Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

The Roles of IGF-1 and MGF on Nerve Regeneration under Hypoxia- Ischemia, Inflammation, Oxidative Stress, and Physical Trauma

Author(s): Yongqiang Sha*, Liping Chen, Chunming Xu, Beibei Zhang, Huhai Hong and Chunli Wang*

Volume 24, Issue 2, 2023

Published on: 06 January, 2023

Page: [143 - 155] Pages: 13

DOI: 10.2174/1389203724666221208145549

Price: $65

Abstract

Nerve injuries and lesions often lead to the loss of neural control, reducing the patients’ quality of lives. Nerve self-repair is difficult due to the low regeneration capacity, insufficient secretion of neurotrophic factors, secondary complications, and adverse microenvironmental conditions such as severe hypoxia-ischemia, inflammation, and oxidative stress. Effective therapies that can accelerate nerve regeneration have been explored. Cytokine therapy can significantly improve neural survival and myelin regeneration during nerve repair. Insulin-like growth factor-1 (IGF-1) and its isoforms (IGF- 1Ea and IGF-1Eb/Ec [also known as MGF]) represent a promising therapeutic approach regarding nerve repair, given their well-described proliferative and anti-apoptotic capacities on neurons withstanding the adverse environmental conditions. This review summarizes the research progress regarding the effects of IGF-1 and its isoforms on nerve repair after nerve injury, hypoxic-ischemic insult, inflammation, and oxidative stress. We provide a theoretical basis for the clinical treatment of nerve injuries.

Graphical Abstract

[1]
Grinsell, D.; Keating, C.P. Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. BioMed Res. Int., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/698256] [PMID: 25276813]
[2]
Navarro, X.; Vivó, M.; Valero-Cabré, A. Neural plasticity after peripheral nerve injury and regeneration. Prog. Neurobiol., 2007, 82(4), 163-201.
[http://dx.doi.org/10.1016/j.pneurobio.2007.06.005] [PMID: 17643733]
[3]
Straszewski, A.J.; Schultz, K.; Dickherber, J.L.; Dahm, J.S.; Wolf, J.M.; Strelzow, J.A. Gunshot-related upper extremity nerve injuries at a level 1 trauma center. J. Hand Surg. Am., 2022, 47(1), 88.e1-88.e6.
[http://dx.doi.org/10.1016/j.jhsa.2021.03.020] [PMID: 34030933]
[4]
Wang, J.; Sha, Y.; Sun, T. m6A modifications play crucial roles in glial cell development and brain tumorigenesis. Front. Oncol., 2021, 11, 611660.
[http://dx.doi.org/10.3389/fonc.2021.611660] [PMID: 33718165]
[5]
Tuncer, S.; Akkoca, A.; Celen, M.C.; Dalkilic, N. Can MitoTEMPO protect rat sciatic nerve against ischemia-reperfusion injury? Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(3), 545-553.
[http://dx.doi.org/10.1007/s00210-020-02039-1] [PMID: 33415504]
[6]
Briski, K.P.; Alhamami, H.N.; Alshamrani, A.; Mandal, S.K.; Shakya, M.; Ibrahim, M.H.H. Sex differences and role of estradiol in hypoglycemia-associated counter-regulation. Adv. Exp. Med. Biol., 2017, 1043, 359-383.
[http://dx.doi.org/10.1007/978-3-319-70178-3_17] [PMID: 29224103]
[7]
Fu, S.Y.; Gordon, T. Contributing factors to poor functional recovery after delayed nerve repair: Prolonged axotomy. J. Neurosci., 1995, 15(5), 3876-3885.
[http://dx.doi.org/10.1523/JNEUROSCI.15-05-03876.1995] [PMID: 7751952]
[8]
Singh, V.K.; Haq, A.; Tiwari, M.; Saxena, A.K. Approach to management of nerve gaps in peripheral nerve injuries. Injury, 2022, 53(4), 1308-1318.
[http://dx.doi.org/10.1016/j.injury.2022.01.031] [PMID: 35105440]
[9]
Lopes, C.D.F.; Gonçalves, N.P.; Gomes, C.P.; Saraiva, M.J.; Pêgo, A.P. BDNF gene delivery mediated by neuron-targeted nanoparticles is neuroprotective in peripheral nerve injury. Biomaterials, 2017, 121, 83-96.
[http://dx.doi.org/10.1016/j.biomaterials.2016.12.025] [PMID: 28081461]
[10]
Bochinski, D.; Lin, G.T.; Nunes, L.; Carrion, R.; Rahman, N.; Lin, C.S.; Lue, T.F. The effect of neural embryonic stem cell therapy in a rat model of cavernosal nerve injury. BJU Int., 2004, 94(6), 904-909.
[http://dx.doi.org/10.1111/j.1464-410X.2003.05057.x] [PMID: 15476533]
[11]
Boldyreva, M.A. Bondar, I.V.; Stafeev, I.S.; Makarevich, P.I.; Beloglazova, I.B.; Zubkova, E.S.; Shevchenko, E.K.; Molokotina, Y.D.; Karagyaur, M.N.; Rаtner, Е.I.; Parfyonova, Y.V. Plasmidbased gene therapy with hepatocyte growth factor stimulates peripheral nerve regeneration after traumatic injury. Biomed. Pharmacother., 2018, 101, 682-690.
[http://dx.doi.org/10.1016/j.biopha.2018.02.138] [PMID: 29518615]
[12]
Rochkind, S.; Geuna, S.; Shainberg, A. Chapter 25: Phototherapy in peripheral nerve injury: Effects on muscle preservation and nerve regeneration. Int. Rev. Neurobiol., 2009, 87, 445-464.
[http://dx.doi.org/10.1016/S0074-7742(09)87025-6] [PMID: 19682654]
[13]
Zhang, R.R.; Chen, S.L.; Cheng, Z.C.; Shen, Y.Y.; Yi, S.; Xu, H. Characteristics of cytokines in the sciatic nerve stumps and DRGs after rat sciatic nerve crush injury. Mil. Med. Res., 2020, 7(1), 57.
[http://dx.doi.org/10.1186/s40779-020-00286-0] [PMID: 33225981]
[14]
Créange, A.; Barlovatz-Meimon, G.; Gherardi, R.K. Cytokines and peripheral nerve disorders. Eur. Cytokine Netw., 1997, 8(2), 145-151.
[PMID: 9262963]
[15]
Aperghis, M.; Johnson, I.P.; Cannon, J.; Yang, S.Y.; Goldspink, G. Different levels of neuroprotection by two insulin-like growth factor-I splice variants. Brain Res., 2004, 1009(1-2), 213-218.
[http://dx.doi.org/10.1016/j.brainres.2004.02.049] [PMID: 15120599]
[16]
Dyer, A.H.; Vahdatpour, C.; Sanfeliu, A.; Tropea, D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience, 2016, 325, 89-99.
[http://dx.doi.org/10.1016/j.neuroscience.2016.03.056] [PMID: 27038749]
[17]
Podratz, J.L.; Tang, J.J.; Polzin, M.J.; Schmeichel, A.M.; Nesbitt, J.J.; Windebank, A.J.; Madigan, N.N. Mechano growth factor interacts with nucleolin to protect against cisplatin-induced neurotoxicity. Exp. Neurol., 2020, 331, 113376.
[http://dx.doi.org/10.1016/j.expneurol.2020.113376] [PMID: 32511954]
[18]
Schäbitz, W.R.; Hoffmann, T.T.; Heiland, S.; Kollmar, R.; Bardutzky, J.; Sommer, C.; Schwab, S. Delayed neuroprotective effect of insulin-like growth factor-i after experimental transient focal cerebral ischemia monitored with mri. Stroke, 2001, 32(5), 1226-1233.
[http://dx.doi.org/10.1161/01.STR.32.5.1226] [PMID: 11340238]
[19]
Riddoch-Contreras, J.; Yang, S.Y.; Dick, J.R.T.; Goldspink, G.; Orrell, R.W.; Greensmith, L. Mechano-growth factor, an IGF-I splice variant, rescues motoneurons and improves muscle function in SOD1G93A mice. Exp. Neurol., 2009, 215(2), 281-289.
[http://dx.doi.org/10.1016/j.expneurol.2008.10.014] [PMID: 19038252]
[20]
Dłużniewska, J.; Sarnowska, A.; Beręsewicz, M.; Johnson, I.; Srai, S.K.S.; Ramesh, B.; Goldspink, G.; Górecki, D.C.; Zabłocka, B. A strong neuroprotective effect of the autonomous C‐terminal peptide of IGF‐1 Ec (MGF) in brain ischemia. FASEB J., 2005, 19(13), 1896-1898.
[http://dx.doi.org/10.1096/fj.05-3786fje] [PMID: 16144956]
[21]
Oberbauer, A.M. The regulation of IGF-1 gene transcription and splicing during development and aging. Front. Endocrinol. (Lausanne), 2013, 4, 39.
[http://dx.doi.org/10.3389/fendo.2013.00039] [PMID: 23533068]
[22]
Barton, E.R.; DeMeo, J.; Lei, H. The insulin-like growth factor (IGF)-I E-peptides are required for isoform-specific gene expression and muscle hypertrophy after local IGF-I production. J. Appl. Physiol., 2010, 108(5), 1069-1076.
[23]
Dai, Z.; Wu, F.; Yeung, E.W.; Li, Y. IGF-IEc expression, regulation and biological function in different tissues. Growth Horm. IGF Res., 2010, 20(4), 275-281.
[http://dx.doi.org/10.1016/j.ghir.2010.03.005] [PMID: 20494600]
[24]
Matheny, R.W., Jr; Nindl, B.C.; Adamo, M.L. Minireview: Mechano-growth factor: A putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology, 2010, 151(3), 865-875.
[http://dx.doi.org/10.1210/en.2009-1217] [PMID: 20130113]
[25]
Adamo, M.L.; Neuenschwander, S.; LeRoith, D.; Roberts, C.T. Jr Structure, expression, and regulation of the IGF-I gene. Adv. Exp. Med. Biol., 1993, 343, 1-11.
[PMID: 8184730]
[26]
Horio, T.; Maki, T.; Kishimoto, I.; Tokudome, T.; Okumura, H.; Yoshihara, F.; Suga, S.; Takeo, S.; Kawano, Y.; Kangawa, K. Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts. Regul. Pept., 2005, 124(1-3), 65-72.
[http://dx.doi.org/10.1016/j.regpep.2004.06.029] [PMID: 15544842]
[27]
Cohick, W.S.; Clemmons, D.R. The insulin-like growth factors. Annu. Rev. Physiol., 1993, 55(1), 131-153.
[http://dx.doi.org/10.1146/annurev.ph.55.030193.001023] [PMID: 8466170]
[28]
Kasprzak, A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. Int. J. Mol. Sci., 2021, 22(12), 6434.
[http://dx.doi.org/10.3390/ijms22126434] [PMID: 34208601]
[29]
Carlson, S.W.; Madathil, S.K.; Sama, D.M.; Gao, X.; Chen, J.; Saatman, K.E. Conditional overexpression of insulin-like growth factor-1 enhances hippocampal neurogenesis and restores immature neuron dendritic processes after traumatic brain injury. J. Neuropathol. Exp. Neurol., 2014, 73(8), 734-746.
[http://dx.doi.org/10.1097/NEN.0000000000000092] [PMID: 25003234]
[30]
Annibalini, G.; Bielli, P.; De Santi, M.; Agostini, D.; Guescini, M.; Sisti, D.; Contarelli, S.; Brandi, G.; Villarini, A.; Stocchi, V.; Sette, C.; Barbieri, E. MIR retroposon exonization promotes evolutionary variability and generates species-specific expression of IGF-1 splice variants. Biochim. Biophys. Acta. Gene Regul. Mech., 2016, 1859(5), 757-768.
[http://dx.doi.org/10.1016/j.bbagrm.2016.03.014] [PMID: 27048986]
[31]
Bell, G.I.; Stempien, M.M.; Fong, N.M.; Rall, L.B. Sequences of liver cDNAs encoding two different mouse insulin-like growth factor I precursors. Nucleic Acids Res., 1986, 14(20), 7873-7882.
[http://dx.doi.org/10.1093/nar/14.20.7873] [PMID: 3774549]
[32]
Yang, S.; Alnaqeeb, M.; Simpson, H.; Goldspink, G. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J. Muscle Res. Cell Motil., 1996, 17(4), 487-495.
[http://dx.doi.org/10.1007/BF00123364] [PMID: 8884603]
[33]
Ohlsson, C.; Mohan, S.; Sjögren, K.; Tivesten, Å.; Isgaard, J.; Isaksson, O.; Jansson, J.O.; Svensson, J. The role of liver-derived insulin-like growth factor-I. Endocr. Rev., 2009, 30(5), 494-535.
[http://dx.doi.org/10.1210/er.2009-0010] [PMID: 19589948]
[34]
Carro, E.; Nuñez, A.; Busiguina, S.; Torres-Aleman, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci., 2000, 20(8), 2926-2933.
[http://dx.doi.org/10.1523/JNEUROSCI.20-08-02926.2000] [PMID: 10751445]
[35]
Nieto-Estévez, V.; Defterali, Ç.; Vicario-Abejón, C. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front. Neurosci., 2016, 10, 52.
[http://dx.doi.org/10.3389/fnins.2016.00052] [PMID: 26941597]
[36]
Labandeira-Garcia, J.L.; Costa-Besada, M.A.; Labandeira, C.M.; Villar-Cheda, B.; Rodríguez-Perez, A.I. Insulin-like growth factor-1 and neuroinflammation. Front. Aging Neurosci., 2017, 9, 365.
[http://dx.doi.org/10.3389/fnagi.2017.00365] [PMID: 29163145]
[37]
Baltazar-Lara, R.; Ávila-Mendoza, J.; Martínez-Moreno, C.G.; Carranza, M.; Pech-Pool, S.; Vázquez-Martínez, O.; Díaz-Muñoz, M.; Luna, M.; Arámburo, C. Neuroprotective effects of growth hormone (GH) and insulin-like growth factor type 1 (IGF-1) after hypoxic-ischemic injury in chicken cerebellar cell cultures. Int. J. Mol. Sci., 2020, 22(1), 256.
[http://dx.doi.org/10.3390/ijms22010256] [PMID: 33383827]
[38]
Zhao, L.; Zhang, B.; Huang, S.; Zhou, Z.; Jia, X.; Qiao, C.; Wang, F.; Sun, M.; Shi, Y.; Yao, L.; Cui, C.; Shen, Y. Insulin-like growth factor-1 enhances motoneuron survival and inhibits neuroinflammation after spinal cord transection in zebrafish. Cell. Mol. Neurobiol., 2022, 42(5), 1373-1384.
[http://dx.doi.org/10.1007/s10571-020-01022-x] [PMID: 33481118]
[39]
Bayrak, A.F.; Olgun, Y.; Ozbakan, A.; Aktas, S.; Kulan, C.A.; Kamaci, G.; Demir, E.; Yilmaz, O.; Olgun, L. The effect of insulin like growth factor-1 on recovery of facial nerve crush injury. Clin. Exp. Otorhinolaryngol., 2017, 10(4), 296-302.
[http://dx.doi.org/10.21053/ceo.2016.00997] [PMID: 28264555]
[40]
Isgaard, J.; Aberg, D.; Nilsson, M. Protective and regenerative effects of the GH/IGF-I axis on the brain. Minerva Endocrinol., 2007, 32(2), 103-113.
[PMID: 17557036]
[41]
Kieslich, M.; Hoche, F.; Reichenbach, J.; Weidauer, S.; Porto, L.; Vlaho, S.; Schubert, R.; Zielen, S. Extracerebellar MRI-lesions in ataxia telangiectasia go along with deficiency of the GH/IGF-1 axis, markedly reduced body weight, high ataxia scores and advanced age. Cerebellum, 2010, 9(2), 190-197.
[http://dx.doi.org/10.1007/s12311-009-0138-0] [PMID: 19898915]
[42]
Wang, W.; Duan, X.; Huang, Z.; Pan, Q.; Chen, C.; Guo, L. The GH-IGF-1 axis in circadian rhythm. Front. Mol. Neurosci., 2021, 14, 742294.
[http://dx.doi.org/10.3389/fnmol.2021.742294] [PMID: 34566581]
[43]
Podlutsky, A.; Valcarcel-Ares, M.N.; Yancey, K.; Podlutskaya, V.; Nagykaldi, E.; Gautam, T.; Miller, R.A.; Sonntag, W.E.; Csiszar, A.; Ungvari, Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: Implications for the developmental origins of cancer. Geroscience, 2017, 39(2), 147-160.
[http://dx.doi.org/10.1007/s11357-017-9966-x] [PMID: 28233247]
[44]
Berryman, D.E.; Glad, C.A.M.; List, E.O.; Johannsson, G. The GH/IGF-1 axis in obesity: Pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol., 2013, 9(6), 346-356.
[http://dx.doi.org/10.1038/nrendo.2013.64] [PMID: 23568441]
[45]
Åberg, D. Role of the growth hormone/insulin-like growth factor 1 axis in neurogenesis. Endocr. Dev., 2010, 17, 63-76.
[http://dx.doi.org/10.1159/000262529] [PMID: 19955757]
[46]
Lobie, P.E.; García-Aragón, J.; Lincoln, D.T.; Barnard, R.; Wilcox, J.N.; Waters, M.J. Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res. Dev. Brain Res., 1993, 74(2), 225-233.
[http://dx.doi.org/10.1016/0165-3806(93)90008-X] [PMID: 8403384]
[47]
Bianchi, V.; Locatelli, V.; Rizzi, L. Neurotrophic and neuroregenerative effects of GH/IGF1. Int. J. Mol. Sci., 2017, 18(11), 2441.
[http://dx.doi.org/10.3390/ijms18112441] [PMID: 29149058]
[48]
Sun, L.Y.; Evans, M.S.; Hsieh, J.; Panici, J.; Bartke, A. Increased neurogenesis in dentate gyrus of long-lived Ames dwarf mice. Endocrinology, 2005, 146(3), 1138-1144.
[http://dx.doi.org/10.1210/en.2004-1115] [PMID: 15564324]
[49]
Gómez, J. Growth hormone and insulin-like growth factor-I as an endocrine axis in Alzheimer’s disease. Endocr. Metab. Immune Disord. Drug Targets, 2008, 8(2), 143-151.
[http://dx.doi.org/10.2174/187153008784534367] [PMID: 18537700]
[50]
Gontier, G.; George, C.; Chaker, Z.; Holzenberger, M.; Aïd, S. Blocking IGF signaling in adult neurons alleviates alzheimer’s disease pathology through amyloid-β clearance. J. Neurosci., 2015, 35(33), 11500-11513.
[http://dx.doi.org/10.1523/JNEUROSCI.0343-15.2015] [PMID: 26290229]
[51]
O’Kusky, J.; Ye, P. Neurodevelopmental effects of insulin-like growth factor signaling. Front. Neuroendocrinol., 2012, 33(3), 230-251.
[http://dx.doi.org/10.1016/j.yfrne.2012.06.002] [PMID: 22710100]
[52]
Bondy, C.A.; Cheng, C.M. Signaling by insulin-like growth factor 1 in brain. Eur. J. Pharmacol., 2004, 490(1-3), 25-31.
[http://dx.doi.org/10.1016/j.ejphar.2004.02.042] [PMID: 15094071]
[53]
Popken, G.J.; Hodge, R.D.; Ye, P.; Zhang, J.; Ng, W.; O’Kusky, J.R.; D’Ercole, A.J. in vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci., 2004, 19(8), 2056-2068.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03320.x] [PMID: 15090033]
[54]
Joseph D’Ercole, A.; Ye, P. Expanding the mind: Insulin-like growth factor I and brain development. Endocrinology, 2008, 149(12), 5958-5962.
[http://dx.doi.org/10.1210/en.2008-0920] [PMID: 18687773]
[55]
Kappeler, L.; Filho, C.D.M.; Dupont, J.; Leneuve, P.; Cervera, P.; Périn, L.; Loudes, C.; Blaise, A.; Klein, R.; Epelbaum, J.; Bouc, Y.L.; Holzenberger, M. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol., 2008, 6(10), e254.
[http://dx.doi.org/10.1371/journal.pbio.0060254] [PMID: 18959478]
[56]
Beck, K.D.; Powell-Braxtont, L.; Widmer, H.R.; Valverde, J.; Hefti, F. Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal parvalbumin-containing neurons. Neuron, 1995, 14(4), 717-730.
[http://dx.doi.org/10.1016/0896-6273(95)90216-3] [PMID: 7718235]
[57]
Ye, P.; Li, L.; Richards, R.G.; DiAugustine, R.P.; D’Ercole, A.J. Myelination is altered in insulin-like growth factor-I null mutant mice. J. Neurosci., 2002, 22(14), 6041-6051.
[http://dx.doi.org/10.1523/JNEUROSCI.22-14-06041.2002] [PMID: 12122065]
[58]
Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci., 2012, 13(4), 225-239.
[http://dx.doi.org/10.1038/nrn3209] [PMID: 22430016]
[59]
Zerti, D.; Molina, M.M.; Dorgau, B.; Mearns, S.; Bauer, R.; Al-Aama, J.; Lako, M. IGFBPs mediate IGF-1's functions in retinal lamination and photoreceptor development during pluripotent stem cell differentiation to retinal organoids. Stem Cells, 2021, 39(4), 458-466.
[http://dx.doi.org/10.1002/stem.3331] [PMID: 33442906]
[60]
Bhalala, U.S.; Koehler, R.C.; Kannan, S. Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front Pediatr., 2015, 2, 144.
[http://dx.doi.org/10.3389/fped.2014.00144] [PMID: 25642419]
[61]
Lee, W.H.; Wang, G.M.; Seaman, L.B.; Vannucci, S.J. Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia. J. Cereb. Blood Flow Metab., 1996, 16(2), 227-236.
[http://dx.doi.org/10.1097/00004647-199603000-00007] [PMID: 8594054]
[62]
Janowska, J.; Gargas, J.; Ziemka-Nalecz, M.; Zalewska, T.; Sypecka, J. Oligodendrocyte response to pathophysiological conditions triggered by episode of perinatal hypoxia-ischemia: Role of IGF-1 secretion by glial cells. Mol. Neurobiol., 2020, 57(10), 4250-4268.
[http://dx.doi.org/10.1007/s12035-020-02015-z] [PMID: 32691304]
[63]
Sizonenko, S.V.; Sirimanne, E.S.; Williams, C.E.; Gluckman, P.D. Neuroprotective effects of the N-terminal tripeptide of IGF-1, glycine-proline-glutamate, in the immature rat brain after hypoxic-ischemic injury. Brain Res., 2001, 922(1), 42-50.
[http://dx.doi.org/10.1016/S0006-8993(01)03148-1] [PMID: 11730700]
[64]
Guan, J.; Miller, O.T.; Waugh, K.M.; McCarthy, D.C.; Gluckman, P.D. Insulin-like growth factor-1 improves somatosensory function and reduces the extent of cortical infarction and ongoing neuronal loss after hypoxia-ischemia in rats. Neuroscience, 2001, 105(2), 299-306.
[http://dx.doi.org/10.1016/S0306-4522(01)00145-2] [PMID: 11672597]
[65]
Guan, J.; Williams, C.; Gunning, M.; Mallard, C.; Gluckman, P. The effects of IGF-1 treatment after hypoxic-ischemic brain injury in adult rats. J. Cereb. Blood Flow Metab., 1993, 13(4), 609-616.
[http://dx.doi.org/10.1038/jcbfm.1993.79] [PMID: 8314914]
[66]
Guan, J.; Thomas, G.B.; Lin, H.; Mathai, S.; Bachelor, D.C.; George, S.; Gluckman, P.D. Neuroprotective effects of the N-terminal tripeptide of insulin-like growth factor-1, glycine-proline-glutamate (GPE) following intravenous infusion in hypoxic-ischemic adult rats. Neuropharmacology, 2004, 47(6), 892-903.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.002] [PMID: 15527823]
[67]
Chang, H.C.; Yang, Y.R.; Wang, P.S.; Kuo, C.H.; Wang, R.Y. The neuroprotective effects of intramuscular insulin-like growth factor-I treatment in brain ischemic rats. PLoS One, 2013, 8(5), e64015.
[http://dx.doi.org/10.1371/journal.pone.0064015] [PMID: 23717526]
[68]
Ren, X.; Boriero, D.; Chaiswing, L.; Bondada, S.; St Clair, D.K.; Butterfield, D.A. Plausible biochemical mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”), a condition that significantly impairs the quality of life of many cancer survivors. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(6), 1088-1097.
[http://dx.doi.org/10.1016/j.bbadis.2019.02.007] [PMID: 30759363]
[69]
Won, L.; Kraig, R.P. Insulin-like growth factor-1 inhibits spreading depression-induced trigeminal calcitonin gene related peptide, oxidative stress & neuronal activation in rat. Brain Res., 2020, 1732, 146673.
[http://dx.doi.org/10.1016/j.brainres.2020.146673] [PMID: 31978377]
[70]
Won, L.; Kraig, R.P. Insulin-like growth factor-1 inhibits nitroglycerin-induced trigeminal activation of oxidative stress, calcitonin gene-related peptide and c-Fos expression. Neurosci. Lett., 2021, 751, 135809.
[http://dx.doi.org/10.1016/j.neulet.2021.135809] [PMID: 33713748]
[71]
Grinberg, Y.Y.; van Drongelen, W.; Kraig, R.P. Insulin-like growth factor-1 lowers spreading depression susceptibility and reduces oxidative stress. J. Neurochem., 2012, 122(1), 221-229.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07763.x] [PMID: 22524542]
[72]
Grinberg, Y.Y.; Dibbern, M.E.; Levasseur, V.A.; Kraig, R.P. Insulin-like growth factor-1 abrogates microglial oxidative stress and TNF-α responses to spreading depression. J. Neurochem., 2013, 126(5), 662-672.
[http://dx.doi.org/10.1111/jnc.12267] [PMID: 23586526]
[73]
Hao, C.N.; Geng, Y.J.; Li, F.; Yang, T.; Su, D.F.; Duan, J.L.; Li, Y. Insulin-like growth factor-1 receptor activation prevents hydrogen peroxide-induced oxidative stress, mitochondrial dysfunction and apoptosis. Apoptosis, 2011, 16(11), 1118-1127.
[http://dx.doi.org/10.1007/s10495-011-0634-9] [PMID: 21785846]
[74]
Schober, M.E.; Block, B.; Beachy, J.C.; Statler, K.D.; Giza, C.C.; Lane, R.H. Early and sustained increase in the expression of hippocampal IGF-1, but not EPO, in a developmental rodent model of traumatic brain injury. J. Neurotrauma, 2010, 27(11), 2011-2020.
[http://dx.doi.org/10.1089/neu.2009.1226] [PMID: 20822461]
[75]
Kizhakke Madathil, S.; Evans, H.N.; Saatman, K.E. Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J. Neurotrauma, 2010, 27(1), 95-107.
[http://dx.doi.org/10.1089/neu.2009.1002] [PMID: 19751099]
[76]
Zhang, D.; Yuan, Y.; Zhu, J.; Zhu, D.; Li, C.; Cui, W.; Wang, L.; Ma, S.; Duan, S.; Liu, B. Insulin like growth factor 1 promotes neurological functional recovery after spinal cord injury through inhibition of autophagy via the PI3K/Akt/mTOR signaling pathway. Exp. Ther. Med., 2021, 22(5), 1265.
[http://dx.doi.org/10.3892/etm.2021.10700] [PMID: 34594402]
[77]
Alcazar, C.A.; Hu, C.; Rando, T.A.; Huang, N.F.; Nakayama, K.H. Transplantation of insulin-like growth factor-1 laden scaffolds combined with exercise promotes neuroregeneration and angiogenesis in a preclinical muscle injury model. Biomater. Sci., 2020, 8(19), 5376-5389.
[http://dx.doi.org/10.1039/D0BM00990C] [PMID: 32996916]
[78]
Zhao, X.M.; He, X.Y.; Liu, J.; Xu, Y.; Xu, F.F.; Tan, Y.X.; Zhang, Z.B.; Wang, T.H. Neural stem cell transplantation improves locomotor function in spinal cord transection rats associated with nerve regeneration and igf-1 r expression. Cell Transplant., 2019, 28(9-10), 1197-1211.
[http://dx.doi.org/10.1177/0963689719860128] [PMID: 31271053]
[79]
Supeno, N.E.; Pati, S.; Hadi, R.A.; Ghani, A.R.I.; Mustafa, Z.; Abdullah, J.M.; Idris, F.M.; Han, X.; Jaafar, H. IGF-1 acts as controlling switch for long-term proliferation and maintenance of EGF/FGF-responsive striatal neural stem cells. Int. J. Med. Sci., 2013, 10(5), 522-531.
[http://dx.doi.org/10.7150/ijms.5325] [PMID: 23532711]
[80]
Oishi, K.; Watatani, K.; Itoh, Y.; Okano, H.; Guillemot, F.; Nakajima, K.; Gotoh, Y. Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 13064-13069.
[http://dx.doi.org/10.1073/pnas.0808400106] [PMID: 19549840]
[81]
Brooker, G.J.F.; Kalloniatis, M.; Russo, V.C.; Murphy, M.; Werther, G.A.; Bartlett, P.F. Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res., 2000, 59(3), 332-341.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000201)59:3<332:AID-JNR6>3.0.CO;2-2] [PMID: 10679768]
[82]
Hurtado-Chong, A.; Yusta-Boyo, M.J.; Vergaño-Vera, E.; Bulfone, A.; de Pablo, F.; Vicario-Abejón, C. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur. J. Neurosci., 2009, 30(5), 742-755.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06870.x] [PMID: 19712103]
[83]
Huat, T.J.; Khan, A.A.; Pati, S.; Mustafa, Z.; Abdullah, J.M.; Jaafar, H. IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci., 2014, 15(1), 91.
[http://dx.doi.org/10.1186/1471-2202-15-91] [PMID: 25047045]
[84]
Shi, B.; Ding, J.; Liu, Y.; Zhuang, X.; Zhuang, X.; Chen, X.; Fu, C. ERK1/2 pathway-mediated differentiation of IGF-1-transfected spinal cord-derived neural stem cells into oligodendrocytes. PLoS One, 2014, 9(8), e106038.
[http://dx.doi.org/10.1371/journal.pone.0106038] [PMID: 25162639]
[85]
McGinley, L.M.; Sims, E.; Lunn, J.S.; Kashlan, O.N.; Chen, K.S.; Bruno, E.S.; Pacut, C.M.; Hazel, T.; Johe, K.; Sakowski, S.A.; Feldman, E.L. Human cortical neural stem cells expressing insulin-like growth factor-I: A novel cellular therapy for Alzheimer’s disease. Stem Cells Transl. Med., 2016, 5(3), 379-391.
[http://dx.doi.org/10.5966/sctm.2015-0103] [PMID: 26744412]
[86]
Renier, G.; Clément, I.; Desfaits, A.C.; Lambert, A. Direct stimulatory effect of insulin-like growth factor-I on monocyte and macrophage tumor necrosis factor-alpha production. Endocrinology, 1996, 137(11), 4611-4618.
[http://dx.doi.org/10.1210/endo.137.11.8895324] [PMID: 8895324]
[87]
Park, S.E.; Dantzer, R.; Kelley, K.W.; McCusker, R.H. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J. Neuroinflammation, 2011, 8(1), 12.
[http://dx.doi.org/10.1186/1742-2094-8-12] [PMID: 21306618]
[88]
George, C.; Gontier, G.; Lacube, P.; François, J.C.; Holzenberger, M.; Aïd, S. The Alzheimer’s disease transcriptome mimics the neuroprotective signature of IGF-1 receptor-deficient neurons. Brain, 2017, 140(7), 2012-2027.
[http://dx.doi.org/10.1093/brain/awx132] [PMID: 28595357]
[89]
Serhan, A.; Aerts, J.L.; Boddeke, E.W.G.M.; Kooijman, R. Neuroprotection by insulin-like growth factor-1 in rats with ischemic stroke is associated with microglial changes and a reduction in neuroinflammation. Neuroscience, 2020, 426, 101-114.
[http://dx.doi.org/10.1016/j.neuroscience.2019.11.035] [PMID: 31846748]
[90]
Yuan, L.J.; Zhang, M.; Chen, S.; Chen, W.F. Anti-inflammatory effect of IGF-1 is mediated by IGF-1R cross talk with GPER in MPTP/MPP+-induced astrocyte activation. Mol. Cell. Endocrinol., 2021, 519, 111053.
[http://dx.doi.org/10.1016/j.mce.2020.111053] [PMID: 33035625]
[91]
Aghanoori, M.R.; Agarwal, P.; Gauvin, E.; Nagalingam, R.S.; Bonomo, R.; Yathindranath, V.; Smith, D.R.; Hai, Y.; Lee, S.; Jolivalt, C.G.; Calcutt, N.A.; Jones, M.J.; Czubryt, M.P.; Miller, D.W.; Dolinsky, V.W.; Mansuy-Aubert, V.; Fernyhough, P. CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth. Cell. Mol. Life Sci., 2022, 79(4), 193.
[http://dx.doi.org/10.1007/s00018-022-04201-9] [PMID: 35298717]
[92]
Li, W.C.; Yao, S.P.; Zhang, J.; Liu, W.B.; Liu, J.; Geng, C.K. Low-dose lipopolysaccharide protects nerve cells against spinal cord injury via regulating the PI3K-AKT-Nrf2 signaling pathway. Biochem. Cell Biol., 2021, 99(5), 527-535.
[http://dx.doi.org/10.1139/bcb-2020-0641] [PMID: 34424795]
[93]
Jones, D.M.; Tucker, B.A.; Rahimtula, M.; Mearow, K.M. The synergistic effects of NGF and IGF-1 on neurite growth in adult sensory neurons: Convergence on the PI 3-kinase signaling pathway. J. Neurochem., 2003, 86(5), 1116-1128.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01925.x] [PMID: 12911620]
[94]
Oda, A.; Inoue, S.; Kaneko, R.; Narita, Y.; Shiono, S.; Kaneko, T.; Tseng, Y.C.; Ohtani-Kaneko, R. Involvement of IGF-1R-PI3K-AKT-mTOR pathway in increased number of GnRH3 neurons during androgen-induced sex reversal of the brain in female tilapia. Sci. Rep., 2022, 12(1), 2450.
[http://dx.doi.org/10.1038/s41598-022-06384-4] [PMID: 35165334]
[95]
Guo, C.; Cho, K.S.; Li, Y.; Tchedre, K.; Antolik, C.; Ma, J.; Chew, J.; Utheim, T.P.; Huang, X.A.; Yu, H.; Malik, M.T.A.; Anzak, N.; Chen, D.F. IGFBPL1 regulates axon growth through igf-1-mediated signaling cascades. Sci. Rep., 2018, 8(1), 2054.
[http://dx.doi.org/10.1038/s41598-018-20463-5] [PMID: 29391597]
[96]
Ju, D.T.; Liao, H.E.; Shibu, M.A.; Ho, T.J.; Padma, V.V.; Tsai, F.J.; Chung, L.C.; Day, C.H.; Lin, C.C.; Huang, C.Y. Nerve regeneration potential of protocatechuic acid in rsc96 schwann cells by induction ofcellular proliferation and migration through igf-ir-pi3k-akt signaling. Chin. J. Physiol., 2015, 58(6), 412-419.
[http://dx.doi.org/10.4077/CJP.2015.BAD340] [PMID: 26717920]
[97]
Ribeiro, M.; Rosenstock, T.R.; Oliveira, A.M.; Oliveira, C.R.; Rego, A.C. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington’s disease knock-in striatal cells. Free Radic. Biol. Med., 2014, 74, 129-144.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.06.023] [PMID: 24992836]
[98]
Liu, T.; Li, Y.; Yang, B.; Wang, H.; Lu, C.; Chang, A.K.; Huang, X.; Zhang, X.; Lu, Z.; Lu, X.; Gao, B. Suppression of neuronal cholesterol biosynthesis impairs brain functions through insulin-like growth factor I-Akt signaling. Int. J. Biol. Sci., 2021, 17(14), 3702-3716.
[http://dx.doi.org/10.7150/ijbs.63512] [PMID: 34671194]
[99]
Adlerz, L.; Holback, S.; Multhaup, G.; Iverfeldt, K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J. Biol. Chem., 2007, 282(14), 10203-10209.
[http://dx.doi.org/10.1074/jbc.M611183200] [PMID: 17301053]
[100]
Jacobsen, K.T.; Adlerz, L.; Multhaup, G.; Iverfeldt, K. Insulin-like growth factor-1 (IGF-1)-induced processing of amyloid-beta precursor protein (APP) and APP-like protein 2 is mediated by different metalloproteinases. J. Biol. Chem., 2010, 285(14), 10223-10231.
[http://dx.doi.org/10.1074/jbc.M109.038224] [PMID: 20139073]
[101]
Heidenberg, D.J.; Haney, N.M.; Rezk, B.M.; Talwar, S.; Okpechi, S.C.; Srivastav, S.K.; Honda, M.; Song, B.; Swan, K.; Awadallah, S.; Anaissie, J.; Peak, T.; DeLay, K.J.; Kadowitz, P.J.; Sikka, S.C.; Abdel Mageed, A.B.; Hellstrom, W.J.G. Pioglitazone’s beneficial effects on erectile function preservation after cavernosal nerve injury in the rat are negated by inhibition of the insulin-like growth factor-1 receptor: A preclinical study. Int. J. Impot. Res., 2019, 31(1), 1-8.
[http://dx.doi.org/10.1038/s41443-018-0054-2] [PMID: 30072768]
[102]
Lin, S.F.; Yu, X.L.; Liu, X.Y.; Wang, B.; Li, C.H.; Sun, Y.G.; Liu, X.J. Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy. Neuroreport, 2016, 27(15), 1174-1181.
[http://dx.doi.org/10.1097/WNR.0000000000000676] [PMID: 27571431]
[103]
Zhang, B.; Song, G.; Luo, Q.; Yang, L. [Expression of mechano-growth factor and its roles in tissue repairs and regeneration]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2012, 26(5), 617-620.
[PMID: 22702061]
[104]
Lv, Y.; Hao, X.; Sha, Y.; Yang, L. Pretreatment with mechano-growth factor E peptide protects bone marrow mesenchymal cells against damage by fluid shear stress. Biotechnol. Lett., 2014, 36(12), 2559-2569.
[http://dx.doi.org/10.1007/s10529-014-1625-z] [PMID: 25129046]
[105]
Sha, Y.; Cai, W. mohanad Khalid, A.; Chi, Q.; Wang, J.; Sun, T.; Wang, C. Pretreatment with mechano growth factor E peptide attenuates osteoarthritis through improving cell proliferation and extracellular matrix synthesis in chondrocytes under severe hypoxia. Int. Immunopharmacol., 2021, 97, 107628.
[http://dx.doi.org/10.1016/j.intimp.2021.107628] [PMID: 34015701]
[106]
Yin, W.; Signore, A.P.; Iwai, M.; Cao, G.; Gao, Y.; Johnnides, M.J.; Hickey, R.W.; Chen, J. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke, 2007, 38(3), 1017-1024.
[http://dx.doi.org/10.1161/01.STR.0000258102.18836.ca] [PMID: 17272774]
[107]
Jones, N.M.; Kardashyan, L.; Callaway, J.K.; Lee, E.M.; Beart, P.M. Long-term functional and protective actions of preconditioning with hypoxia, cobalt chloride, and desferrioxamine against hypoxic-ischemic injury in neonatal rats. Pediatr. Res., 2008, 63(6), 620-624.
[http://dx.doi.org/10.1203/PDR.0b013e31816d9117] [PMID: 18317402]
[108]
Beręsewicz, M.; Majewska, M.; Makarewicz, D.; Vayro, S.; Zabłocka, B.; Górecki, D.C. Changes in the expression of insulin‐like growth factor 1 variants in the postnatal brain development and in neonatal hypoxia-ischaemia. Int. J. Dev. Neurosci., 2010, 28(1), 91-97.
[http://dx.doi.org/10.1016/j.ijdevneu.2009.09.002] [PMID: 19766709]
[109]
Quesada, A.; Micevych, P.; Handforth, A. C-terminal mechano growth factor protects dopamine neurons: A novel peptide that induces heme oxygenase-1. Exp. Neurol., 2009, 220(2), 255-266.
[http://dx.doi.org/10.1016/j.expneurol.2009.08.029] [PMID: 19735655]
[110]
Quesada, A.; Ogi, J.; Schultz, J.; Handforth, A. C-terminal mechano-growth factor induces heme oxygenase-1-mediated neuroprotection of SH-SY5Y cells via the protein kinase Cϵ/Nrf2 pathway. J. Neurosci. Res., 2011, 89(3), 394-405.
[http://dx.doi.org/10.1002/jnr.22543] [PMID: 21259326]
[111]
Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol., 2017, 81(6), 772-781.
[http://dx.doi.org/10.1002/ana.24951] [PMID: 28486769]
[112]
Abdelmohsen, K.; Gorospe, M. RNA-binding protein nucleolin in disease. RNA Biol., 2012, 9(6), 799-808.
[http://dx.doi.org/10.4161/rna.19718] [PMID: 22617883]
[113]
Tang, J.J.; Podratz, J.L.; Lange, M.; Scrable, H.J.; Jang, M.H.; Windebank, A.J. Mechano growth factor, a splice variant of IGF-1, promotes neurogenesis in the aging mouse brain. Mol. Brain, 2017, 10(1), 23.
[http://dx.doi.org/10.1186/s13041-017-0304-0] [PMID: 28683812]
[114]
Tunç, B.S.; Toprak, F.; Toprak, S.F.; Sozer, S. in vitro investigation of growth factors including MGF and IGF-1 in neural stem cell activation, proliferation, and migration. Brain Res., 2021, 1759, 147366.
[http://dx.doi.org/10.1016/j.brainres.2021.147366] [PMID: 33607046]
[115]
Sha, Y.; Afandi, R.; Zhang, B.; Yang, L.; Lv, Y. MGF E peptide pretreatment improves collagen synthesis and cell proliferation of injured human ACL fibroblasts via MEK-ERK1/2 signaling pathway. Growth Factors, 2017, 35(1), 29-38.
[http://dx.doi.org/10.1080/08977194.2017.1327856] [PMID: 28553731]
[116]
Sha, Y.; Yang, L.; Lv, Y. MGF E peptide improves anterior cruciate ligament repair by inhibiting hypoxia‐induced cell apoptosis and accelerating angiogenesis. J. Cell. Physiol., 2019, 234(6), 8846-8861.
[http://dx.doi.org/10.1002/jcp.27546] [PMID: 30317597]
[117]
Sha, Y.; Zhang, B.; Chen, L.; Hong, H.; Chi, Q. Mechano Growth Factor Accelerates ACL Repair and Improves Cell Mobility of Mechanically Injured Human ACL Fibroblasts by Targeting Rac1-PAK1/2 and RhoA-ROCK1 Pathways. Int. J. Mol. Sci., 2022, 23(8), 4331.
[http://dx.doi.org/10.3390/ijms23084331] [PMID: 35457148]
[118]
Liu, M.; Niu, X.; Zhou, G.; Jia, Z.; Li, P.; Fan, Y. Potential effect of mechano growth factor E-domain peptide on axonal guidance growth in primary cultured cortical neurons of rats. J. Tissue Eng. Regen. Med., 2018, 12(1), 70-79.
[http://dx.doi.org/10.1002/term.2364] [PMID: 27863093]
[119]
Santini, M.P.; Lexow, J.; Borsellino, G.; Slonimski, E.; Zarrinpashneh, E.; Poggioli, T.; Rosenthal, N. IGF-1Ea induces vessel formation after injury and mediates bone marrow and heart cross-talk through the expression of specific cytokines. Biochem. Biophys. Res. Commun., 2011, 410(2), 201-207.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.081] [PMID: 21621517]
[120]
Gallego-Colon, E.; Sampson, R.D.; Sattler, S.; Schneider, M.D.; Rosenthal, N.; Tonkin, J. Cardiac-Restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediators Inflamm., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/484357] [PMID: 26491228]
[121]
Yu, Y.; Zeng, Z.; Xie, D.; Chen, R.; Sha, Y.; Huang, S.; Cai, W.; Chen, W.; Li, W.; Ke, R.; Sun, T. Interneuron origin and molecular diversity in the human fetal brain. Nat. Neurosci., 2021, 24(12), 1745-1756.
[http://dx.doi.org/10.1038/s41593-021-00940-3] [PMID: 34737447]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy