.; James, O.F.W. Steatohepatitis: A tale of two “hits”? Gastroenterology, 1998, 114(4), 842-845.
[http://dx.doi.org/10.1016/S0016-5085(98)70599-2] [PMID: 9547102]
[46]
Imajo, K.; Yoneda, M.; Kessoku, T.; Ogawa, Y.; Maeda, S.; Sumida, Y.; Hyogo, H.; Eguchi, Y.; Wada, K.; Nakajima, A. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int. J. Mol. Sci., 2013, 14(11), 21833-21857.
[http://dx.doi.org/10.3390/ijms141121833] [PMID: 24192824]
[47]
Tilg, H.; Moschen, A.R. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology, 2010, 52(5), 1836-1846.
[http://dx.doi.org/10.1002/hep.24001] [PMID: 21038418]
[48]
Loomba, R.; Friedman, S.L.; Shulman, G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 2021, 184(10), 2537-2564.
[http://dx.doi.org/10.1016/j.cell.2021.04.015] [PMID: 33989548]
[49]
Pafili, K.; Roden, M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol. Metab., 2021, 50, 101122.
[http://dx.doi.org/10.1016/j.molmet.2020.101122] [PMID: 33220492]
[50]
Wree, A.; Broderick, L.; Canbay, A.; Hoffman, H.M.; Feldstein, A.E. From NAFLD to NASH to cirrhosis-New insights into disease mechanisms. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(11), 627-636.
[http://dx.doi.org/10.1038/nrgastro.2013.149] [PMID: 23958599]
[51]
Powell, E.E.; Wong, V.W.S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet, 2021, 397(10290), 2212-2224.
[http://dx.doi.org/10.1016/S0140-6736(20)32511-3] [PMID: 33894145]
[52]
Lanaspa, M.A.; Ishimoto, T.; Li, N.; Cicerchi, C.; Orlicky, D.J.; Ruzycki, P.; Rivard, C.; Inaba, S.; Roncal-Jimenez, C.A.; Bales, E.S.; Diggle, C.P.; Asipu, A.; Petrash, J.M.; Kosugi, T.; Maruyama, S.; Sanchez-Lozada, L.G.; McManaman, J.L.; Bonthron, D.T.; Sautin, Y.Y.; Johnson, R.J. Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nat. Commun., 2013, 4(1), 2434.
[http://dx.doi.org/10.1038/ncomms3434] [PMID: 24022321]
[53]
Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang, D.H.; Tolan, D.R.; Sanchez-Lozada, L.G.; Rosen, H.R.; Lanaspa, M.A.; Diehl, A.M.; Johnson, R.J. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol., 2018, 68(5), 1063-1075.
[http://dx.doi.org/10.1016/j.jhep.2018.01.019] [PMID: 29408694]
[54]
Gao, H.; Guan, T.; Li, C.; Zuo, G.; Yamahara, J.; Wang, J.; Li, Y. Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: Modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evid. Based Complement. Alternat. Med., 2012, 2012, 570948.
[http://dx.doi.org/10.1155/2012/570948]
[55]
Song, D. Aldose reductase regulates IRS-1 and LKB1-AMPKα signaling to promote insulin resistance, obesity and NAFLD., Dissertation, Xiamen University, 2015, (In Chinese).
[56]
Qiu, L.; Lin, J.; Xu, F.; Gao, Y.; Zhang, C.; Liu, Y.; Luo, Y.; Yang, J.Y. Inhibition of aldose reductase activates hepatic peroxisome proliferator-activated receptor-α and ameliorates hepatosteatosis in diabetic db/db mice. Exp. Diabetes Res., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/789730] [PMID: 22110479]
[57]
Qiu, L.; Wu, X.; Chau, J.F.L.; Szeto, I.Y.Y.; Tam, W.Y.; Guo, Z.; Chung, S.K.; Oates, P.J.; Chung, S.S.M.; Yang, J.Y. Aldose reductase regulates hepatic peroxisome proliferator-activated receptor alpha phosphorylation and activity to impact lipid homeostasis. J. Biol. Chem., 2008, 283(25), 17175-17183.
[http://dx.doi.org/10.1074/jbc.M801791200] [PMID: 18445591]
[58]
Asadipooya, K.; Lankarani, K.B.; Raj, R.; Kalantarhormozi, M. RAGE is a potential cause of onset and progression of nonalcoholic fatty liver disease. Int. J. Endocrinol., 2019, 2019, 1-11.
[http://dx.doi.org/10.1155/2019/2151302] [PMID: 31641351]
[59]
Takeuchi, M.; Takino, J.; Sakasai-Sakai, A.; Takata, T.; Tsutsumi, M. Toxic AGE (TAGE) theory for the pathophysiology of the onset/progression of NAFLD and ALD. Nutrients, 2017, 9(6), 634.
[http://dx.doi.org/10.3390/nu9060634] [PMID: 28632197]
[60]
Singh, M.; Kapoor, A.; Bhatnagar, A. Physiological and pathological roles of aldose reductase. Metabolites, 2021, 11(10), 655.
[http://dx.doi.org/10.3390/metabo11100655] [PMID: 34677370]
[61]
Wu, J.; Jin, Z.; Yan, L.J. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol., 2017, 11, 51-59.
[http://dx.doi.org/10.1016/j.redox.2016.11.003] [PMID: 27888691]
[62]
Singh, M.; Kapoor, A.; Bhatnagar, A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem. Biol. Interact., 2015, 234, 261-273.
[http://dx.doi.org/10.1016/j.cbi.2014.12.028] [PMID: 25559856]
[63]
Srivastava, S.K.; Yadav, U.C.S.; Reddy, A.B.M.; Saxena, A.; Tammali, R.; Shoeb, M.; Ansari, N.H.; Bhatnagar, A.; Petrash, M.J.; Srivastava, S.; Ramana, K.V. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact., 2011, 191(1-3), 330-338.
[http://dx.doi.org/10.1016/j.cbi.2011.02.023] [PMID: 21354119]
[64]
Han, K.H.; Hashimoto, N.; Fukushima, M. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes. World J. Gastroenterol., 2016, 22(1), 37-49.
[http://dx.doi.org/10.3748/wjg.v22.i1.37] [PMID: 26755859]
[65]
Ji, Y.; Yin, Y.; Sun, L.; Zhang, W. The molecular and mechanistic insights based on gut-liver axis: Nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement. Int. J. Mol. Sci., 2020, 21(9), 3066.
[http://dx.doi.org/10.3390/ijms21093066] [PMID: 32357561]
[66]
Ceni, E.; Mello, T.; Galli, A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol., 2014, 20(47), 17756-17772.
[http://dx.doi.org/10.3748/wjg.v20.i47.17756] [PMID: 25548474]
[67]
Ramana, K.V.; Fadl, A.A.; Tammali, R.; Reddy, A.B.M.; Chopra, A.K.; Srivastava, S.K. Aldose reductase mediates the lipopolysaccharide-induced release of inflammatory mediators in RAW264.7 murine macrophages. J. Biol. Chem., 2006, 281(44), 33019-33029.
[http://dx.doi.org/10.1074/jbc.M603819200] [PMID: 16956889]
[68]
Shoeb, M.; Yadav, U.C.S.; Srivastava, S.K.; Ramana, K.V. Inhibition of aldose reductase prevents endotoxin-induced inflammation by regulating the arachidonic acid pathway in murine macrophages. Free Radic. Biol. Med., 2011, 51(9), 1686-1696.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.024] [PMID: 21856412]
[69]
Hotta, N.; Kawamori, R.; Fukuda, M.; Shigeta, Y. Long‐term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: Multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet. Med., 2012, 29(12), 1529-1533.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03684.x] [PMID: 22507139]
[70]
Zock, J. Applications of high content screening in life science research. Comb. Chem. High Throughput Screen., 2009, 12(9), 870-876.
[http://dx.doi.org/10.2174/138620709789383277] [PMID: 19938341]
[71]
Quattrini, L.; La Motta, C. Aldose reductase inhibitors: 2013-present. Expert Opin. Ther. Pat., 2019, 29(3), 199-213.
[http://dx.doi.org/10.1080/13543776.2019.1582646] [PMID: 30760060]
[72]
de la Fuente, J.Á.; Manzanaro, S. Aldose reductase inhibitors from natural sources. Nat. Prod. Rep., 2003, 20(2), 243-251.
[http://dx.doi.org/10.1039/b204709h] [PMID: 12735699]
[73]
Terashima, S.; Shimizu, M.; Horie, S.; Morita, N. Studies on aldose reductase inhibitors from natural products. IV. Constituents and aldose reductase inhibitory effect of Chrysanthemum morifolium, Bixa orellana and Ipomoea batatas. Chem. Pharm. Bull. (Tokyo), 1991, 39(12), 3346-3347.
[http://dx.doi.org/10.1248/cpb.39.3346] [PMID: 1814628]
[74]
Das, N.; Sikder, K.; Bhattacharjee, S.; Majumdar, S.B.; Ghosh, S.; Majumdar, S.; Dey, S. Quercetin alleviates inflammation after short-term treatment in high-fat-fed mice. Food Funct., 2013, 4(6), 889-898.
[http://dx.doi.org/10.1039/c3fo30241e] [PMID: 23644882]
[75]
Vidyashankar, S.; Sandeep, V.R.; Patki, P.S. Quercetin ameliorate insulin resistance and up-regulates cellular antioxidants during oleic acid induced hepatic steatosis in HepG2 cells. Toxicol. In Vitro, 2013, 27(2), 945-953.
[http://dx.doi.org/10.1016/j.tiv.2013.01.014]
[76]
Marcolin, E.; San-Miguel, B.; Vallejo, D.; Tieppo, J.; Marroni, N.; González-Gallego, J.; Tuñón, M.J. Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic steatohepatitis. J. Nutr., 2012, 142(10), 1821-1828.
[http://dx.doi.org/10.3945/jn.112.165274] [PMID: 22915297]
[77]
Surapaneni, K.M.; Priya, V.V.; Mallika, J. Pioglitazone, quercetin and hydroxy citric acid effect on cytochrome P450 2E1 (CYP2E1) enzyme levels in experimentally induced non alcoholic steatohepatitis (NASH). Eur. Rev. Med. Pharmacol. Sci., 2014, 18(18), 2736-2741.
[PMID: 25317811]
[78]
Zhao, X.; Gong, L.; Wang, C.; Liu, M.; Hu, N.; Dai, X.; Peng, C.; Li, Y. Quercetin mitigates ethanol-induced hepatic steatosis in zebrafish via P2X7R-mediated PI3K/Keap1/Nrf2 signaling pathway. J. Ethnopharmacol., 2021, 268, 113569.
[http://dx.doi.org/10.1016/j.jep.2020.113569] [PMID: 33186701]
[79]
Prysyazhnyuk, V Voloshyn, OJTPIJ Effects of comprehensive treatment with quercetin administration on biochemical blood parameters and pro-and anti-inflammatory cytokines in nonalcoholic fatty liver disease patients 2017, 6, 386-389.
[80]
Pasdar, Y.; Oubari, F.; Zarif, M.N.; Abbasi, M.; Pourmahmoudi, A. Hosseinikia MJCnr: Effects of Quercetin supplementation on hematological parameters in non-alcoholic fatty liver disease: A randomized, double-blind. Placebo-Controlled Pilot Study, 2020, 9(1), 11-19.
[PMID: 32095444]
[81]
Gao, J.; Chen, S.; Qiu, Z.; Fang, L.; Zhang, L.; Guo, C.; Chen, T.; Qiu, L. Myricitrin ameliorates ethanol-induced steatosis in mouse AML12 liver cells by activating AMPK, and reducing oxidative stress and expression of inflammatory cytokines. Mol. Med. Rep., 2018, 17(5), 7381-7387.
[http://dx.doi.org/10.3892/mmr.2018.8740] [PMID: 29568905]
[82]
Kim, Y.J.; Kim, S.R.; Kim, D.Y.; Woo, J.T.; Kwon, E.Y.; Han, Y.; Choi, M.S.; Jung, U.J. Supplementation of the flavonoid myricitrin attenuates the adverse metabolic effects of long-term consumption of a high-fat diet in mice. J. Med. Food, 2019, 22(11), 1151-1158.
[http://dx.doi.org/10.1089/jmf.2018.4341] [PMID: 31549892]
[83]
Kim, D.Y.; Kim, S.R.; Jung, U.J. Myricitrin ameliorates hyperglycemia, glucose intolerance, hepatic steatosis, and inflammation in high-fat diet/streptozotocin-induced diabetic Mice. Int. J. Mol. Sci., 2020, 21(5), 1870.
[http://dx.doi.org/10.3390/ijms21051870] [PMID: 32182914]
[84]
Zhang, J.Q.; Zhou, Y.P. Inhibition of aldose reductase from rat lens by some Chinese herbs and their components. Zhongguo Zhongyao Zazhi, 1989, 14(9), 557-559, 576.
[PMID: 2511877]
[85]
Wang, X.; Chang, X.; Zhan, H.; Zhang, Q.; Li, C.; Gao, Q.; Yang, M.; Luo, Z.; Li, S.; Sun, Y. Curcumin and Baicalin ameliorate ethanol‐induced liver oxidative damage via the Nrf2/HO‐1 pathway. J. Food Biochem., 2020, 44(10), e13425.
[http://dx.doi.org/10.1111/jfbc.13425] [PMID: 32770697]
[86]
Gao, W.; Xu, B.; Zhang, Y.; Liu, S.; Duan, Z.; Chen, Y.; Zhang, X. Baicalin attenuates oxidative stress in a tissue-engineered liver model of nafld by scavenging reactive oxygen species. Nutrients, 2022, 14(3), 541.
[http://dx.doi.org/10.3390/nu14030541] [PMID: 35276900]
[87]
Zhang, J.; Zhang, H.; Deng, X.; Zhang, N.; Liu, B.; Xin, S.; Li, G.; Xu, K. Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice. Life Sci., 2018, 192, 46-54.
[http://dx.doi.org/10.1016/j.lfs.2017.11.027] [PMID: 29158052]
[88]
Qiu, L.; Guo, C. Natural aldose reductase inhibitor: A potential therapeutic agent for non-alcoholic fatty liver disease. Curr. Drug Targets, 2020, 21(6), 599-609.
[http://dx.doi.org/10.2174/1389450120666191007111712] [PMID: 31589122]
[89]
Grewal, A.S.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S. Natural compounds as source of aldose reductase (ar) inhibitors for the treatment of diabetic complications: A mini review. Curr. Drug Metab., 2020, 21(14), 1091-1116.
[http://dx.doi.org/10.2174/1389200221666201016124125] [PMID: 33069193]
[90]
Liu, F.; Ma, Y.; Xu, Y. Taxifolin shows anticataractogenesis and attenuates diabetic retinopathy in stz-diabetic rats via suppression of aldose reductase, oxidative stress, and mapk signaling pathway. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(4), 599-608.
[http://dx.doi.org/10.2174/1871530319666191018122821] [PMID: 31656158]
[91]
Xin, X.; Chen, C.; Hu, Y.Y.; Feng, Q. Protective effect of genistein on nonalcoholic fatty liver disease (NAFLD). Biomed. Pharmacother., 2019, 117, 109047.
[http://dx.doi.org/10.1016/j.biopha.2019.109047] [PMID: 31176163]
[92]
Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a modulator of PPARγ attenuates HFD-induced NAFLD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol., 2017, 136, 136-149.
[http://dx.doi.org/10.1016/j.bcp.2017.04.014] [PMID: 28414138]
[93]
Wang, F.; Liu, J.C.; Zhou, R.J.; Zhao, X.; Liu, M.; Ye, H.; Xie, M.L. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1-mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem. Biol. Interact., 2017, 275, 171-177.
[http://dx.doi.org/10.1016/j.cbi.2017.08.006] [PMID: 28803762]
[94]
Sun, Q.; Zhang, W.; Zhong, W.; Sun, X.; Zhou, Z. Dietary fisetin supplementation protects against alcohol-induced liver injury in mice. Alcohol. Clin. Exp. Res., 2016, 40(10), 2076-2084.
[http://dx.doi.org/10.1111/acer.13172] [PMID: 27575873]
[95]
Gaballah, H.H.; El-Horany, H.E.; Helal, D.S. Mitigative effects of the bioactive flavonol fisetin on high‐fat/high‐sucrose induced nonalcoholic fatty liver disease in rats. J. Cell. Biochem., 2019, 120(8), 12762-12774.
[http://dx.doi.org/10.1002/jcb.28544] [PMID: 30861601]
[96]
Tung, Y.T.; Zeng, J.L.; Ho, S.T.; Xu, J.W.; Li, S.; Wu, J.H. Anti- NAFLD effect of djulis hull and its major compound, rutin, in mice with high-fat diet (HFD)-induced obesity. Antioxidants (Basel, Switzerland), 2021, 10(11)
[97]
Choi, Y.; Seo, H.; Cho, M.; Kim, J.; Chung, H.S.; Lee, I.; Kim, M.J. Rutin inhibits DRP1-mediated mitochondrial fission and prevents ethanol-induced hepatotoxicity in HepG2 cells and zebrafish. Anim. Cells Syst., 2021, 25(1), 74-81.
[http://dx.doi.org/10.1080/19768354.2021.1882565] [PMID: 33717419]
[98]
Federico, A.; Dallio, M.; Loguercio, C. Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules, 2017, 22(2), 191.
[http://dx.doi.org/10.3390/molecules22020191] [PMID: 28125040]
[99]
Khullar, M.; Sharma, A.; Wani, A.; Sharma, N.; Sharma, N.; Chandan, B.K.; Kumar, A.; Ahmed, Z. Acteoside ameliorates inflammatory responses through NFkB pathway in alcohol induced hepatic damage. Int. Immunopharmacol., 2019, 69, 109-117.
[http://dx.doi.org/10.1016/j.intimp.2019.01.020] [PMID: 30703705]
[100]
Kwon, E.Y.; Kim, S.; Choi, M.S. Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity. Nutrients, 2018, 10(8), 979.
[http://dx.doi.org/10.3390/nu10080979] [PMID: 30060507]
[101]
Liu, G.; Zhang, Y.; Liu, C.; Xu, D.; Zhang, R.; Cheng, Y.; Pan, Y.; Huang, C.; Chen, Y. Luteolin alleviates alcoholic liver disease induced by chronic and binge ethanol feeding in mice. J. Nutr., 2014, 144(7), 1009-1015.
[http://dx.doi.org/10.3945/jn.114.193128] [PMID: 24828027]
[102]
Qin, G.; Ma, J.; Huang, Q.; Yin, H.; Han, J.; Li, M.; Deng, Y.; Wang, B.; Hassan, W.; Shang, J. Isoquercetin improves hepatic lipid accumulation by activating ampk pathway and suppressing TGF-β signaling on an HFD-induced nonalcoholic fatty liver disease rat model. Int. J. Mol. Sci., 2018, 19(12), 4126.
[http://dx.doi.org/10.3390/ijms19124126] [PMID: 30572631]
[103]
Zhang, X.; Zhang, Y.; Gao, W.; Guo, Z.; Wang, K.; Liu, S.; Duan, Z.; Chen, Y. Naringin improves lipid metabolism in a tissue-engineered liver model of NAFLD and the underlying mechanisms. Life Sci., 2021, 277, 119487.
[http://dx.doi.org/10.1016/j.lfs.2021.119487] [PMID: 33862107]
[104]
Zhou, C.; Lai, Y.; Huang, P.; Xie, L.; Lin, H.; Zhou, Z.; Mo, C.; Deng, G.; Yan, W.; Gao, Z.; Huang, S.; Chen, Y.; Sun, X.; Lv, Z.; Gao, L. Naringin attenuates alcoholic liver injury by reducing lipid accumulation and oxidative stress. Life Sci., 2019, 216, 305-312.
[http://dx.doi.org/10.1016/j.lfs.2018.07.031] [PMID: 30031061]
[105]
Hu, N.; Liu, J.; Xue, X.; Li, Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur. J. Pharmacol., 2020, 882, 173269.
[http://dx.doi.org/10.1016/j.ejphar.2020.173269] [PMID: 32553811]
[106]
Shen, C.; Pan, Z.; Wu, S.; Zheng, M.; Zhong, C.; Xin, X.; Lan, S.; Zhu, Z.; Liu, M.; Wu, H.; Huang, Q.; Zhang, J.; Liu, Z.; Si, Y.; Tu, H.; Deng, Z.; Yu, Y.; Liu, H.; Zhong, Y.; Guo, J.; Cai, J.; Xian, S. Emodin palliates high-fat diet-induced nonalcoholic fatty liver disease in mice via activating the farnesoid X receptor pathway. J. Ethnopharmacol., 2021, 279, 114340.
[http://dx.doi.org/10.1016/j.jep.2021.114340] [PMID: 34171397]
[107]
Zhan, Z.Y.; Wu, M.; Shang, Y.; Jiang, M.; Liu, J.; Qiao, C.Y.; Ye, H.; Lin, Y.C.; Piao, M.H.; Sun, R.H.; Zhang, Z.H.; Jiao, J.Y.; Wu, Y.L.; Nan, J.X.; Lian, L.H. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis. Food Funct., 2021, 12(1), 362-372.
[http://dx.doi.org/10.1039/D0FO02653K] [PMID: 33325949]
[108]
Ding, C.; Zhao, Y.; Chen, X.; Zheng, Y.; Liu, W.; Liu, X. Taxifolin, a novel food, attenuates acute alcohol-induced liver injury in mice through regulating the NF-κB-mediated inflammation and PI3K/Akt signalling pathways. Pharm. Biol., 2021, 59(1), 866-877.
[http://dx.doi.org/10.1080/13880209.2021.1942504] [PMID: 34225578]
[109]
Lu, Y.; Shao, M.; Xiang, H.; Zheng, P.; Wu, T.; Ji, G. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis. Food Funct., 2020, 11(11), 10058-10069.
[http://dx.doi.org/10.1039/D0FO02123G] [PMID: 33135718]
[110]
Wang, M.; Sun, J.; Jiang, Z.; Xie, W.; Zhang, X. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am. J. Chin. Med., 2015, 43(2), 241-254.
[http://dx.doi.org/10.1142/S0192415X15500160] [PMID: 25787296]
[111]
Aishwarya, V.; Solaipriya, S.; Sivaramakrishnan, V. Role of ellagic acid for the prevention and treatment of liver diseases. Phytother. Res., 2021, 35(6), 2925-2944.
[http://dx.doi.org/10.1002/ptr.7001] [PMID: 33368795]
[112]
Makino-Wakagi, Y.; Yoshimura, Y.; Uzawa, Y.; Zaima, N.; Moriyama, T.; Kawamura, Y. Ellagic acid in pomegranate suppresses resistin secretion by a novel regulatory mechanism involving the degradation of intracellular resistin protein in adipocytes. Biochem. Biophys. Res. Commun., 2012, 417(2), 880-885.
[http://dx.doi.org/10.1016/j.bbrc.2011.12.067] [PMID: 22206671]
[113]
Devipriya, N.; Sudheer, A.R.; Menon, V.P. Dose-response effect of ellagic acid on circulatory antioxidants and lipids during alcohol-induced toxicity in experimental rats. Fundam. Clin. Pharmacol., 2007, 21(6), 621-630.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00551.x] [PMID: 18034663]
[114]
Afrin, R.; Arumugam, S.; Rahman, A.; Wahed, M.I.I.; Karuppagounder, V.; Harima, M.; Suzuki, H.; Miyashita, S.; Suzuki, K.; Yoneyama, H.; Ueno, K.; Watanabe, K. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation. Int. Immunopharmacol., 2017, 44, 174-182.
[http://dx.doi.org/10.1016/j.intimp.2017.01.016] [PMID: 28110063]
[115]
Li, B.; Wang, L.; Lu, Q.; Da, W. Liver injury attenuation by curcumin in a rat NASH model: An Nrf2 activation-mediated effect? Ir. J. Med. Sci., 2016, 185(1), 93-100.
[http://dx.doi.org/10.1007/s11845-014-1226-9] [PMID: 25385666]
[116]
Leclercq, I.A.; Farrell, G.C.; Sempoux, C.; Peña, A.; Horsmans, Y. Curcumin inhibits NF-κB activation and reduces the severity of experimental steatohepatitis in mice. J. Hepatol., 2004, 41(6), 926-934.
[http://dx.doi.org/10.1016/j.jhep.2004.08.010] [PMID: 15582125]
[117]
Kim, C.S.; Kim, J.; Lee, Y.M.; Sohn, E.; Jo, K.; Kim, J.S. Inhibitory effects of chlorogenic acid on aldose reductase activity in vitro and cataractogenesis in galactose-fed rats. Arch. Pharm. Res., 2011, 34(5), 847-852.
[http://dx.doi.org/10.1007/s12272-011-0519-z] [PMID: 21656371]
[118]
Shi, A.; Li, T.; Zheng, Y.; Song, Y.; Wang, H.; Wang, N.; Dong, L.; Shi, H. Chlorogenic acid improves NAFLD by regulating gut microbiota and GLP-1. Front. Pharmacol., 2021, 12, 693048.
[http://dx.doi.org/10.3389/fphar.2021.693048] [PMID: 34276380]
[119]
Buko, V.; Zavodnik, I.; Budryn, G. Zakłos-Szyda, M.; Belonovskaya, E.; Kirko, S.; Żyżelewicz, D.; Zakrzeska, A.; Bakunovich, A.; Rusin, V.; Moroz, V. Chlorogenic acid protects against advanced alcoholic steatohepatitis in rats via modulation of redox homeostasis, inflammation, and lipogenesis. Nutrients, 2021, 13(11), 4155.
[http://dx.doi.org/10.3390/nu13114155] [PMID: 34836410]
[120]
Guo, C.; Shangguan, Y.; Zhang, M.; Ruan, Y.; Xue, G.; Ma, J.; Yang, J.; Qiu, L. Rosmarinic acid alleviates ethanol-induced lipid accumulation by repressing fatty acid biosynthesis. Food Funct., 2020, 11(3), 2094-2106.
[http://dx.doi.org/10.1039/C9FO02357G] [PMID: 32129352]
[121]
Luo, C.; Sun, H.; Peng, J.; Gao, C.; Bao, L.; Ji, R.; Zhang, C.; Zhu, W.; Jin, Y. Rosmarinic acid exerts an antagonistic effect on nonalcoholic fatty liver disease by regulating the YAP1/TAZ‐PPARγ/PGC ‐1α signaling pathway. Phytother. Res., 2021, 35(2), 1010-1022.
[http://dx.doi.org/10.1002/ptr.6865] [PMID: 32914480]
[122]
Wei, Z.; Xue, Y.; Xue, Y.; Cheng, J.; Lv, G.; Chu, L.; Ma, Z.; Guan, S. Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways. J. Pharmacol. Sci., 2021, 147(1), 72-80.
[http://dx.doi.org/10.1016/j.jphs.2021.05.006] [PMID: 34294375]
[123]
Li, C.; Li, L.; Yang, C.; Zhong, Y.; Wu, D.; Shi, L.; Chen, L.; Li, Y. Hepatoprotective effects of Methyl ferulic acid on alcohol-induced liver oxidative injury in mice by inhibiting the NOX4/ROS-MAPK pathway. Biochem. Biophys. Res. Commun., 2017, 493(1), 277-285.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.030] [PMID: 28890346]
[124]
Fanaei, H.; Mard, S.A.; Sarkaki, A.; Goudarzi, G.; Khorsandi, L. Gallic acid protects the liver against NAFLD induced by dust exposure and high-fat diet through inhibiting oxidative stress and repressing the inflammatory signaling pathways NF-kβ/TNF-α/IL-6 in Wistar rats. Avicenna J. Phytomed., 2021, 11(5), 527-540.
[PMID: 34745924]
[125]
Zhou, Y; Jin, H; Wu, Y; Chen, L; Bao, X; Lu, C Gallic acid protects against ethanol-induced hepatocyte necroptosis via an NRF2-dependent mechanism. Toxicology in vitro: An international journal published in association with BIBRA, 2019, 57, 226-232.
[http://dx.doi.org/10.1016/j.tiv.2019.03.008]
[126]
Sasaki, G.Y.; Li, J.; Cichon, M.J.; Kopec, R.E.; Bruno, R.S. Catechin‐rich green tea extract and the loss‐of‐TLR4 signaling differentially alter the hepatic metabolome in mice with nonalcoholic steatohepatitis. Mol. Nutr. Food Res., 2021, 65(2), 2000998.
[http://dx.doi.org/10.1002/mnfr.202000998] [PMID: 33249742]
[127]
Bharrhan, S.; Koul, A.; Chopra, K.; Rishi, P. Catechin suppresses an array of signalling molecules and modulates alcohol-induced endotoxin mediated liver injury in a rat model. PLoS One, 2011, 6(6), e20635.
[http://dx.doi.org/10.1371/journal.pone.0020635] [PMID: 21673994]
[128]
Gan, L.; Cao, Y.; Yuan, J. Effects of (+)-catechin and epigallocatechin gallate on alcoholic fatty liver in mice models. Chin. J. Prev. Med, 2021, 55(11), 1305-1310.
[PMID: 34749473]
[129]
Hidalgo, I.; Nájera, N.; Meaney, E.; Pérez-Durán, J.; Valdespino-Vazquez, Y.; Villarreal, F.; Ceballos, G. Effects of (−)-epicatechin on the time course of the expression of perilipins in a diet-induced model of nonalcoholic steatohepatitis. J. Nutr. Biochem., 2020, 77, 108296.
[http://dx.doi.org/10.1016/j.jnutbio.2019.108296] [PMID: 32007822]
[130]
Nakai, N.; Fujii, Y.; Kobashi, K.; Nomura, K. Aldose reductase inhibitors: Flavonoids, alkaloids, acetophenones, benzophenones, and spirohydantoins of chroman. Arch. Biochem. Biophys., 1985, 239(2), 491-496.
[http://dx.doi.org/10.1016/0003-9861(85)90717-9] [PMID: 2988452]
[131]
Lee, H.S. Rat lens aldose reductase inhibitory activities of Coptis japonica root-derived isoquinoline alkaloids. J. Agric. Food Chem., 2002, 50(24), 7013-7016.
[http://dx.doi.org/10.1021/jf020674o] [PMID: 12428952]
[132]
Zhu, X.; Bian, H.; Wang, L.; Sun, X.; Xu, X.; Yan, H.; Xia, M.; Chang, X.; Lu, Y.; Li, Y.; Xia, P.; Li, X.; Gao, X. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic. Biol. Med., 2019, 141, 192-204.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.019] [PMID: 31226399]
[133]
Mai, W.; Xu, Y.; Xu, J.; Zhao, D.; Ye, L.; Yu, G.; Wang, Z.; Lu, Q.; Lin, J.; Yang, T.; Gu, C.; Liu, S.; Zhong, Y.; Yang, H. Berberine inhibits nod-like receptor family pyrin domain containing 3 inflammasome activation and pyroptosis in nonalcoholic steatohepatitis via the ROS/TXNIP axis. Front. Pharmacol., 2020, 11, 185.
[http://dx.doi.org/10.3389/fphar.2020.00185] [PMID: 32194416]
[134]
Shan, M.; Dai, Y.; Ren, X.; Zheng, J.; Zhang, K.; Chen, B.; Yan, J.; Xu, Z. Berberine mitigates nonalcoholic hepatic steatosis by downregulating SIRT1-FoxO1-SREBP2 pathway for cholesterol synthesis. J. Integr. Med., 2021, 19(6), 545-554.
[http://dx.doi.org/10.1016/j.joim.2021.09.003] [PMID: 34686466]
[135]
Liu, C.; Wang, Z.; Song, Y.; Wu, D.; Zheng, X.; Li, P.; Jin, J.; Xu, N.; Li, L. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. BioMed Res. Int., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/313808] [PMID: 25705654]
[136]
Zhang, P.; Ma, D.; Wang, Y.; Zhang, M.; Qiang, X.; Liao, M.; Liu, X.; Wu, H.; Zhang, Y. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem. Toxicol., 2014, 74, 225-232.
[http://dx.doi.org/10.1016/j.fct.2014.10.005]
[137]
Wang, F.X.; Zhu, N.; Zhou, F.; Lin, D.X. Natural aporphine alkaloids with potential to impact metabolic syndrome. Molecules, 2021, 26(20), 6117.
[http://dx.doi.org/10.3390/molecules26206117] [PMID: 34684698]
[138]
Karimi-Sales, E.; Mohaddes, G.; Alipour, M.R. Hepatoprotection of capsaicin in alcoholic and non-alcoholic fatty liver diseases. Arch. Physiol. Biochem., 2021, 1-11.
[http://dx.doi.org/10.1080/13813455.2021.1962913] [PMID: 34396890]
[139]
Zhu, Y.; Ruan, S.; Shen, H.; Guan, Q.; Zhai, L.; Yang, Y. Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB. Int. Immunopharmacol., 2021, 101(Pt B), 108290.
[http://dx.doi.org/10.1016/j.intimp.2021.108290]
[140]
Yan, S.L.; Huang, C.S.; Mong, M.C.; Yin, M.C. Oridonin attenuates the effects of chronic alcohol consumption inducing oxidative, glycative and inflammatory injury in the mouse liver. In Vivo, 2021, 35(4), 2141-2149.
[http://dx.doi.org/10.21873/invivo.12484] [PMID: 34182490]
[141]
Rao, A.R.; Veeresham, C.; Asres, K. In vitro and in vivo inhibitory activities of four Indian medicinal plant extracts and their major components on rat aldose reductase and generation of advanced glycation endproducts. Phytother. Res., 2013, 27(5), 753-760.
[http://dx.doi.org/10.1002/ptr.4786] [PMID: 22826152]
[142]
Li, S.; Meng, F.; Liao, X.; Wang, Y.; Sun, Z.; Guo, F.; Li, X.; Meng, M.; Li, Y.; Sun, C. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS One, 2014, 9(1), e86724.
[http://dx.doi.org/10.1371/journal.pone.0086724] [PMID: 24489777]
[143]
Ma, X.; Zhang, M.; Fang, G.; Cheng, C.; Wang, M.; Han, Y.; Hou, X.; Hao, E.; Hou, Y.; Bai, G. Ursolic acid reduces hepatocellular apoptosis and alleviates alcohol-induced liver injury via irreversible inhibition of CASP3 in vivo. Acta Pharmacol. Sin., 2021, 42(7), 1101-1110.
[http://dx.doi.org/10.1038/s41401-020-00534-y] [PMID: 33028983]
[144]
Ali, M.Y.; Jung, H.A.; Jannat, S.; Choi, J.S. Dihydroxanthyletin-type coumarins from Angelica decursiva that inhibits the formation of advanced glycation end products and human recombinant aldose reductase. Arch. Pharm. Res., 2018, 41(2), 196-207.
[http://dx.doi.org/10.1007/s12272-017-0999-6] [PMID: 29230690]
[145]
Hui, Y.; Wang, X.; Yu, Z.; Fan, X.; Cui, B.; Zhao, T.; Mao, L.; Feng, H.; Lin, L.; Yu, Q.; Zhang, J.; Wang, B.; Chen, X.; Zhao, X.; Sun, C. Scoparone as a therapeutic drug in liver diseases: Pharmacology, pharmacokinetics and molecular mechanisms of action. Pharmacol. Res., 2020, 160, 105170.
[http://dx.doi.org/10.1016/j.phrs.2020.105170] [PMID: 32877694]
[146]
Wu, Z.; Geng, Y.; Buist-Homan, M.; Moshage, H. Scopoletin and umbelliferone protect hepatocytes against palmitate- and bile acid-induced cell death by reducing endoplasmic reticulum stress and oxidative stress. Toxicol. Appl. Pharmacol., 2022, 436, 115858.
[http://dx.doi.org/10.1016/j.taap.2021.115858] [PMID: 34979142]
[147]
Lee, H.I.; Yun, K.W.; Seo, K.I.; Kim, M.J.; Lee, M.K. Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK–SREBP pathway in diet-induced obese mice. Metabolism, 2014, 63(4), 593-601.
[http://dx.doi.org/10.1016/j.metabol.2014.01.003] [PMID: 24559844]
[148]
Choi, R.Y.; Ham, J.R.; Lee, M.K. Esculetin prevents non-alcoholic fatty liver in diabetic mice fed high-fat diet. Chem. Biol. Interact., 2016, 260, 13-21.
[http://dx.doi.org/10.1016/j.cbi.2016.10.013] [PMID: 27769711]
[149]
Park, Y.; Sung, J.; Yang, J.; Ham, H.; Kim, Y.; Jeong, H.S.; Lee, J. Inhibitory effect of esculetin on free-fatty-acid-induced lipid accumulation in human HepG2 cells through activation of AMP-activated protein kinase. Food Sci. Biotechnol., 2017, 26(1), 263-269.
[http://dx.doi.org/10.1007/s10068-017-0035-0] [PMID: 30263537]
[150]
Pandey, A; Raj, P; Goru, SK; Kadakol, A; Malek, V; Sharma, N; Gaikwad, AB Esculetin ameliorates hepatic fibrosis in high fat diet induced non-alcoholic fatty liver disease by regulation of FoxO1 mediated pathway. Pharmacological reports : PR, 2017, 69(4), 666-672.
[http://dx.doi.org/10.1016/j.pharep.2017.02.005]
[151]
Zhang, Y.; Yang, X.; Wang, S.; Song, S.; Yang, X. Gentiopicroside prevents alcoholic liver damage by improving mitochondrial dysfunction in the rat model. Phytother. Res., 2021, 35(4), 2230-2251.
[http://dx.doi.org/10.1002/ptr.6981] [PMID: 33300653]
[152]
Jeong, H.S.; Kim, K.H.; Lee, I.S.; Park, J.Y.; Kim, Y.; Kim, K.S.; Jang, H.J. Ginkgolide A ameliorates non-alcoholic fatty liver diseases on high fat diet mice. Biomed. Pharmacother., 2017, 88, 625-634.
[http://dx.doi.org/10.1016/j.biopha.2017.01.114] [PMID: 28142119]
[153]
Yang, X.D.; Chen, Z.; Ye, L.; Chen, J.; Yang, Y.Y. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway. Pharm. Biol., 2021, 59(1), 920-930.
[http://dx.doi.org/10.1080/13880209.2021.1945112] [PMID: 34243681]
[154]
Liu, Y.; Liao, L.; Chen, Y.; Han, F. Effects of daphnetin on lipid metabolism, insulin resistance and oxidative stress in OA treated HepG2 cells. Mol. Med. Rep., 2019, 19(6), 4673-4684.
[http://dx.doi.org/10.3892/mmr.2019.10139] [PMID: 30957185]
[155]
Shen, Y.; Zhang, B.; Pang, X.; Yang, R.; Chen, M.; Zhao, J.; Wang, J.; Wang, Z.; Yu, Z.; Wang, Y.; Li, L.; Liu, A.; Du, G. Network pharmacology-based analysis of xiao-xu-ming decoction on the treatment of Alzheimer’s disease. Front. Pharmacol., 2020, 11, 595254.
[http://dx.doi.org/10.3389/fphar.2020.595254] [PMID: 33390981]
[156]
Rocha, S.; Lucas, M.; Ribeiro, D.; Corvo, M.L.; Fernandes, E.; Freitas, M. Nano-based drug delivery systems used as vehicles to enhance polyphenols therapeutic effect for diabetes mellitus treatment. Pharmacol. Res., 2021, 169, 105604.
[http://dx.doi.org/10.1016/j.phrs.2021.105604] [PMID: 33845125]
[157]
Jazayeri-Tehrani, S.A.; Rezayat, S.M.; Mansouri, S.; Qorbani, M.; Alavian, S.M.; Daneshi-Maskooni, M.; Hosseinzadeh-Attar, M.J. Nano-curcumin improves glucose indices, lipids, inflammation, and Nesfatin in overweight and obese patients with non-alcoholic fatty liver disease (NAFLD): A double-blind randomized placebo-controlled clinical trial. Nutr. Metab. (Lond.), 2019, 16(1), 8.
[http://dx.doi.org/10.1186/s12986-019-0331-1] [PMID: 30705687]
[158]
Qi, Y.; Guo, L.; Jiang, Y.; Shi, Y.; Sui, H.; Zhao, L. Brain delivery of quercetin-loaded exosomes improved cognitive function in AD mice by inhibiting phosphorylated tau-mediated neurofibrillary tangles. Drug Deliv., 2020, 27(1), 745-755.
[http://dx.doi.org/10.1080/10717544.2020.1762262] [PMID: 32397764]
[159]
Gao, Z.S.; Zhang, C.J.; Xia, N.; Tian, H.; Li, D.Y.; Lin, J.Q.; Mei, X.F.; Wu, C. Corrigendum to ‘Berberine-loaded M2 macrophage-derived exosomes for spinal cord injury therapy’. Acta Biomater., 2022, 140, 745-746.
[http://dx.doi.org/10.1016/j.actbio.2021.12.002] [PMID: 34969599]
[160]
Li, X.; Wu, D.; Niu, J.; Sun, Y.; Wang, Q.; Yang, B.; Kuang, H. Intestinal flora: A pivotal role in investigation of traditional chinese medicine. Am. J. Chin. Med., 2021, 49(2), 237-268.
[http://dx.doi.org/10.1142/S0192415X21500130] [PMID: 33622213]
[161]
Zhang, Y.; Tang, K.; Deng, Y.; Chen, R.; Liang, S.; Xie, H.; He, Y.; Chen, Y.; Yang, Q. Effects of shenling baizhu powder herbal formula on intestinal microbiota in high-fat diet-induced NAFLD rats. Biomed. Pharmacother., 2018, 102, 1025-1036.
[http://dx.doi.org/10.1016/j.biopha.2018.03.158] [PMID: 29710519]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy