Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Circular RNAs: Insights into Clinical and Therapeutic Approaches for Various Cancers

Author(s): Ikram ul Haq, Fatima Akram*, Narmeen Nasir and Fatima Iftikhar Shah

Volume 24, Issue 2, 2023

Published on: 25 January, 2023

Page: [130 - 142] Pages: 13

DOI: 10.2174/1389203724666230111113715

Price: $65

Abstract

Background: With the advent of cancer diagnostics and therapeutics, circular RNAs (circRNAs) are swiftly becoming one of the significant regulators of gene expression and cellular functions. A plethora of multiple molecular mechanisms has been observed to elicit their influence.

Objective: Circular RNAs (circRNAs) are a distinct category of endogenous noncoding RNAs designed as a result of exon back splicing events in precursor’s mRNAs (pre-mRNAs) and are widely distributed in the transcriptome of eukaryotic cells.

Methods: Although the role of circRNAs is still in its infancy, they serve as microRNA sponges, protein scaffolds, and modulators of transcription and splicing and occasionally as templates for the production of peptides.

Results: It is well known that abnormal circRNA expression is prevalent in malignancies and has been linked to a number of pathophysiological aspects of cancer. This extensively anomalous expression assists in cellular proliferation and growth, sustaining cellular invasiveness and bypassing cellular senescence and death, thus advocating their promise to serve as both clinical biomarkers and therapeutic targets.

Conclusion: An overview of the recent status of circRNA will aid in the identification of new biomarkers, therapeutic targets, and their prospect in the diagnosis and therapy of disease. In this review article, we discuss the functional mechanisms of circRNAs, their biomarker potential in disease diagnosis and prognosis, therapeutic approaches, and the associated limitations.

Graphical Abstract

[1]
Titze-de-Almeida, R.; David, C.; Titze-de-Almeida, S.S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res., 2017, 34(7), 1339-1363.
[http://dx.doi.org/10.1007/s11095-017-2134-2] [PMID: 28389707]
[2]
Vo, J.N.; Cieslik, M.; Zhang, Y.; Shukla, S.; Xiao, L.; Zhang, Y.; Wu, Y.M.; Dhanasekaran, S.M.; Engelke, C.G.; Cao, X.; Robinson, D.R.; Nesvizhskii, A.I.; Chinnaiyan, A.M. The landscape of circular RNA in cancer. Cell, 2019, 176(4), 869-881.e13.
[http://dx.doi.org/10.1016/j.cell.2018.12.021] [PMID: 30735636]
[3]
Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 475-490.
[http://dx.doi.org/10.1038/s41580-020-0243-y] [PMID: 32366901]
[4]
Chen, L.L.; Yang, L. Regulation of circRNA biogenesis. RNA Biol., 2015, 12(4), 381-388.
[http://dx.doi.org/10.1080/15476286.2015.1020271] [PMID: 25746834]
[5]
Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA, 1976, 73(11), 3852-3856.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[6]
Zhu, L.P.; He, Y.J.; Hou, J.C.; Chen, X.; Zhou, S.Y.; Yang, S.J.; Li, J.; Zhang, H.D.; Hu, J.H.; Zhong, S.L.; Zhao, J.H.; Tang, J.H. The role of circRNAs in cancers. Biosci. Rep., 2017, 37(5), BSR20170750.
[http://dx.doi.org/10.1042/BSR20170750] [PMID: 28928231]
[7]
Ashwal-Fluss, R.; Meyer, M.; Pamudurti, N.R.; Ivanov, A.; Bartok, O.; Hanan, M.; Evantal, N.; Memczak, S.; Rajewsky, N.; Kadener, S. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell, 2014, 56(1), 55-66.
[http://dx.doi.org/10.1016/j.molcel.2014.08.019] [PMID: 25242144]
[8]
Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary sequence-mediated exon circularization. Cell, 2014, 159(1), 134-147.
[http://dx.doi.org/10.1016/j.cell.2014.09.001] [PMID: 25242744]
[9]
Zhang, Y.; Zhang, X.O.; Chen, T.; Xiang, J.F.; Yin, Q.F.; Xing, Y.H.; Zhu, S.; Yang, L.; Chen, L.L. Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51(6), 792-806.
[http://dx.doi.org/10.1016/j.molcel.2013.08.017] [PMID: 24035497]
[10]
Li, Z.; Huang, C.; Bao, C.; Chen, L.; Lin, M.; Wang, X.; Zhong, G.; Yu, B.; Hu, W.; Dai, L.; Zhu, P.; Chang, Z.; Wu, Q.; Zhao, Y.; Jia, Y.; Xu, P.; Liu, H.; Shan, G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22(3), 256-264.
[http://dx.doi.org/10.1038/nsmb.2959] [PMID: 25664725]
[11]
Vidal, A.F.; Sandoval, G.T.V.; Magalhães, L.; Santos, S.E.B.; Ribeiro-dos-Santos, Â. Circular RNAs as a new field in gene regulation and their implications in translational research. Epigenomics, 2016, 8(4), 551-562.
[http://dx.doi.org/10.2217/epi.16.3] [PMID: 27035397]
[12]
Enuka, Y.; Lauriola, M.; Feldman, M.E.; Sas-Chen, A.; Ulitsky, I.; Yarden, Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res., 2016, 44(3), 1370-1383.
[http://dx.doi.org/10.1093/nar/gkv1367] [PMID: 26657629]
[13]
Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2), 141-157.
[http://dx.doi.org/10.1261/rna.035667.112] [PMID: 23249747]
[14]
Zhou, T.; Xie, X.; Li, M.; Shi, J.; Zhou, J.J.; Knox, K.S.; Wang, T.; Chen, Q.; Gu, W. Rat BodyMap transcriptomes reveal unique circular RNA features across tissue types and developmental stages. RNA, 2018, 24(11), 1443-1456.
[http://dx.doi.org/10.1261/rna.067132.118] [PMID: 30093490]
[15]
Ojha, R.; Nandani, R.; Chatterjee, N.; Prajapati, V.K. Emerging role of circular RNAs as potential biomarkers for the diagnosis of human diseases. Circular RNAs, 2018, 141-157.
[16]
Moore, M.J.; Proudfoot, N.J. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell, 2009, 136(4), 688-700.
[http://dx.doi.org/10.1016/j.cell.2009.02.001] [PMID: 19239889]
[17]
Black, D.L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem., 2003, 72(1), 291-336.
[http://dx.doi.org/10.1146/annurev.biochem.72.121801.161720] [PMID: 12626338]
[18]
Nilsen, T.W.; Graveley, B.R. Expansion of the eukaryotic proteome by alternative splicing. Nature, 2010, 463(7280), 457-463.
[http://dx.doi.org/10.1038/nature08909] [PMID: 20110989]
[19]
Zhang, Y.; Xue, W.; Li, X.; Zhang, J.; Chen, S.; Zhang, J.L.; Yang, L.; Chen, L.L. The biogenesis of nascent circular RNAs. Cell Rep., 2016, 15(3), 611-624.
[http://dx.doi.org/10.1016/j.celrep.2016.03.058] [PMID: 27068474]
[20]
Conn, S.J.; Pillman, K.A.; Toubia, J.; Conn, V.M.; Salmanidis, M.; Phillips, C.A.; Roslan, S.; Schreiber, A.W.; Gregory, P.A.; Goodall, G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell, 2015, 160(6), 1125-1134.
[http://dx.doi.org/10.1016/j.cell.2015.02.014] [PMID: 25768908]
[21]
Noto, J.J.; Schmidt, C.A.; Matera, A.G. Engineering and expressing circular RNAs via tRNA splicing. RNA Biol., 2017, 14(8), 978-984.
[http://dx.doi.org/10.1080/15476286.2017.1317911] [PMID: 28402213]
[22]
Lasda, E.; Parker, R. Circular RNAs: diversity of form and function. RNA, 2014, 20(12), 1829-1842.
[http://dx.doi.org/10.1261/rna.047126.114] [PMID: 25404635]
[23]
Zhang, X.O.; Dong, R.; Zhang, Y.; Zhang, J.L.; Luo, Z.; Zhang, J.; Chen, L.L.; Yang, L. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res., 2016, 26(9), 1277-1287.
[http://dx.doi.org/10.1101/gr.202895.115] [PMID: 27365365]
[24]
Zhang, Y.; Liang, W.; Zhang, P.; Chen, J.; Qian, H.; Zhang, X.; Xu, W. Circular RNAs: emerging cancer biomarkers and targets. J. Exp. Clin. Cancer Res., 2017, 36(1), 152.
[http://dx.doi.org/10.1186/s13046-017-0624-z]
[25]
Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature, 2012, 482(7385), 339-346.
[http://dx.doi.org/10.1038/nature10887] [PMID: 22337053]
[26]
Wang, F.; Nazarali, A.J.; Ji, S. Circular RNAs as potential biomarkers for cancer diagnosis and therapy. Am. J. Cancer Res., 2016, 6(6), 1167-1176.
[PMID: 27429839]
[27]
Rajappa, A.; Banerjee, S.; Sharma, V.; Khandelia, P. Circular RNAs: emerging role in cancer diagnostics and therapeutics. Front. Mol. Biosci., 2020, 7, 577938.
[http://dx.doi.org/10.3389/fmolb.2020.577938] [PMID: 33195421]
[28]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[29]
Hansen, T.B.; Wiklund, E.D.; Bramsen, J.B.; Villadsen, S.B.; Statham, A.L.; Clark, S.J.; Kjems, J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J., 2011, 30(21), 4414-4422.
[http://dx.doi.org/10.1038/emboj.2011.359] [PMID: 21964070]
[30]
Chen, I.; Chen, C.Y.; Chuang, T.J. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip. Rev. RNA, 2015, 6(5), 563-579.
[http://dx.doi.org/10.1002/wrna.1294] [PMID: 26230526]
[31]
Kosik, K.S. Circles reshape the RNA world. Nature, 2013, 495(7441), 322-324.
[http://dx.doi.org/10.1038/nature11956] [PMID: 23446351]
[32]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[33]
Zhang, H.; Cai, K.; Wang, J.; Wang, X.; Cheng, K.; Shi, F.; Jiang, L.; Zhang, Y.; Dou, J. MiR-7, inhibited indirectly by lincRNA HOTAIR, directly inhibits SETDB1 and reverses the EMT of breast cancer stem cells by downregulating the STAT3 pathway. Stem Cells, 2014, 32(11), 2858-2868.
[http://dx.doi.org/10.1002/stem.1795] [PMID: 25070049]
[34]
Liu, S.; Zhang, P.; Chen, Z.; Liu, M.; Li, X.; Tang, H. MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett., 2013, 587(14), 2247-2253.
[http://dx.doi.org/10.1016/j.febslet.2013.05.054] [PMID: 23742934]
[35]
Jiang, L.; Liu, X.; Chen, Z.; Jin, Y.; Heidbreder, C.E.; Kolokythas, A.; Wang, A.; Dai, Y.; Zhou, X. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem. J., 2010, 432(1), 199-207.
[http://dx.doi.org/10.1042/BJ20100859] [PMID: 20819078]
[36]
Li, J.; Zheng, Y.; Sun, G.; Xiong, S. Restoration of miR-7 expression suppresses the growth of Lewis lung cancer cells by modulating epidermal growth factor receptor signaling. Oncol. Rep., 2014, 32(6), 2511-2516.
[http://dx.doi.org/10.3892/or.2014.3519] [PMID: 25334070]
[37]
Kong, D.; Piao, Y-S.; Yamashita, S.; Oshima, H.; Oguma, K.; Fushida, S.; Fujimura, T.; Minamoto, T.; Seno, H.; Yamada, Y.; Satou, K.; Ushijima, T.; Ishikawa, T-O.; Oshima, M. Inflammation-induced repression of tumor suppressor miR-7 in gastric tumor cells. Oncogene, 2012, 31(35), 3949-3960.
[http://dx.doi.org/10.1038/onc.2011.558] [PMID: 22139078]
[38]
Zhang, N.; Li, X.; Wu, C.W.; Dong, Y.; Cai, M.; Mok, M.T.S.; Wang, H.; Chen, J.; Ng, S.S.M.; Chen, M.; Sung, J.J.Y.; Yu, J. microRNA-7 is a novel inhibitor of YY1 contributing to colorectal tumorigenesis. Oncogene, 2013, 32(42), 5078-5088.
[http://dx.doi.org/10.1038/onc.2012.526] [PMID: 23208495]
[39]
Zhang, M.; Xin, Y. Circular RNAs: a new frontier for cancer diagnosis and therapy. J. Hematol. Oncol., 2018, 11(1), 21.
[http://dx.doi.org/10.1186/s13045-018-0569-5] [PMID: 29433541]
[40]
Du, W.W.; Yang, W.; Liu, E.; Yang, Z.; Dhaliwal, P.; Yang, B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res., 2016, 44(6), 2846-2858.
[http://dx.doi.org/10.1093/nar/gkw027] [PMID: 26861625]
[41]
Andrews, S.J.; Rothnagel, J.A. Emerging evidence for functional peptides encoded by short open reading frames. Nat. Rev. Genet., 2014, 15(3), 193-204.
[http://dx.doi.org/10.1038/nrg3520] [PMID: 24514441]
[42]
Hanada, K.; Akiyama, K.; Sakurai, T.; Toyoda, T.; Shinozaki, K.; Shiu, S.H. sORF finder: a program package to identify small open reading frames with high coding potential. Bioinformatics, 2010, 26(3), 399-400.
[http://dx.doi.org/10.1093/bioinformatics/btp688] [PMID: 20008477]
[43]
Abe, N.; Matsumoto, K.; Nishihara, M.; Nakano, Y.; Shibata, A.; Maruyama, H.; Shuto, S.; Matsuda, A.; Yoshida, M.; Ito, Y.; Abe, H. Rolling circle translation of circular RNA in living human cells. Sci. Rep., 2015, 5(1), 16435.
[http://dx.doi.org/10.1038/srep16435] [PMID: 26553571]
[44]
Zhang, M.; Zhao, K.; Xu, X.; Yang, Y.; Yan, S.; Wei, P.; Liu, H.; Xu, J.; Xiao, F.; Zhou, H.; Yang, X.; Huang, N.; Liu, J.; He, K.; Xie, K.; Zhang, G.; Huang, S.; Zhang, N. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun., 2018, 9(1), 4475.
[http://dx.doi.org/10.1038/s41467-018-06862-2] [PMID: 30367041]
[45]
Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; Huang, S.; Xie, B.; Zhang, N. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst., 2018, 110(3), 304-315.
[http://dx.doi.org/10.1093/jnci/djx166] [PMID: 28903484]
[46]
Akhoondi, S.; Sun, D.; von der Lehr, N.; Apostolidou, S.; Klotz, K.; Maljukova, A.; Cepeda, D.; Fiegl, H.; Dofou, D.; Marth, C.; Mueller-Holzner, E.; Corcoran, M.; Dagnell, M.; Nejad, S.Z.; Nayer, B.N.; Zali, M.R.; Hansson, J.; Egyhazi, S.; Petersson, F.; Sangfelt, P.; Nordgren, H.; Grander, D.; Reed, S.I.; Widschwendter, M.; Sangfelt, O.; Spruck, C. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res., 2007, 67(19), 9006-9012.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1320] [PMID: 17909001]
[47]
Motegi, A.; Sood, R.; Moinova, H.; Markowitz, S.D.; Liu, P.P.; Myung, K. Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol., 2006, 175(5), 703-708.
[http://dx.doi.org/10.1083/jcb.200606145] [PMID: 17130289]
[48]
Li, J.; Wang, J.; Chen, Z.; Chen, Y.; Jin, M. Hsa_circ_0079530 promotes cell proliferation and invasion in non-small cell lung cancer. Gene, 2018, 665, 1-5.
[http://dx.doi.org/10.1016/j.gene.2018.04.059] [PMID: 29689350]
[49]
Zhang, Y.; Zhao, H.; Zhang, L. Identification of the tumor suppressive function of circular RNA FOXO3 in non small cell lung cancer through sponging miR 155. Mol. Med. Rep., 2018, 17(6), 7692-7700.
[http://dx.doi.org/10.3892/mmr.2018.8830] [PMID: 29620202]
[50]
Zhu, X.; Wang, X.; Wei, S.; Chen, Y.; Chen, Y.; Fan, X.; Han, S.; Wu, G. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J., 2017, 284(14), 2170-2182.
[http://dx.doi.org/10.1111/febs.14132] [PMID: 28685964]
[51]
Zhang, Y.; Li, J.; Wang, Y.; Jing, J.; Li, J. The roles of circular RNAs in osteosarcoma. Med. Sci. Monit., 2019, 25, 6378-6382.
[http://dx.doi.org/10.12659/MSM.915559] [PMID: 31446435]
[52]
Liu, X.; Zhong, Y.; Li, J.; Shan, A. Circular RNA circ-NT5C2 acts as an oncogene in osteosarcoma proliferation and metastasis through targeting miR-448. Oncotarget, 2017, 8(70), 114829-114838.
[http://dx.doi.org/10.18632/oncotarget.22162] [PMID: 29383123]
[53]
Xiao-Long, M.; Kun-Peng, Z.; Chun-Lin, Z. Circular RNA circ_HIPK3 is down-regulated and suppresses cell proliferation, migration and invasion in osteosarcoma. J. Cancer, 2018, 9(10), 1856-1862.
[http://dx.doi.org/10.7150/jca.24619] [PMID: 29805712]
[54]
Kong, Z.; Wan, X.; Zhang, Y.; Zhang, P.; Zhang, Y.; Zhang, X.; Qi, X.; Wu, H.; Huang, J.; Li, Y. Androgen-responsive circular RNA circSMARCA5 is up-regulated and promotes cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun., 2017, 493(3), 1217-1223.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.162] [PMID: 28765045]
[55]
Zhu, M.; Xu, Y.; Chen, Y.; Yan, F. Circular BANP, an upregulated circular RNA that modulates cell proliferation in colorectal cancer. Biomed. Pharmacother., 2017, 88, 138-144.
[http://dx.doi.org/10.1016/j.biopha.2016.12.097] [PMID: 28103507]
[56]
Yin, W.B.; Yan, M.G.; Fang, X.; Guo, J.J.; Xiong, W.; Zhang, R.P. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin. Chim. Acta, 2018, 487, 363-368.
[http://dx.doi.org/10.1016/j.cca.2017.10.011] [PMID: 29045858]
[57]
Lü, L.; Sun, J.; Shi, P.; Kong, W.; Xu, K.; He, B.; Zhang, S.; Wang, J. Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget, 2017, 8(27), 44096-44107.
[http://dx.doi.org/10.18632/oncotarget.17307] [PMID: 28484086]
[58]
Yu, L.; Gong, X.; Sun, L.; Zhou, Q.; Lu, B.; Zhu, L. The circular RNA CDR1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One, 2016, 11(7), e0158347.
[http://dx.doi.org/10.1371/journal.pone.0158347] [PMID: 27391479]
[59]
Ren, S.; Xin, Z.; Xu, Y.; Xu, J.; Wang, G. Construction and analysis of circular RNA molecular regulatory networks in liver cancer. Cell Cycle, 2017, 16(22), 2204-2211.
[http://dx.doi.org/10.1080/15384101.2017.1346754] [PMID: 28727484]
[60]
Li, W.H.; Song, Y.C.; Zhang, H.; Zhou, Z.J.; Xie, X.; Zeng, Q.N.; Guo, K.; Wang, T.; Xia, P.; Chang, D.M. Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis. Markers, 2017, 45, 87698.
[61]
Wei, G.; Zhu, J.; Hu, H.B.; Liu, J.Q. Circular RNAs: Promising biomarkers for cancer diagnosis and prognosis. Gene, 2021, 771, 145365.
[http://dx.doi.org/10.1016/j.gene.2020.145365] [PMID: 33346098]
[62]
Ren, S.; Liu, J.; Feng, Y.; Li, Z.; He, L.; Li, L.; Cao, X.; Wang, Z.; Zhang, Y. Knockdown of circDENND4C inhibits glycolysis, migration and invasion by up-regulating miR-200b/c in breast cancer under hypoxia. J. Exp. Clin. Cancer Res., 2019, 38(1), 388.
[http://dx.doi.org/10.1186/s13046-019-1398-2] [PMID: 31488193]
[63]
Xu, Y.; Yao, Y.; Leng, K.; Ji, D.; Qu, L.; Liu, Y.; Cui, Y. Increased expression of circular RNA circ_0005230 indicates dismal prognosis in breast cancer and regulates cell proliferation and invasion via miR-618/CBX8 signal pathway. Cell. Physiol. Biochem., 2018, 51(4), 1710-1722.
[http://dx.doi.org/10.1159/000495675] [PMID: 30504704]
[64]
Lu, R.; Shao, Y.; Ye, G.; Xiao, B.; Guo, J. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol., 2017, 39(6)
[http://dx.doi.org/10.1177/1010428317704175] [PMID: 28656881]
[65]
Pan, H.; Li, T.; Jiang, Y.; Pan, C.; Ding, Y.; Huang, Z.; Yu, H.; Kong, D. Overexpression of circular RNA ciRS‐7 abrogates the tumor suppressive effect of miR‐7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J. Cell. Biochem., 2018, 119(1), 440-446.
[http://dx.doi.org/10.1002/jcb.26201] [PMID: 28608528]
[66]
Zhang, Y.; Liu, H.; Li, W.; Yu, J.; Li, J.; Shen, Z.; Ye, G.; Qi, X.; Li, G. CircRNA_100269 is downregulated in gastric cancer and suppresses tumor cell growth by targeting miR-630. Aging (Albany NY), 2017, 9(6), 1585-1594.
[http://dx.doi.org/10.18632/aging.101254] [PMID: 28657541]
[67]
Qi, H.; Sun, Y.; Jiang, Y.; Li, X. Upregulation of circular RNA circ_0000502 predicts unfavorable prognosis in osteosarcoma and facilitates cell progression via sponging miR‐1238. J. Cell. Biochem., 2019, 120(5), 8475-8482.
[http://dx.doi.org/10.1002/jcb.28134] [PMID: 30525215]
[68]
Zhang, H.; Wang, G.; Ding, C.; Liu, P.; Wang, R.; Ding, W.; Tong, D.; Wu, D.; Li, C.; Wei, Q.; Zhang, X.; Li, D.; Liu, P.; Cui, H.; Tang, H.; Ji, F. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget, 2017, 8(37), 61687-61697.
[http://dx.doi.org/10.18632/oncotarget.18671] [PMID: 28977896]
[69]
Xuan, L.; Qu, L.; Zhou, H.; Wang, P.; Yu, H.; Wu, T.; Wang, X.; Li, Q.; Tian, L.; Liu, M.; Sun, Y. Circular RNA: a novel biomarker for progressive laryngeal cancer. Am. J. Transl. Res., 2016, 8(2), 932-939.
[PMID: 27158380]
[70]
Wang, C.; Jiang, Y.; Lei, Q.; Wu, Y.; Shao, J.; Pu, D.; Li, W. Potential diagnostic and prognostic biomarkers of circular RNAs for lung cancer in China. BioMed. Res. Int., 2019, 2019
[http://dx.doi.org/10.1155/2019/8023541]
[71]
Yao, J.T.; Zhao, S.H.; Liu, Q.P.; Lv, M.Q.; Zhou, D.X.; Liao, Z.J.; Nan, K.J. Over-expression of CircRNA_100876 in non-small cell lung cancer and its prognostic value. Pathol. Res. Pract., 2017, 213(5), 453-456.
[http://dx.doi.org/10.1016/j.prp.2017.02.011] [PMID: 28343871]
[72]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[73]
Li, Z.; Chen, Z.; Hu, G.; Jiang, Y. Roles of circular RNA in breast cancer: present and future. Am. J. Transl. Res., 2019, 11(7), 3945-3954.
[PMID: 31396311]
[74]
Tang, Y.Y.; Zhao, P.; Zou, T.N.; Duan, J.J.; Zhi, R.; Yang, S.Y.; Yang, D.C.; Wang, X.L. Circular RNA hsa_circ_0001982 promotes breast cancer cell carcinogenesis through decreasing miR-143. DNA Cell Biol., 2017, 36(11), 901-908.
[http://dx.doi.org/10.1089/dna.2017.3862] [PMID: 28933584]
[75]
Liang, H.F.; Zhang, X.Z.; Liu, B.G.; Jia, G.T.; Li, W.L. Circular RNA circ-ABCB10 promotes breast cancer proliferation and progression through sponging miR-1271. Am. J. Cancer Res., 2017, 7(7), 1566-1576.
[PMID: 28744405]
[76]
Chen, B.; Wei, W.; Huang, X.; Xie, X.; Kong, Y.; Dai, D.; Yang, L.; Wang, J.; Tang, H.; Xie, X. circEPSTI1 as a prognostic marker and mediator of triple-negative breast cancer progression. Theranostics, 2018, 8(14), 4003-4015.
[http://dx.doi.org/10.7150/thno.24106] [PMID: 30083277]
[77]
Meng, L.; Chang, S.; Sang, Y.; Ding, P.; Wang, L.; Nan, X.; Xu, R.; Liu, F.; Gu, L.; Zheng, Y.; Li, Z.; Sang, M. Circular RNA circCCDC85A inhibits breast cancer progression via acting as a miR-550a-5p sponge to enhance MOB1A expression. Breast Cancer Res., 2022, 24(1), 1-13.
[http://dx.doi.org/10.1186/s13058-021-01497-6] [PMID: 34983617]
[78]
Li, X.W.; Yang, W.H.; Xu, J. Circular RNA in gastric cancer. Chin. Med. J. (Engl.), 2020, 133(15), 1868-1877.
[http://dx.doi.org/10.1097/CM9.0000000000000908] [PMID: 32649513]
[79]
Naeli, P.; Pourhanifeh, M.H.; Karimzadeh, M.R.; Shabaninejad, Z.; Movahedpour, A.; Tarrahimofrad, H.; Mirzaei, H.R.; Bafrani, H.H.; Savardashtaki, A.; Mirzaei, H.; Hamblin, M.R. Circular RNAs and gastrointestinal cancers: Epigenetic regulators with a prognostic and therapeutic role. Crit. Rev. Oncol. Hematol., 2020, 145, 102854.
[http://dx.doi.org/10.1016/j.critrevonc.2019.102854] [PMID: 31877535]
[80]
Xie, Y.; Shao, Y.; Sun, W.; Ye, G.; Zhang, X.; Xiao, B.; Guo, J. Downregulated expression of hsa_circ_0074362 in gastric cancer and its potential diagnostic values. Biomarkers Med., 2018, 12(1), 11-20.
[http://dx.doi.org/10.2217/bmm-2017-0114] [PMID: 29240459]
[81]
Peng, Y.K.; Pu, K.; Su, H.X.; Zhang, J.; Zheng, Y.; Ji, R.; Guo, Q.H.; Wang, Y.P.; Guan, Q.L.; Zhou, Y.N. Circular RNA hsa_circ_0010882 promotes the progression of gastric cancer via regulation of the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1142-1151.
[PMID: 32096170]
[82]
Ma, C.; Wang, X.; Yang, F.; Zang, Y.; Liu, J.; Wang, X.; Xu, X.; Li, W.; Jia, J.; Liu, Z. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol. Cancer, 2020, 19(1), 157.
[http://dx.doi.org/10.1186/s12943-020-01268-5] [PMID: 33172486]
[83]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[84]
Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Paffenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 2016, 165(2), 289-302.
[http://dx.doi.org/10.1016/j.cell.2016.03.020] [PMID: 27040497]
[85]
Han, D.; Li, J.; Wang, H.; Su, X.; Hou, J.; Gu, Y.; Qian, C.; Lin, Y.; Liu, X.; Huang, M.; Li, N.; Zhou, W.; Yu, Y.; Cao, X. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology, 2017, 66(4), 1151-1164.
[http://dx.doi.org/10.1002/hep.29270] [PMID: 28520103]
[86]
Hon, K.W.; Othman, N.; Hanif, E.A.M.; Nasir, S.N. Predictive biomarkers of drug resistance in colorectal cancer—Recent updates. In: Drug Resistance in Colorectal Cancer; Molecular Mechanisms and Therapeutic Strategies, 2020; pp. 135-151.
[87]
Bachmayr-Heyda, A.; Reiner, A.T.; Auer, K.; Sukhbaatar, N.; Aust, S.; Bachleitner-Hofmann, T.; Mesteri, I.; Grunt, T.W.; Zeillinger, R.; Pils, D. Correlation of circular RNA abundance with proliferation – exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis and normal human tissues. Sci. Rep., 2015, 5(1), 8057.
[http://dx.doi.org/10.1038/srep08057] [PMID: 25624062]
[88]
Guo, J.; Li, J.; Zhu, C.; Feng, W.; Shao, J.; Wan, L.; Huang, M.; He, J. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. OncoTargets Ther., 2016, 9, 7451-7458.
[http://dx.doi.org/10.2147/OTT.S123220] [PMID: 28003761]
[89]
Zhang, P.; Zuo, Z.; Shang, W.; Wu, A.; Bi, R.; Wu, J.; Li, S.; Sun, X.; Jiang, L. Identification of differentially expressed circular RNAs in human colorectal cancer. Tumour Biol., 2017, 39(3)
[http://dx.doi.org/10.1177/1010428317694546] [PMID: 28349836]
[90]
Wang, X.; Zhang, Y.; Huang, L.; Zhang, J.; Pan, F.; Li, B.; Yan, Y.; Jia, B.; Liu, H.; Li, S.; Zheng, W. Decreased expression of hsa_circ_001988 in colorectal cancer and its clinical significances. Int. J. Clin. Exp. Pathol., 2015, 8(12), 16020-16025.
[PMID: 26884878]
[91]
Zhang, Y.; Zhang, Y.; Li, X.; Zhang, M.; Lv, K. Microarray analysis of circular RNA expression patterns in polarized macrophages. Int. J. Mol. Med., 2017, 39(2), 373-379.
[http://dx.doi.org/10.3892/ijmm.2017.2852] [PMID: 28075448]
[92]
Zheng, Q.; Bao, C.; Guo, W.; Li, S.; Chen, J.; Chen, B.; Luo, Y.; Lyu, D.; Li, Y.; Shi, G.; Liang, L.; Gu, J.; He, X.; Huang, S. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7(1), 11215.
[http://dx.doi.org/10.1038/ncomms11215] [PMID: 27050392]
[93]
Zhong, Z.; Lv, M.; Chen, J. Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci. Rep., 2016, 6(1), 30919.
[http://dx.doi.org/10.1038/srep30919] [PMID: 27484176]
[94]
Zhong, Z.; Huang, M.; Lv, M.; He, Y.; Duan, C.; Zhang, L.; Chen, J. Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Lett., 2017, 403, 305-317.
[http://dx.doi.org/10.1016/j.canlet.2017.06.027] [PMID: 28687357]
[95]
Sheng, R.; Li, X.; Wang, Z.; Wang, X. Circular RNAs and their emerging roles as diagnostic and prognostic biomarkers in ovarian cancer. Cancer Lett., 2020, 473, 139-147.
[http://dx.doi.org/10.1016/j.canlet.2019.12.043] [PMID: 31904484]
[96]
Yang, X.; Mei, J.; Wang, H.; Gu, D.; Ding, J.; Liu, C. The emerging roles of circular RNAs in ovarian cancer. Cancer Cell Int., 2020, 20(1), 265.
[http://dx.doi.org/10.1186/s12935-020-01367-9] [PMID: 32587475]
[97]
Hu, Y.; Zhu, Y.; Zhang, W.; Lang, J.; Ning, L. Utility of plasma circBNC2 as a diagnostic biomarker in epithelial ovarian cancer. OncoTargets Ther., 2019, 12, 9715-9723.
[http://dx.doi.org/10.2147/OTT.S211413] [PMID: 32009804]
[98]
Fan, C.M.; Wang, J.P.; Tang, Y.Y.; Zhao, J.; He, S.Y.; Xiong, F.; Guo, C.; Xiang, B.; Zhou, M.; Li, X-L.; Li, Y.; Li, G-Y.; Xiong, W.; Zeng, Z-Y. circ MAN 1A2 could serve as a novel serum biomarker for malignant tumors. Cancer Sci., 2019, 110(7), 2180-2188.
[http://dx.doi.org/10.1111/cas.14034] [PMID: 31046163]
[99]
Chen, Y.; Ye, X.; Xia, X.; Lin, X. Circular RNA ABCB10 correlates with advanced clinicopathological features and unfavorable survival, and promotes cell proliferation while reduces cell apoptosis in epithelial ovarian cancer. Cancer Biomark., 2019, 26(2), 151-161. a
[http://dx.doi.org/10.3233/CBM-190064] [PMID: 31381507]
[100]
Ning, L.; Long, B.; Zhang, W.; Yu, M.; Wang, S.; Cao, D.; Yang, J.; Shen, K.; Huang, Y.; Lang, J. Circular RNA profiling reveals circEXOC6B and circN4BP2L2 as novel prognostic biomarkers in epithelial ovarian cancer. Int. J. Oncol., 2018, 53(6), 2637-2646.
[http://dx.doi.org/10.3892/ijo.2018.4566] [PMID: 30272264]
[101]
Yang, Z.; Xie, L.; Han, L.; Qu, X.; Yang, Y.; Zhang, Y.; He, Z.; Wang, Y.; Li, J. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics, 2017, 7(12), 3106-3117.
[http://dx.doi.org/10.7150/thno.19016] [PMID: 28839467]
[102]
Liu, J.; Liu, T.; Wang, X.; He, A. Circles reshaping the RNA world: from waste to treasure. Mol. Cancer, 2017, 16(1), 58.
[http://dx.doi.org/10.1186/s12943-017-0630-y] [PMID: 28279183]
[103]
Tay, F.C.; Lim, J.K.; Zhu, H.; Hin, L.C.; Wang, S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv. Drug Deliv. Rev., 2015, 81, 117-127.
[http://dx.doi.org/10.1016/j.addr.2014.05.010] [PMID: 24859534]
[104]
Santer, L.; Bär, C.; Thum, T. Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol. Ther., 2019, 27(8), 1350-1363.
[http://dx.doi.org/10.1016/j.ymthe.2019.07.001] [PMID: 31324392]
[105]
Cortés-López, M.; Miura, P. Focus: epigenetics: emerging functions of circular RNAs. Yale J. Biol. Med., 2016, 89(4), 527-537.
[PMID: 28018143]
[106]
Piwecka, M.; Glažar, P.; Hernandez-Miranda, L.R.; Memczak, S.; Wolf, S.A.; Rybak-Wolf, A.; Filipchyk, A.; Klironomos, F.; Cerda Jara, C.A.; Fenske, P.; Trimbuch, T.; Zywitza, V.; Plass, M.; Schreyer, L.; Ayoub, S.; Kocks, C.; Kühn, R.; Rosenmund, C.; Birchmeier, C.; Rajewsky, N. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357(6357), eaam8526.
[http://dx.doi.org/10.1126/science.aam8526] [PMID: 28798046]
[107]
Müller, S.; Appel, B. In vitro circularization of RNA. RNA Biol., 2017, 14(8), 1018-1027.
[http://dx.doi.org/10.1080/15476286.2016.1239009] [PMID: 27668458]
[108]
Chen, Y.G.; Chen, R.; Ahmad, S.; Verma, R.; Kasturi, S.P.; Amaya, L.; Broughton, J.P.; Kim, J.; Cadena, C.; Pulendran, B.; Hur, S.; Chang, H.Y. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell, 2019, 76(1), 96-109.e9. b
[http://dx.doi.org/10.1016/j.molcel.2019.07.016] [PMID: 31474572]
[109]
Jost, I.; Shalamova, L.A.; Gerresheim, G.K.; Niepmann, M.; Bindereif, A.; Rossbach, O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol., 2018, 15(8), 1-8.
[http://dx.doi.org/10.1080/15476286.2018.1435248] [PMID: 29486652]
[110]
Holdt, L.M.; Kohlmaier, A.; Teupser, D. Circular RNAs as therapeutic agents and targets. Front. Physiol., 2018, 9, 1262.
[http://dx.doi.org/10.3389/fphys.2018.01262] [PMID: 30356745]
[111]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[112]
Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44(14), 4743-4768.
[http://dx.doi.org/10.1039/C4CS00392F] [PMID: 25620543]
[113]
Kircher, M.F.; de la Zerda, A.; Jokerst, J.V.; Zavaleta, C.L.; Kempen, P.J.; Mittra, E.; Pitter, K.; Huang, R.; Campos, C.; Habte, F.; Sinclair, R.; Brennan, C.W.; Mellinghoff, I.K.; Holland, E.C.; Gambhir, S.S. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med., 2012, 18(5), 829-834.
[http://dx.doi.org/10.1038/nm.2721] [PMID: 22504484]
[114]
Kulkarni, J.A.; Witzigmann, D.; Chen, S.; Cullis, P.R.; van der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res., 2019, 52(9), 2435-2444.
[http://dx.doi.org/10.1021/acs.accounts.9b00368] [PMID: 31397996]
[115]
Ma, X.; Zhao, Y.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res., 2011, 44(10), 1114-1122.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[116]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[117]
Oliveira, A.C.N.; Fernandes, J.; Gonçalves, A.; Gomes, A.C.; Oliveira, M.E.C.D.R. Lipid-based nanocarriers for siRNA delivery: challenges, strategies and the lessons learned from the DODAX: MO liposomal system. Curr. Drug Targets, 2018, 20(1), 29-50.
[http://dx.doi.org/10.2174/1389450119666180703145410] [PMID: 29968536]
[118]
Ojea-Jiménez, I.; Comenge, J.; García-Fernández, L.; Megson, Z.; Casals, E.; Puntes, V. Engineered inorganic nanoparticles for drug delivery applications. Curr. Drug Metab., 2013, 14(5), 518-530.
[http://dx.doi.org/10.2174/13892002113149990008] [PMID: 23116108]
[119]
Du, W.W.; Yang, W.; Li, X.; Awan, F.M.; Yang, Z.; Fang, L.; Lyu, J.; Li, F.; Peng, C.; Krylov, S.N.; Xie, Y.; Zhang, Y.; He, C.; Wu, N.; Zhang, C.; Sdiri, M.; Dong, J.; Ma, J.; Gao, C.; Hibberd, S.; Yang, B.B. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene, 2018, 37(44), 5829-5842.
[http://dx.doi.org/10.1038/s41388-018-0369-y] [PMID: 29973691]
[120]
Fang, L.; Du, W.W.; Awan, F.M.; Dong, J.; Yang, B.B. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett., 2019, 459, 216-226.
[http://dx.doi.org/10.1016/j.canlet.2019.05.036] [PMID: 31199987]
[121]
Lu, M.; Wu, Y.; Zeng, B.; Sun, J.; Li, Y.; Luo, J.; Wang, L.; Yi, Z.; Li, H.; Ren, G. CircEHMT1 inhibits metastatic potential of breast cancer cells by modulating miR-1233-3p/KLF4/MMP2 axis. Biochem. Biophys. Res. Commun., 2020, 526(2), 306-313.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.084] [PMID: 32209259]
[122]
He, A.T.; Liu, J.; Li, F.; Yang, B.B. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct. Target. Ther., 2021, 6(1), 185.
[http://dx.doi.org/10.1038/s41392-021-00569-5] [PMID: 34016945]
[123]
Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing with CRISPR-Cas13. Science, 2017, 358(6366), 1019-1027.
[http://dx.doi.org/10.1126/science.aaq0180] [PMID: 29070703]
[124]
Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; Lander, E.S.; Voytas, D.F.; Ting, A.Y.; Zhang, F. RNA targeting with CRISPR–Cas13. Nature, 2017, 550(7675), 280-284.
[http://dx.doi.org/10.1038/nature24049] [PMID: 28976959]
[125]
Schultz, N.; Marenstein, D.R.; De Angelis, D.A.; Wang, W.Q.; Nelander, S.; Jacobsen, A.; Marks, D.S.; Massagué, J.; Sander, C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence, 2011, 2(1), 3.
[http://dx.doi.org/10.1186/1758-907X-2-3] [PMID: 21401928]
[126]
Anderson, E.M.; Birmingham, A.; Baskerville, S.; Reynolds, A.; Maksimova, E.; Leake, D.; Fedorov, Y.; Karpilow, J.; Khvorova, A. Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA, 2008, 14(5), 853-861.
[http://dx.doi.org/10.1261/rna.704708] [PMID: 18367722]
[127]
Jackson, A.L.; Burchard, J.; Schelter, J.; Chau, B.N.; Cleary, M.; Lim, L.; Linsley, P.S. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA, 2006, 12(7), 1179-1187.
[http://dx.doi.org/10.1261/rna.25706] [PMID: 16682560]
[128]
Draz, M.S.; Fang, B.A.; Zhang, P.; Hu, Z.; Gu, S.; Weng, K.C.; Gray, J.W.; Chen, F.F. Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics, 2014, 4(9), 872-892.
[http://dx.doi.org/10.7150/thno.9404] [PMID: 25057313]
[129]
Setten, R.L.; Rossi, J.J.; Han, S. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov., 2019, 18(6), 421-446.
[http://dx.doi.org/10.1038/s41573-019-0017-4] [PMID: 30846871]
[130]
Chen, Y.G.; Kim, M.V.; Chen, X.; Batista, P.J.; Aoyama, S.; Wilusz, J.E.; Iwasaki, A.; Chang, H.Y. Sensing self and foreign circular RNAs by intron identity. Mol. Cell, 2017, 67(2), 228-238.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.05.022] [PMID: 28625551]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy