Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Application of Microwave and Ultrasonication for Anthocyanin Extraction Process from Garcinia indica Choisy Fruit Waste and Assessment of Antioxidant Activity using Caenorhabditis elegans Model

Author(s): Rajesh Padumane Shastry* and Srinath Boreddihalli Sriramareddy

Volume 19, Issue 7, 2023

Published on: 21 March, 2023

Article ID: e130123212739 Pages: 12

DOI: 10.2174/1573407219666230113162742

Price: $65

Abstract

Garcinia indica (also known as kokum) is a small evergreen tree that has been used in a variety of culinary, industrial, and pharmacological products, as well as fruit juices and food. In the present study, the antioxidant capacity of anthocyanin extracted from Garcinia indica fruit waste was assessed using DPPH, ABTS assay, and a Caenorhabditis elegans infection model. The independent variables, such as temperature, solvent concentration, microwave exposure, and exposure to ultrasonication were integrated as independent variables in a five-level central composite design using response surface methodology. Based on statistical analysis, the generated models were successfully utilised to analyse the experimental data and determine the best extraction conditions. The rescue effect of anthocyanin was further studied using a paralysis and killing assay in a C. elegans infection model. The extraction yield was 21.0 mg/g under these conditions, with antioxidant activity of 9.9 μg/ml by ABTS assay and 6.6 μg/ml by DPPH assay, respectively. Furthermore, as compared to ethanol leaching extraction, this experimental design increased anthocyanin yield by more than 15 fold. The treatment of anthocyanin with C. elegans from E. coli and Pseudomonas aeruginosa PAO1 infection resulted in a significantly longer lifetime. Garcinia indica fruit waste extracts high in anthocyanins might be employed as natural food colorants and antioxidant additives in food products.

Graphical Abstract

[1]
Palkar, R.S.; Janarthanam, M.K.; Sellappan, K. Prediction of potential distribution and climatic factors influencing Garcinia indica in the Western Ghats of India using ecological niche modeling. Natl. Acad. Sci. Lett., 2020, 43(6), 585-591.
[http://dx.doi.org/10.1007/s40009-020-00918-y]
[2]
Lakshmi, C.; Kumar, K.A.; Dennis, T.J.; Kumar, T.S.S.P.N.S.S. Antibacterial activity of polyphenols of Garcinia indica. Indian J. Pharm. Sci., 2011, 73(4), 470-473.
[http://dx.doi.org/10.4103/0250-474X.95655] [PMID: 22707838]
[3]
Kirana, H.; Srinivasan, B.P. Aqueous extract of Garcinia indica choisy restores glutathione in type 2 diabetic rats. J. Young Pharm., 2010, 2(3), 265-268.
[http://dx.doi.org/10.4103/0975-1483.66806] [PMID: 21042483]
[4]
Shastry, R.P.; Aman, M. Rapid characterization of quorum sensing inhibitory molecules from Garcinia indica Choisy seed methanol extract by GC-MS analysis. Curr. Bioact. Compd., 2020, 16(6), 887-891.
[http://dx.doi.org/10.2174/1573407215666190408120140]
[5]
Liu, C.; Ho, P.C.L.; Wong, F.C.; Sethi, G.; Wang, L.Z.; Goh, B.C. Garcinol: Current status of its anti-oxidative, anti-inflammatory and anti-cancer effects. Cancer Lett., 2015, 362(1), 8-14.
[http://dx.doi.org/10.1016/j.canlet.2015.03.019] [PMID: 25796441]
[6]
Panda, V.; Ashar, H.; Srinath, S. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanolinduced hepatic damage in rodents. Interdiscip. Toxicol., 2012, 5(4), 207-213.
[http://dx.doi.org/10.2478/v10102-012-0034-1] [PMID: 23554565]
[7]
Singh, P.; Roy, T.K.; Kanupriya, C.; Tripathi, P.C.; Kumar, P.; Shivashankara, K.S. Evaluation of bioactive constituents of Garcinia indica (kokum) as a potential source of hydroxycitric acid, anthocyanin, and phenolic compounds. Lebensm. Wiss. Technol., 2022, 156, 112999.
[http://dx.doi.org/10.1016/j.lwt.2021.112999]
[8]
Liu, Y.; Tikunov, Y.; Schouten, R.E.; Marcelis, L.F.M.; Visser, R.G.F.; Bovy, A. Anthocyanin biosynthesis and degradation mechanisms in solanaceous vegetables: A review. Front Chem., 2018, 6, 52.
[http://dx.doi.org/10.3389/fchem.2018.00052] [PMID: 29594099]
[9]
Naseri, R.; Farzaei, F.; Haratipour, P.; Nabavi, S.F.; Habtemariam, S.; Farzaei, M.H.; Khodarahmi, R.; Tewari, D.; Momtaz, S. Anthocyanins in the management of metabolic syndrome: A pharmacological and biopharmaceutical review. Front. Pharmacol., 2018, 9, 1310.
[http://dx.doi.org/10.3389/fphar.2018.01310] [PMID: 30564116]
[10]
Nayak, C.A.; Srinivas, P.; Rastogi, N.K. Characterisation of anthocyanins from Garcinia indica Choisy. Food Chem., 2010, 118(3), 719-724.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.052]
[11]
Bajire, S.K.; Jain, S.; Johnson, R.P.; Shastry, R.P. 6-Methylcoumarin attenuates quorum sensing and biofilm formation in Pseudomonas aeruginosa PAO1 and its applications on solid surface coatings with polyurethane. Appl. Microbiol. Biotechnol., 2021, 105(23), 8647-8661.
[http://dx.doi.org/10.1007/s00253-021-11637-9] [PMID: 34750645]
[12]
Ayuda-Durán, B.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C. Caenorhabditis elegans as a model organism to evaluate the antioxidant effects of phytochemicals. Molecules, 2020, 25(14), 3194.
[http://dx.doi.org/10.3390/molecules25143194] [PMID: 32668705]
[13]
González-Paramás, A.M.; Brighenti, V.; Bertoni, L.; Marcelloni, L.; Ayuda-Durán, B.; González-Manzano, S.; Pellati, F.; Santos-Buelga, C. Assessment of the in vivo antioxidant activity of an anthocyanin-rich bilberry extract using the Caenorhabditis elegans model. Antioxidants, 2020, 9(6), 509.
[http://dx.doi.org/10.3390/antiox9060509] [PMID: 32531930]
[14]
Wang, Y.; Ye, Y.; Wang, L.; Yin, W.; Liang, J. Antioxidant activity and subcritical water extraction of anthocyanin from raspberry process optimization by response surface methodology. Food Biosci., 2021, 44, 101394.
[http://dx.doi.org/10.1016/j.fbio.2021.101394]
[15]
Leichtweis, M.G.; Pereira, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R.; Ferreira, I.C.F.R. Ultrasound as a rapid and low-cost extraction procedure to obtain anthocyanin-based colorants from Prunus spinosa L. fruit epicarp: Comparative study with conventional heat-based extraction. Molecules, 2019, 24(3), 573.
[http://dx.doi.org/10.3390/molecules24030573] [PMID: 30764526]
[16]
Paes, J.; Dotta, R.; Barbero, G.F.; Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids, 2014, 95, 8-16.
[http://dx.doi.org/10.1016/j.supflu.2014.07.025]
[17]
Chaudhary, B.; Mukhopadhyay, K. Solvent optimization for anthocyanin extraction from Syzygium cumini L. Skeels using response surface methodology. Int. J. Food Sci. Nutr., 2013, 64(3), 363-371.
[http://dx.doi.org/10.3109/09637486.2012.738647] [PMID: 23121325]
[18]
Pinela, J.; Prieto, M.A.; Pereira, E.; Jabeur, I.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization of heat- and ultrasound-assisted extraction of anthocyanins from Hibiscus sabdariffa calyces for natural food colorants. Food Chem., 2019, 275, 309-321.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.118] [PMID: 30724201]
[19]
Backes, E.; Pereira, C.; Barros, L.; Prieto, M.A.; Genena, A.K.; Barreiro, M.F.; Ferreira, I.C.F.R. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res. Int., 2018, 113, 197-209.
[http://dx.doi.org/10.1016/j.foodres.2018.07.016] [PMID: 30195514]
[20]
López, C.J.; Caleja, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization and comparison of heat and ultrasound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. fruits. Food Chem., 2018, 264, 81-91.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.103] [PMID: 29853408]
[21]
Keekan, K.K.; Hallur, S.; Modi, P.K.; Shastry, R.P. Antioxidant activity and role of culture condition in the optimization of red pigment production by Talaromyces purpureogenus KKP through response surface methodology. Curr. Microbiol., 2020, 77(8), 1780-1789.
[http://dx.doi.org/10.1007/s00284-020-01995-4] [PMID: 32328751]
[22]
AOAC. Official methods of analysis of the association of official analytical chemists, 17th ed. 2000. Available from: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1687699
[23]
Gao, Y.; Ji, Y.; Wang, F.; Li, W.; Zhang, X.; Niu, Z.; Wang, Z. Optimization the extraction of anthocyanins from blueberry residue by dual-aqueous phase method and cell damage protection study. Food Sci. Biotechnol., 2021, 30(13), 1709-1719.
[http://dx.doi.org/10.1007/s10068-021-00994-w] [PMID: 34925945]
[24]
Rajesh, P.S.; Samaga, P.V.; Ravishankar Rai, V.; Lokanatha Rai, K.M. In vitro biological activity of aromadendrin-4′-methyl ether isolated from root extract of Ventilago madraspatana Gaertn with relevance to anticandidal activity. Nat. Prod. Res., 2015, 29(11), 1042-1045.
[http://dx.doi.org/10.1080/14786419.2014.968152] [PMID: 25299472]
[25]
Shastry, R.P.; Ghate, S.D.; Sukesh Kumar, B.; Srinath, B.S.; Kumar, V. Vanillin derivative inhibits quorum sensing and biofilm formation in Pseudomonas aeruginosa: A study in a Caenorhabditis elegans infection model. Nat. Prod. Res., 2021, 1-6.
[http://dx.doi.org/10.1080/14786419.2021.1887866] [PMID: 33615940]
[26]
Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med., 2018, 13(1), 20.
[http://dx.doi.org/10.1186/s13020-018-0177-x] [PMID: 29692864]
[27]
Rajesh, P.S.; Rai, V.R. Use of aiiA gene amplification for AHL-lactonase production from endophytic bacterium Enterobacter species. Int. J. Biol. Macromol., 2015, 72, 1013-1019.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.09.049] [PMID: 25451751]
[28]
Hu, W.; Gong, H.; Li, L.; Chen, S.; Ye, X. Ultrasound treatment on stability of total and individual anthocyanin extraction from blueberry pomace: Optimization and comparison. Molecules, 2019, 24(14), 2621.
[http://dx.doi.org/10.3390/molecules24142621] [PMID: 31323861]
[29]
Asfaram, A.; Ghaedi, M.; Dashtian, K. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study. Ultrason. Sonochem., 2017, 34, 640-650.
[http://dx.doi.org/10.1016/j.ultsonch.2016.06.018] [PMID: 27773291]
[30]
Chen, X.Q.; Li, Z.H.; Wang, Z.J.; Liu, L.L.; Sun, T.T.; Ma, J.Z.; Zhang, Y. Ultrasound-assisted extraction of total anthocyanins from Rubia sylvatica Nakai fruit and radical scavenging activity of the extract. Ind. Crops Prod., 2020, 150, 112420.
[http://dx.doi.org/10.1016/j.indcrop.2020.112420]
[31]
Nguyen, H.X.; Nguyen, T.B.N.; Bae, W.; Dang, T.Q.C.; Chung, T. An approach for the prediction of optimum conditions for the steam assisted gravity drainage process by response surface methodology. Energy Sources A Recovery Util. Environ. Effects, 2014, 36(10), 1103-1114.
[http://dx.doi.org/10.1080/15567036.2010.545796]
[32]
Xue, H.; Xu, H.; Wang, X.; Shen, L.; Liu, H.; Liu, C.; Qin, Q.; Zheng, X.; Li, Q. Effects of microwave power on extraction kinetic of anthocyanin from blueberry powder considering absorption of microwave energy. J. Food Qual., 2018, 2018, 9680184.
[http://dx.doi.org/10.1155/2018/9680184]
[33]
Chen, F.; Liu, S.; Zhao, Z.; Gao, W.; Ma, Y.; Wang, X.; Yan, S.; Luo, D. Ultrasound pre-treatment combined with microwave-assisted hydrodistillation of essential oils from Perilla frutescens (L.) Britt. leaves and its chemical composition and biological activity. Ind. Crops Prod., 2020, 143, 111908.
[http://dx.doi.org/10.1016/j.indcrop.2019.111908]
[34]
Zhao, J.; Yu, J.; Zhi, Q.; Yuan, T.; Lei, X.; Zeng, K.; Ming, J. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food Funct., 2021, 12(24), 12647-12658.
[http://dx.doi.org/10.1039/D1FO02671B] [PMID: 34821891]
[35]
Nas, J.S.B.; Roxas, C.K.F.; Acero, R.R.G.; Gamit, A.L.P.; Kim, J.P.; Rentutar, J.A.; Ching, A.C.; Saludares, A.Q. Solanum melongena (Eggplant) crude anthocyanin extract and delphinidin-3- glucoside protects Caenorhabditis elegans against Staphylococcus aureus and Klebsiella pneumoniae. Philipp. J. Health. Res. dev., 2019, 23(4), 17-24.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy