Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Exploring Potential Non-steroidal Aromatase Inhibitors for Therapeutic Application against Estrogen-dependent Breast Cancer

Author(s): Khushboo Pandey, Kiran Bharat Lokhande, Achintya Saha, Arvind Goja, Kakumani Venkateswara Swamy and Shuchi Nagar*

Volume 19, Issue 4, 2023

Published on: 31 January, 2023

Page: [243 - 257] Pages: 15

DOI: 10.2174/1573409919666230112170025

Price: $65

Abstract

Background: Breast cancer is one of the most commonly diagnosed cancer types among women worldwide. Cytochrome P450 aromatase (CYP19A1) is an enzyme in vertebrates that selectively catalyzes the biosynthesis of estrogens from androgenic precursors. Researchers have increasingly focused on developing non-steroidal aromatase inhibitors (NSAIs) for their potential clinical use, avoiding steroidal side effects.

Objectives: The objective of the present work is to search for potential lead compounds from the ZINC database through various in silico approaches.

Methods: In the present study, compounds from the ZINC database were initially screened through receptor independent-based pharmacophore virtual screening. These screened molecules were subjected to several assessments, such as Lipinski rule of 5, SMART filtration, ADME prediction using SwissADME and lead optimization. Molecular docking was further applied to study the interaction of the filtered compounds with the active site of aromatase. Finally, the obtained hit compounds, consequently represented to be ideal lead candidates, were escalated to the MD simulations.

Results: The results indicated that the lead compounds might be potential anti-aromatase drug candidate.

Conclusion: The findings provided a valuable approach in developing novel anti-aromatase inhibitors for the treatment of ER+ breast cancer.

Next »
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[2]
Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol., 2017, 7, 110.
[http://dx.doi.org/10.3389/fonc.2017.00110] [PMID: 28603694]
[3]
DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding, S.A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(6), 438-451.
[http://dx.doi.org/10.3322/caac.21583] [PMID: 31577379]
[4]
Mutebi, M.; Anderson, B.O.; Duggan, C.; Adebamowo, C.; Agarwal, G.; Ali, Z.; Bird, P.; Bourque, J.M.; DeBoer, R.; Gebrim, L.H.; Masetti, R.; Masood, S.; Menon, M.; Nakigudde, G.; Ng’ang’a, A.; Niyonzima, N.; Rositch, A.F.; Unger-Saldaña, K.; Villarreal-Garza, C.; Dvaladze, A.; El Saghir, N.S.; Gralow, J.R.; Eniu, A. Breast cancer treatment: A phased approach to implementation. Cancer, 2020, 126(S10), 2365-2378.
[http://dx.doi.org/10.1002/cncr.32910] [PMID: 32348571]
[5]
Reeves, G.K.; Pirie, K.; Green, J.; Bull, D.; Beral, V. Reproductive factors and specific histological types of breast cancer: Prospective study and meta-analysis. Br. J. Cancer, 2009, 100(3), 538-544.
[http://dx.doi.org/10.1038/sj.bjc.6604853] [PMID: 19190634]
[6]
O’Brien, K.M.; Sun, J.; Sandler, D.P.; DeRoo, L.A.; Weinberg, C.R. Risk factors for young-onset invasive and in situ breast cancer. Cancer Causes Control, 2015, 26(12), 1771-1778.
[http://dx.doi.org/10.1007/s10552-015-0670-9] [PMID: 26407954]
[7]
Sisti, J.S.; Collins, L.C.; Beck, A.H.; Tamimi, R.M.; Rosner, B.A.; Eliassen, A.H. Reproductive risk factors in relation to molecular subtypes of breast cancer: Results from the nurses’ health studies. Int. J. Cancer, 2016, 138(10), 2346-2356.
[http://dx.doi.org/10.1002/ijc.29968] [PMID: 26684063]
[8]
Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol., 2012, 13(11), 1141-1151.
[http://dx.doi.org/10.1016/S1470-2045(12)70425-4] [PMID: 23084519]
[9]
Brueggemeier, R.W.; Hackett, J.C.; Diaz-Cruz, E.S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev., 2005, 26(3), 331-345.
[http://dx.doi.org/10.1210/er.2004-0015] [PMID: 15814851]
[10]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457(7226), 219-223.
[http://dx.doi.org/10.1038/nature07614] [PMID: 19129847]
[11]
Ghosh, D.; Lo, J.; Morton, D.; Valette, D.; Xi, J.; Griswold, J.; Hubbell, S.; Egbuta, C.; Jiang, W.; An, J.; Davies, H.M.L. Novel aromatase inhibitors by structure-guided design. J. Med. Chem., 2012, 55(19), 8464-8476.
[http://dx.doi.org/10.1021/jm300930n] [PMID: 22951074]
[12]
Briest, S.; Davidson, N.E. Aromatase inhibitors for breast cancer. Rev. Endocr. Metab. Disord., 2007, 8(3), 215-228.
[http://dx.doi.org/10.1007/s11154-007-9039-z] [PMID: 17486453]
[13]
Miller, W. Aromatase inhibitors: Mechanism of action and role in the treatment of breast cancer. Semin. Oncol., 2003, 30(4), 3-11.
[http://dx.doi.org/10.1016/S0093-7754(03)00302-6] [PMID: 14513432]
[14]
Brodie, A.M.H.; Santen, R.J.; Henderson, I.C. Aromatase in breast cancer and the role of aminoglutethimide and other aromatase inhibitors. Crit. Rev. Oncol. Hematol., 1986, 5(4), 361-396.
[http://dx.doi.org/10.1016/S1040-8428(86)80003-8] [PMID: 3094971]
[15]
Miki, Y.; Abe, K.; Suzuki, S.; Suzuki, T.; Sasano, H. Suppression of estrogen actions in human lung cancer. Mol. Cell. Endocrinol., 2011, 340(2), 168-174.
[http://dx.doi.org/10.1016/j.mce.2011.02.018] [PMID: 21354461]
[16]
de Ronde, W.; de Jong, F.H. Aromatase inhibitors in men: Effects and therapeutic options. Reprod. Biol. Endocrinol., 2011, 9(1), 93.
[http://dx.doi.org/10.1186/1477-7827-9-93] [PMID: 21693046]
[17]
Pires, A.S.; Varela, C.L.; Marques, I.A.; Abrantes, A.M.; Gonçalves, C.; Rodrigues, T.; Matafome, P.; Botelho, M.F.; Roleira, F.M.F.; Tavares-da-Silva, E. Oxymestane, a cytostatic steroid derivative of exemestane with greater antitumor activity in nonestrogen-dependent cell lines. J. Steroid Biochem. Mol. Biol., 2021, 212, 105950.
[http://dx.doi.org/10.1016/j.jsbmb.2021.105950] [PMID: 34271024]
[18]
Geisler, J.; Lønning, P.E. Aromatase inhibition: Translation into a successful therapeutic approach. Clin. Cancer Res., 2005, 11(8), 2809-2821.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2187] [PMID: 15837728]
[19]
Gobbi, S.; Cavalli, A.; Rampa, A.; Belluti, F.; Piazzi, L.; Paluszcak, A.; Hartmann, R.W.; Recanatini, M.; Bisi, A. Lead optimization providing a series of flavone derivatives as potent nonsteroidal inhibitors of the cytochrome P450 aromatase enzyme. J. Med. Chem., 2006, 49(15), 4777-4780.
[http://dx.doi.org/10.1021/jm060186y] [PMID: 16854084]
[20]
Pouget, C.; Fagnere, C.; Basly, J.P.; Besson, A.E.; Champavier, Y.; Habrioux, G.; Chulia, A.J. Synthesis and aromatase inhibitory activity of flavanones. Pharm. Res., 2002, 19(3), 286-291.
[http://dx.doi.org/10.1023/A:1014490817731] [PMID: 11934235]
[21]
Saberi, M.R.; Vinh, T.K.; Yee, S.W.; Griffiths, B.J.N.; Evans, P.J.; Simons, C. Potent CYP19 (Aromatase) 1-[(Benzofuran-2-yl)(phen ylmethyl)pyridine, -imidazole, and -triazole inhibitors: Synthesis and biological evaluation. J. Med. Chem., 2006, 49(3), 1016-1022.
[http://dx.doi.org/10.1021/jm0508282] [PMID: 16451067]
[22]
Vinh, T.K.; Yee, S.W.; Kirby, A.J.; Nicholls, P.J.; Simons, C. 1-[(Benzofuran-2-yl)phenylmethyl]triazoles as steroidogenic inhibitors: Synthesis and in vitro inhibition of human placental CYP19 aromatase. Anticancer Drug Des., 2001, 16(4-5), 217-225.
[PMID: 12049480]
[23]
Saberi, M.R.; Shah, K.; Simons, C. Benzofuran- and furan-2-yl-(phenyl)-3-pyridylmethanols: Synthesis and inhibition of P450 aromatase. J. Enzyme Inhib. Med. Chem., 2005, 20(2), 135-141.
[http://dx.doi.org/10.1080/14756360400015256] [PMID: 15968818]
[24]
Vinh, T.K.; Ahmadi, M.; Lopez, D.P.O.; Fernandez, P.S.; Walters, H.M.; Smith, H.J.; Nicholls, P.J.; Simons, C. 1-[(Benzofuran-2-yl)phenylmethyl]-triazoles and tetrazoles potent competitive inhibitors of aromatase. Bioorg. Med. Chem. Lett., 1999, 9(14), 2105-2108.
[http://dx.doi.org/10.1016/S0960-894X(99)00328-5] [PMID: 10450990]
[25]
Su, B.; Hackett, J.C.; Díaz-Cruz, E.S.; Kim, Y.W.; Brueggemeier, R.W. Lead optimization of 7-benzyloxy 2-(4′-pyridylmethyl)thio isoflavone aromatase inhibitors. Bioorg. Med. Chem., 2005, 13(23), 6571-6577.
[http://dx.doi.org/10.1016/j.bmc.2005.07.038] [PMID: 16125392]
[26]
Hackett, J.C.; Kim, Y.W.; Su, B.; Brueggemeier, R.W. Synthesis and characterization of azole isoflavone inhibitors of aromatase. Bioorg. Med. Chem., 2005, 13(12), 4063-4070.
[http://dx.doi.org/10.1016/j.bmc.2005.03.050] [PMID: 15911319]
[27]
Kim, Y.W.; Hackett, J.C.; Brueggemeier, R.W. Synthesis and aromatase inhibitory activity of novel pyridine-containing isoflavones. J. Med. Chem., 2004, 47(16), 4032-4040.
[http://dx.doi.org/10.1021/jm0306024] [PMID: 15267241]
[28]
Ulmschneider, S.; Müller-Vieira, U.; Klein, C.D.; Antes, I.; Lengauer, T.; Hartmann, R.W. Synthesis and evaluation of (pyridylmethylene)tetrahydronaphthalenes/-indanes and structurally modified derivatives: Potent and selective inhibitors of aldosterone synthase. J. Med. Chem., 2005, 48(5), 1563-1575.
[http://dx.doi.org/10.1021/jm0492397] [PMID: 15743198]
[29]
Accelrys Software Inc. CATALYST 4.11 Users’; Manual; Accelrys Software Inc.: San Diego, CA, 2005.
[30]
Zhao, D.; Wang, H.; Lian, Z.; Han, D.; Jin, X. Pharmacophore modeling and virtual screening for the discovery of new fatty acid amide hydrolase inhibitors. Acta Pharm. Sin. B, 2011, 1(1), 27-35.
[http://dx.doi.org/10.1016/j.apsb.2011.04.003] [PMID: 28119806]
[31]
Pal, M.; Paliwal, S. In silico identification of novel lead compounds with AT1 receptor antagonist activity: Successful application of chemical database screening protocol. Org. Med. Chem. Lett., 2012, 2(1), 7.
[http://dx.doi.org/10.1186/2191-2858-2-7] [PMID: 22380004]
[32]
Shahin, R.; Swellmeen, L.; Shaheen, O.; Aboalhaija, N.; Habash, M. Identification of novel inhibitors for Pim-1 kinase using pharmacophore modeling based on a novel method for selecting pharmacophore generation subsets. J. Comput. Aided Mol. Des., 2016, 30(1), 39-68.
[http://dx.doi.org/10.1007/s10822-015-9887-7] [PMID: 26685860]
[33]
Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[34]
Pal, S.; Kumar, V.; Kundu, B.; Bhattacharya, D.; Preethy, N.; Reddy, M.P.; Talukdar, A. Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase inhibitors. Comput. Struct. Biotechnol. J., 2019, 17, 291-310.
[http://dx.doi.org/10.1016/j.csbj.2019.02.006] [PMID: 30867893]
[35]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[36]
Böhm, H.J. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs. J. Comput. Aided Mol. Des., 1998, 12(4), 309-323.
[http://dx.doi.org/10.1023/A:1007999920146] [PMID: 9777490]
[37]
Gandhi, S.P.; Lokhande, K.B.; Swamy, V.K.; Nanda, R.K.; Chitlange, S.S. Computational data of phytoconstituents from Hibiscus rosa-sinensis on various anti-obesity targets. Data Brief, 2019, 24, 103994.
[http://dx.doi.org/10.1016/j.dib.2019.103994] [PMID: 31193691]
[38]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[39]
Bowers, K.; Chow, E.; Xu, H.; Dror, R.; Eastwood, M.; Gregersen, B.; Klepeis, J.; Kolossváry, I.; Moraes, M.; Sacerdoti, F.; Salmon, J.; Shan, Y.; Shaw, D. Molecular dynamics-scalable algorithms for molecular dynamics simulations on commodity clusters. SC'06. Proceedings of the ACM/EEEI, 2006, p. 84.
[http://dx.doi.org/10.1145/1188455.1188544]
[40]
Lokhande, K.B.; Ghosh, P.; Nagar, S.; Venkateswara, S.K.; Novel, B. C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol. Divers., 2022, 26(4), 2295-2309.
[http://dx.doi.org/10.1007/s11030-021-10334-z] [PMID: 34626304]
[41]
Ozcan-Sezer, S.; Ince, E.; Akdemir, A.; Ceylan, Ö.Ö.; Suzen, S.; Gurer-Orhan, H. Aromatase inhibition by 2-methyl indole hydrazone derivatives evaluated via molecular docking and in vitro activity studies. Xenobiotica, 2019, 49(5), 549-556.
[http://dx.doi.org/10.1080/00498254.2018.1482029] [PMID: 29804490]
[42]
Cavalli, A.; Recanatini, M. Looking for selectivity among cytochrome P450s inhibitors. J. Med. Chem., 2002, 45(2), 251-254.
[http://dx.doi.org/10.1021/jm015567k] [PMID: 11784128]
[43]
Schuster, D.; Laggner, C.; Steindl, T.M.; Palusczak, A.; Hartmann, R.W.; Langer, T. Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. J. Chem. Inf. Model., 2006, 46(3), 1301-1311.
[http://dx.doi.org/10.1021/ci050237k] [PMID: 16711749]
[44]
Cross, S.S.J. Improved flexx docking using flexs-determined base fragment placement. J. Chem. Inf. Model., 2005, 45(4), 993-1001.
[http://dx.doi.org/10.1021/ci050026f] [PMID: 16045293]
[45]
Neves, M.A.C.; Dinis, T.C.P.; Colombo, G.; Sá e Melo, M.L. Fast three dimensional pharmacophore virtual screening of new potent non-steroid aromatase inhibitors. J. Med. Chem., 2009, 52(1), 143-150.
[http://dx.doi.org/10.1021/jm800945c] [PMID: 19072235]
[46]
Roy, P.P.; Roy, K. Molecular docking and QSAR studies of aromatase inhibitor androstenedione derivatives. J. Pharm. Pharmacol., 2010, 62(12), 1717-1728.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01154.x] [PMID: 21054398]
[47]
Rampogu, S.; Son, M.; Park, C.; Kim, H.H.; Suh, J.K.; Lee, K.W. Sulfonanilide derivatives in identifying novel aromatase inhibitors by applying docking, virtual screening, and MD simulations studies. BioMed Res. Int., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/2105610] [PMID: 29312992]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy