Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Structure-guided Design and Optimization of small Molecules as Pancreatic Lipase Inhibitors using Pharmacophore, 3D-QSAR, Molecular Docking, and Molecular Dynamics Simulation Studies

Author(s): Shristi Modanwal, Viswajit Mulpuru and Nidhi Mishra*

Volume 19, Issue 4, 2023

Published on: 19 January, 2023

Page: [258 - 277] Pages: 20

DOI: 10.2174/1573409919666230103144045

Price: $65

Abstract

Background: Obesity has now become a global issue due to the increase in the population of obese people. It also substantially impacts the individual's social, financial, and psychological well-being, which may contribute to depression. Being overweight induces many metabolic and chronic disorders, urging many researchers to focus on developing the drug for obesity treatment. Pancreatic lipase inhibitors and natural product/compound-derived pancreatic lipase inhibitors have recently received much attention because of their structural variety and low toxicity.

Objective: This study aimed to build pharmacophores and QSAR for analyzing the necessary structure of pancreatic lipase inhibitors and designing new molecules with the best activity.

Methods: Ligand-based pharmacophore modeling and Atom-Based 3D-QSAR were carried out using the PHASE module of Schrodinger to determine the critical structural properties necessary for pancreatic lipase (PL) inhibitory activity. A total of 157 phytoconstituents and a standard drug, orlistat, were selected for the present study. Considering the important features for pancreatic lipase inhibition, 15 new molecules were designed and subjected to molecular docking studies and molecular dynamics simulations. The activity of designed molecules was predicted using the Atom- Based QSAR tool of the PHASE module.

Results: The top docked score molecule is structure-7 with a docking score of -6.094 Kcal/mol, whereas the docking score of orlistat and tristin is -3.80Kcal/mol and -5.63Kcal/mol, respectively.

Conclusion: The designed molecules have a high docking score and good stability, are in the desirable ADME range and are derived from natural products, so they might be used as lead molecules for anti-obesity drug development.

Graphical Abstract

[1]
Williams, E.P.; Mesidor, M.; Winters, K.; Dubbert, P.M.; Wyatt, S.B. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep., 2015, 4(3), 363-370.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[2]
Iacomino, G.; Siani, A. Role of microRNAs in obesity and obesityrelated diseases. Genes Nutr., 2017, 12(1), 23.
[http://dx.doi.org/10.1186/s12263-017-0577-z] [PMID: 28974990]
[3]
Karri, S.; Sharma, S.; Hatware, K.; Patil, K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother., 2019, 110, 224-238.
[http://dx.doi.org/10.1016/j.biopha.2018.11.076] [PMID: 30481727]
[4]
Hussain, A.; Mahawar, K.; Xia, Z.; Yang, W.; EL-Hasani, S. RETRACTED: Obesity and mortality of COVID-19. Meta-analysis. Obes. Res. Clin. Pract., 2020, 14(4), 295-300.
[http://dx.doi.org/10.1016/j.orcp.2020.07.002] [PMID: 32660813]
[5]
Lunagariya, N.A.; Patel, N.K.; Jagtap, S.C.; Bhutani, K.K. Inhibitors of pancreatic lipase: State of the art and clinical perspectives. EXCLI J., 2014, 13, 897-921.
[PMID: 26417311]
[6]
Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother., 2020, 128, 110314.
[http://dx.doi.org/10.1016/j.biopha.2020.110314] [PMID: 32485574]
[7]
Kim, G.N.; Shin, M.R.; Shin, S.H.; Lee, A.R.; Lee, J.Y.; Seo, B.I.; Kim, M.Y.; Kim, T.H.; Noh, J.S.; Rhee, M.H.; Roh, S.S. Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. BioMed Res. Int., 2016, 2016, 1-7.
[http://dx.doi.org/10.1155/2016/1723042] [PMID: 27529064]
[8]
Zhang, H.; Shen, C.; Zhang, H.R.; Chen, W.X.; Luo, Q.Q.; Ding, L. Discovery of novel DGAT1 inhibitors by combination of machine learning methods, pharmacophore model and 3D-QSAR model. Mol. Divers., 2021, 25(3), 1481-1495.
[http://dx.doi.org/10.1007/s11030-021-10247-x] [PMID: 34160713]
[9]
Sharma, M.K.; Murumkar, P.R.; Kuang, G.; Tang, Y.; Yadav, M.R. Identifying the structural features and diversifying the chemical domain of peripherally acting CB1 receptor antagonists using molecular modeling techniques. RSC Advances, 2016, 6(2), 1466-1483.
[http://dx.doi.org/10.1039/C5RA20612J]
[10]
Sharma, M.C. Discovery of new lead pyrimidines derivatives as potential cannabinoid CB1 receptor antagonistic through molecular modeling and pharmacophore approach. Med. Chem. Res., 2014, 23(5), 2287-2311.
[http://dx.doi.org/10.1007/s00044-013-0808-9]
[11]
Ninomiya, K.; Motai, C.; Nishida, E.; Kitagawa, N.; Yoshihara, K.; Hayakawa, T.; Muraoka, O.; Li, X.; Nakamura, S.; Yoshikawa, M.; Matsuda, H.; Morikawa, T. Acylated oleanane-type triterpene saponins from the flowers of Bellis perennis show anti-proliferative activities against human digestive tract carcinoma cell lines. J. Nat. Med., 2016, 70(3), 435-451.
[http://dx.doi.org/10.1007/s11418-016-0998-9] [PMID: 27178360]
[12]
Trendafilova, A.; Todorova, M.; Kutova, N.; Guncheva, M. Phytochemical profile and anti-lipase activity of balkan endemic Jurineatzar-ferdinandii. Nat. Prod. Commun., 2018, 13, 1934578X1801300.
[http://dx.doi.org/10.1177/1934578X1801300823]
[13]
Akhtar, M.S.; Swamy, M.K.; Sinniah, U.R. Production and Applications. In: Natural Bio-active Compounds; Springer: Singapore, 2019; 1, vol. 1, p. xviii, 608.
[http://dx.doi.org/10.1007/978-981-13-7154-7]
[14]
G, O. Anti-oxidative, acetylcholinesterase and pancreatic lipase inhibitory activities of compounds from Dasiphora fruticosa, Myricaria alopecuroides and Sedum hybridum. Mongol. J. Chem., 2017, 17(43), 42-49.
[http://dx.doi.org/10.5564/mjc.v17i43.746]
[15]
Buchholz, T.; Melzig, M. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med., 2015, 81(10), 771-783.
[http://dx.doi.org/10.1055/s-0035-1546173] [PMID: 26132857]
[16]
Bustos, A.S.; Håkansson, A.; Linares-Pastén, J.A.; Penarrieta, J.M.; Nilsson, L. Interaction between phenolic compounds and lipase: The influence of solubility and presence of particles in the IC 50 value. J. Food Sci., 2018, 83(8), 2071-2076.
[http://dx.doi.org/10.1111/1750-3841.14217] [PMID: 30020550]
[17]
Gonzales, G.B.; Smagghe, G.; Grootaert, C.; Zotti, M.; Raes, K.; Camp, J.V. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev., 2015, 47(2), 175-190.
[http://dx.doi.org/10.3109/03602532.2014.1003649] [PMID: 25633078]
[18]
Wang, H.; Zhao, X.; Wang, S.; Tao, S.; Ai, N.; Wang, Y. Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures. J. Chromatogr. A, 2015, 1392, 20-27.
[http://dx.doi.org/10.1016/j.chroma.2015.03.002] [PMID: 25798866]
[19]
Lee, EM; Lee, SS; Chung, BY; Cho, J-Y; Lee, IC; Ahn, SR Pancreatic lipase inhibition by c-glycosidic flavones isolated from eremochloaophiuroides. Molecules, 2010, 15, 8251-8259.
[http://dx.doi.org/10.3390/molecules15118251]
[20]
Marrelli, M; Morrone, F; Argentieri, M; Gambacorta, L; Conforti, F; Avato, P Phytochemical and biological profile of moricandiaarvensis (L.) DC.: An inhibitor of pancreatic lipase. Molecules, 2018, 23, 2829.
[http://dx.doi.org/10.3390/molecules23112829]
[21]
Itoh, K.; Matsukawa, T.; Murata, K.; Nishitani, R.; Yamagami, M.; Tomohiro, N. Pancreatic lipase inhibitory activity of citrus unshiu leaf extract. Nat. Prod. Commun., 2019, 14, 1934578X1987343.
[http://dx.doi.org/10.1177/1934578X19873439]
[22]
Jo, Y.H.; Kim, S.B.; Liu, Q.; Do, S.G.; Hwang, B.Y.; Lee, M.K. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata. PLoS One, 2017, 12(3), e0172069.
[http://dx.doi.org/10.1371/journal.pone.0172069] [PMID: 28253267]
[23]
Shimura, S.; Itoh, Y.; Yamashita, A.; Kitano, A.; Hatano, T.; Yoshida, T.; Okuda, T. Inhibitory effects of flavonoids on lipase. Nippon Shokuhin Kogyo Gakkaishi, 1994, 41(11), 847-850.
[http://dx.doi.org/10.3136/nskkk1962.41.847]
[24]
Habtemariam, S. The anti-obesity potential of sigmoidin A. Pharm. Biol., 2012, 50(12), 1519-1522.
[http://dx.doi.org/10.3109/13880209.2012.688838] [PMID: 22978690]
[25]
Eom, S-H.; Lee, M-S.; Lee, E-W.; Kim, Y-M.; Kim, T.H. Pancreatic lipase inhibitory activity of phlorotannins isolated from Eiseniabicyclis: Pancreatic Lipase inhibitors from Eisenia Bicyclis. Phytother. Res., 2013, 27, 148-151.
[http://dx.doi.org/10.1002/ptr.4694] [PMID: 22473750]
[26]
Ha, M.T.; Tran, M.H.; Ah, K.J.; Jo, K.J.; Kim, J.; Kim, W.D.; Cheon, W.J.; Woo, M.H.; Ryu, S.H.; Min, B.S. Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorg. Med. Chem. Lett., 2016, 26(12), 2788-2794.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.066] [PMID: 27156775]
[27]
Inthongkaew, P.; Chatsumpun, N.; Supasuteekul, C.; Kitisripanya, T.; Putalun, W.; Likhitwitayawuid, K.; Sritularak, B. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium formosum. Rev. Bras. Farmacogn., 2017, 27(4), 480-487.
[http://dx.doi.org/10.1016/j.bjp.2017.05.005]
[28]
Lee, H.; Kim, J.; Whang, W. Chemical constituents of smilax china L. Stems and their inhibitory activities against glycation, aldose reductase, α-glucosidase, and lipase. Molecules, 2017, 22, 451.
[http://dx.doi.org/10.3390/molecules22030451]
[29]
Yang, M.H.; Chin, Y.W.; Yoon, K.D.; Kim, J. Phenolic compounds with pancreatic lipase inhibitory activity from Korean yam (Dioscorea opposita). J. Enzyme Inhib. Med. Chem., 2014, 29(1), 1-6.
[http://dx.doi.org/10.3109/14756366.2012.742517] [PMID: 23327640]
[30]
Rajan, L.; Palaniswamy, D.; Mohankumar, S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res., 2020, 155, 104681.
[http://dx.doi.org/10.1016/j.phrs.2020.104681] [PMID: 32045666]
[31]
Tao, Y.; Cai, H.; Li, W.; Cai, B. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Anal. Bioanal. Chem., 2015, 407(20), 6081-6093.
[http://dx.doi.org/10.1007/s00216-015-8781-4] [PMID: 26018630]
[32]
Kim, Y.M.; Lee, E.W.; Eom, S.H.; Kim, T.H. Pancreatic lipase inhibitory stilbenoids from the roots of Vitis vinifera. Int. J. Food Sci. Nutr., 2014, 65(1), 97-100.
[http://dx.doi.org/10.3109/09637486.2013.832172] [PMID: 24020412]
[33]
Chae, H-S.; Kim, E-Y.; Han, L.; Kim, N-R.; Lam, B.; Paik, J.H. Xanthones with pancreatic lipase inhibitory activity from the pericarps of Garciniamangostana L. (Guttiferae): Pancreatic lipase inhibitors from the pericarps of mangosteen. Eur. J. Lipid Sci. Technol., 2016, 118, 1416-1421.
[http://dx.doi.org/10.1002/ejlt.201500516]
[34]
Norsyuhada, A.; Thean, C.L.; Mohd, S.M.A.; Asilah, A.T.; Abu, B.S.; Raja, N.Z.R.A.R. Anti-obesity potential of selected tropical plants via pancreatic lipase inhibition. Adv. Obes. Weight Manag. Control, 2017, 6(4), 122-131.
[http://dx.doi.org/10.15406/aowmc.2017.06.00163]
[35]
Ganjoo, A.; Prabhakar, C. In silico structural anatomization of spleen tyrosine kinase inhibitors: Pharmacophore modeling, 3D QSAR analysis and molecular docking studies. J. Mol. Struct., 2019, 1189, 102-111.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.009]
[36]
Marondedze, E.F.; Govender, K.K.; Govender, P.P. Ligand-based pharmacophore modelling and virtual screening for the identification of amyloid-beta diagnostic molecules. J. Mol. Graph. Model., 2020, 101, 107711.
[http://dx.doi.org/10.1016/j.jmgm.2020.107711] [PMID: 32898834]
[37]
Maurya, A.K.; Mulpuru, V.; Mishra, N. Discovery of novel coumarin analogs against the α-glucosidase protein target of diabetes mellitus: Pharmacophore-based QSAR, docking, and molecular dynamics simulation studies. ACS Omega, 2020, 5(50), 32234-32249.
[http://dx.doi.org/10.1021/acsomega.0c03871] [PMID: 33376861]
[38]
Casalini, T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J. Control. Release, 2021, 332, 390-417.
[http://dx.doi.org/10.1016/j.jconrel.2021.03.005] [PMID: 33675875]
[39]
Al-Karmalawy, A.A.; Dahab, M.A.; Metwaly, A.M.; Elhady, S.S.; Elkaeed, E.B.; Eissa, I.H.; Darwish, K.M. Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Front Chem., 2021, 9, 661230.
[http://dx.doi.org/10.3389/fchem.2021.661230] [PMID: 34017819]
[40]
Alazmi, M.; Motwalli, O. in silico virtual screening, characterization, docking and molecular dynamics studies of crucial SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2021, 39(17), 6761-6771.
[http://dx.doi.org/10.1080/07391102.2020.1803965] [PMID: 32762537]
[41]
De Vivo, M.; Masetti, M.; Bottegoni, G.; Cavalli, A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem., 2016, 59(9), 4035-4061.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01684] [PMID: 26807648]
[42]
Veeramachaneni, G.K.; kodamala, K.R.; Chalasani, L.M.; J S, B.; Talluri, V.R. High-throughput virtual screening with epharmacophore and molecular simulations study in the designing of pancreatic lipase inhibitors. Drug Des. Devel. Ther., 2015, 9, 4397-4412.
[http://dx.doi.org/10.2147/DDDT.S84052] [PMID: 26273199]
[43]
Cheuka, P.; Mayoka, G.; Mutai, P.; Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 2016, 22(1), 58.
[http://dx.doi.org/10.3390/molecules22010058] [PMID: 28042865]
[44]
Rathee, D.; Lather, V.; Dureja, H. Pharmacophore modeling and 3D QSAR studies for prediction of matrix metalloproteinases inhibitory activity of hydroxamate derivatives. Biotechnol. Res. Innov., 2017, 1(1), 112-122.
[http://dx.doi.org/10.1016/j.biori.2017.10.002]
[45]
Kulkarni, V.M.; Bhansali, S. Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: Pyridopyridazin-6-ones (part 2). Res. Rep. Med. Chem., 2013, 1, 1.
[http://dx.doi.org/10.2147/RRMC.S50738]
[46]
Ferreira, L.L.G.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today, 2019, 24(5), 1157-1165.
[http://dx.doi.org/10.1016/j.drudis.2019.03.015] [PMID: 30890362]
[47]
Pereira, G.R.C.; Da Silva, A.N.R.; Do Nascimento, S.S.; De Mesquita, J.F. In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. J. Cell. Biochem., 2019, 120(3), 3583-3598.
[http://dx.doi.org/10.1002/jcb.27636] [PMID: 30206983]
[48]
Farmer, J.; Kanwal, F.; Nikulsin, N.; Tsilimigras, M.; Jacobs, D. Statistical measures to quantify similarity between molecular dynamics simulation trajectories. Entropy (Basel), 2017, 19(12), 646.
[http://dx.doi.org/10.3390/e19120646] [PMID: 30498328]
[49]
Mishra, A.; Mulpuru, V.; Mishra, N. Identification of hub genes in common cancers of women in India and targeting for the search of anticancer agent from Punica granatum phytoconstituent using interaction network analysis and virtual screening. J. Biomol. Struct. Dyn., 2021, 1-7.
[http://dx.doi.org/10.1080/07391102.2021.1975563] [PMID: 34520328]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy