Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Recent Developments in the Study of the Microenvironment of Cancer and Drug Delivery

Author(s): Benu Chaudhary, Parveen Kumar, Preeti Arya, Deepak Singla, Virender Kumar, Davinder Kumar, Roshan S, Sheetu Wadhwa, Monica Gulati, Sachin Kumar Singh, Kamal Dua, Gaurav Gupta and Madan Mohan Gupta*

Volume 23, Issue 13, 2022

Published on: 19 January, 2023

Page: [1027 - 1053] Pages: 27

DOI: 10.2174/1389200224666230110145513

Price: $65

Abstract

Cancer is characterized by disrupted molecular variables caused by cells that deviate from regular signal transduction. The uncontrolled segment of such cancerous cells annihilates most of the tissues that contact them. Gene therapy, immunotherapy, and nanotechnology advancements have resulted in novel strategies for anticancer drug delivery. Furthermore, diverse dispersion of nanoparticles in normal stroma cells adversely affects the healthy cells and disrupts the crosstalk of tumour stroma. It can contribute to cancer cell progression inhibition and, conversely, to acquired resistance, enabling cancer cell metastasis and proliferation. The tumour's microenvironment is critical in controlling the dispersion and physiological activities of nano-chemotherapeutics which is one of the targeted drug therapy. As it is one of the methods of treating cancer that involves the use of medications or other substances to specifically target and kill off certain subsets of malignant cells. A targeted therapy may be administered alone or in addition to more conventional methods of care like surgery, chemotherapy, or radiation treatment. The tumour microenvironment, stromatogenesis, barriers and advancement in the drug delivery system across tumour tissue are summarised in this review.

Graphical Abstract

[1]
Tannock, I.F.; Lee, C.M.; Tunggal, J.K.; Cowan, D.S.; Egorin, M.J. Limited penetration of anticancer drugs through tumor tissue: A potential cause of resistance of solid tumors to chemotherapy. Clin. Cancer Res., 2002, 8(3), 878-884.
[PMID: 11895922]
[2]
Haider, T.; Tiwari, R.; Vyas, S.P.; Soni, V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol. Ther., 2019, 200, 85-109.
[http://dx.doi.org/10.1016/j.pharmthera.2019.04.011] [PMID: 31047907]
[3]
Kharaishvili, G.; Simkova, D.; Bouchalova, K.; Gachechiladze, M.; Narsia, N.; Bouchal, J. The role of cancer-associated fibroblasts, solid stress and other microenvironmental factors in tumor progression and therapy resistance. Cancer Cell Int., 2014, 14(1), 41.
[http://dx.doi.org/10.1186/1475-2867-14-41] [PMID: 24883045]
[4]
Mueller, M.M.; Fusenig, N.E. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer, 2004, 4(11), 839-849.
[http://dx.doi.org/10.1038/nrc1477] [PMID: 15516957]
[5]
Khawar, I.A.; Kim, J.H.; Kuh, H.J. Improving drug delivery to solid tumors: Priming the tumor microenvironment. J. Control. Release, 2015, 201, 78-89.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.018] [PMID: 25526702]
[6]
Balkwill, F.R.; Capasso, M.; Hagemann, T. The tumor microenvironment at a glance. J. Cell Sci., 2012, 125(23), 5591-5596.
[http://dx.doi.org/10.1242/jcs.116392] [PMID: 23420197]
[7]
Pouysségur, J.; Dayan, F.; Mazure, N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature, 2006, 441(7092), 437-443.
[http://dx.doi.org/10.1038/nature04871] [PMID: 16724055]
[8]
Olive, K.P.; Jacobetz, M.A.; Davidson, C.J.; Gopinathan, A.; McIntyre, D.; Honess, D.; Madhu, B.; Goldgraben, M.A.; Caldwell, M.E.; Allard, D.; Frese, K.K.; DeNicola, G.; Feig, C.; Combs, C.; Winter, S.P.; Ireland-Zecchini, H.; Reichelt, S.; Howat, W.J.; Chang, A.; Dhara, M.; Wang, L.; Rückert, F.; Grützmann, R.; Pilarsky, C.; Izeradjene, K.; Hingorani, S.R.; Huang, P.; Davies, S.E.; Plunkett, W.; Egorin, M.; Hruban, R.H.; Whitebread, N.; McGovern, K.; Adams, J.; Iacobuzio-Donahue, C.; Griffiths, J.; Tuveson, D.A. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 2009, 324(5933), 1457-1461.
[http://dx.doi.org/10.1126/science.1171362] [PMID: 19460966]
[9]
Baroni, S.; Romero-Cordoba, S.; Plantamura, I.; Dugo, M.; D’Ippolito, E.; Cataldo, A.; Cosentino, G.; Angeloni, V.; Rossini, A.; Daidone, M.G.; Iorio, M.V. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis., 2016, 7(7), e2312.
[http://dx.doi.org/10.1038/cddis.2016.224] [PMID: 27468688]
[10]
Bochet, L.; Lehuédé, C.; Dauvillier, S.; Wang, Y.Y.; Dirat, B.; Laurent, V.; Dray, C.; Guiet, R.; Maridonneau-Parini, I.; Le Gonidec, S.; Couderc, B.; Escourrou, G.; Valet, P.; Muller, C. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res., 2013, 73(18), 5657-5668.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0530] [PMID: 23903958]
[11]
Lecomte, J.; Masset, A.; Blacher, S.; Maertens, L.; Gothot, A.; Delgaudine, M.; Bruyère, F.; Carnet, O.; Paupert, J.; Illemann, M.; Foidart, J.M.; Lund, I.K.; Høyer-Hansen, G.; Noel, A. Bone marrow-derived myofibroblasts are the providers of pro-invasive matrix metalloproteinase 13 in primary tumor. Neoplasia, 2012, 14(10), 943-951.
[http://dx.doi.org/10.1593/neo.121092] [PMID: 23097628]
[12]
McDonald, L.T.; Russell, D.L.; Kelly, R.R.; Xiong, Y.; Motamarry, A.; Patel, R.K.; Jones, J.A.; Watson, P.M.; Turner, D.P.; Watson, D.K.; Soloff, A.C.; Findlay, V.J.; LaRue, A.C. Hematopoietic stem cell-derived cancer-associated fibroblasts are novel contributors to the pro-tumorigenic microenvironment. Neoplasia, 2015, 17(5), 434-448.
[http://dx.doi.org/10.1016/j.neo.2015.04.004] [PMID: 26025666]
[13]
Quante, M.; Tu, S.P.; Tomita, H.; Gonda, T.; Wang, S.S.W.; Takashi, S.; Baik, G.H.; Shibata, W.; DiPrete, B.; Betz, K.S.; Friedman, R.; Varro, A.; Tycko, B.; Wang, T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 2011, 19(2), 257-272.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]
[14]
Radisky, D.C.; Kenny, P.A.; Bissell, M.J. Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT? J. Cell. Biochem., 2007, 101(4), 830-839.
[http://dx.doi.org/10.1002/jcb.21186] [PMID: 17211838]
[15]
Tang, X.; Hou, Y.; Yang, G.; Wang, X.; Tang, S.; Du, Y-E.; Yang, L.; Yu, T.; Zhang, H.; Zhou, M.; Wen, S.; Xu, L.; Liu, M. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death Differ., 2016, 23(1), 132-145.
[http://dx.doi.org/10.1038/cdd.2015.78] [PMID: 26068592]
[16]
Zeisberg, E.M.; Potenta, S.; Xie, L.; Zeisberg, M.; Kalluri, R. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res., 2007, 67(21), 10123-10128.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-3127] [PMID: 17974953]
[17]
Olaso, E.; Santisteban, A.; Bidaurrazaga, J.; Gressner, A.M.; Rosenbaum, J.; Vidal-Vanaclocha, F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology, 1997, 26(3), 634-642.
[http://dx.doi.org/10.1002/hep.510260315] [PMID: 9303493]
[18]
Olumi, A.F.; Grossfeld, G.D.; Hayward, S.W.; Carroll, P.R.; Tlsty, T.D.; Cunha, G.R. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res., 1999, 59(19), 5002-5011.
[http://dx.doi.org/10.1186/bcr138] [PMID: 10519415]
[19]
Bhowmick, N.A.; Chytil, A.; Plieth, D.; Gorska, A.E.; Dumont, N.; Shappell, S.; Washington, M.K.; Neilson, E.G.; Moses, H.L. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 2004, 303(5659), 848-851.
[http://dx.doi.org/10.1126/science.1090922] [PMID: 14764882]
[20]
Grum-Schwensen, B.; Klingelhofer, J.; Berg, C.H.; El-Naaman, C.; Grigorian, M.; Lukanidin, E.; Ambartsumian, N. Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Res., 2005, 65(9), 3772-3780.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4510] [PMID: 15867373]
[21]
Orimo, A.; Gupta, P.B.; Sgroi, D.C.; Arenzana-Seisdedos, F.; Delaunay, T.; Naeem, R.; Carey, V.J.; Richardson, A.L.; Weinberg, R.A. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 2005, 121(3), 335-348.
[http://dx.doi.org/10.1016/j.cell.2005.02.034] [PMID: 15882617]
[22]
Dumont, N.; Liu, B.; DeFilippis, R.A.; Chang, H.; Rabban, J.T.; Karnezis, A.N.; Tjoe, J.A.; Marx, J.; Parvin, B.; Tlsty, T.D. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia, 2013, 15(3), 249-IN7.
[http://dx.doi.org/10.1593/neo.121950] [PMID: 23479504]
[23]
Fornetti, J.; Flanders, K.C.; Henson, P.M.; Tan, A-C.; Borges, V.F.; Schedin, P. Mammary epithelial cell phagocytosis downstream of TGF-β3 is characterized by adherens junction reorganization. Cell Death Differ., 2016, 23(2), 185-196.
[http://dx.doi.org/10.1038/cdd.2015.82] [PMID: 26113040]
[24]
Ghavami, S.; Cunnington, R.H.; Gupta, S.; Yeganeh, B.; Filomeno, K.L.; Freed, D.H.; Chen, S.; Klonisch, T.; Halayko, A.J.; Ambrose, E.; Singal, R.; Dixon, I.M.C. Autophagy is a regulator of TGF-β1-induced fibrogenesis in primary human atrial myofibroblasts. Cell Death Dis., 2015, 6(3), e1696.
[http://dx.doi.org/10.1038/cddis.2015.36] [PMID: 25789971]
[25]
Wang, X.; Yu, M.; Zhao, K.; He, M.; Ge, W.; Sun, Y.; Wang, Y.; Sun, H.; Hu, Y. Upregulation of MiR-205 under hypoxia promotes epithelial-mesenchymal transition by targeting ASPP2. Cell Death Dis., 2016, 7(12), e2517.
[http://dx.doi.org/10.1038/cddis.2016.412] [PMID: 27929537]
[26]
Pietras, K.; Östman, A. Hallmarks of cancer: Interactions with the tumor stroma. Exp. Cell Res., 2010, 316(8), 1324-1331.
[http://dx.doi.org/10.1016/j.yexcr.2010.02.045] [PMID: 20211171]
[27]
Norman, J.T.; Clark, I.M.; Garcia, P.L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int., 2000, 58(6), 2351-2366.
[http://dx.doi.org/10.1046/j.1523-1755.2000.00419.x] [PMID: 11115069]
[28]
Tamamori, M.; Ito, H.; Hiroe, M.; Marumo, F.; Hata, R.I. Stimulation of collagen synthesis in rat cardiac fibroblasts by exposure to hypoxic culture conditions and suppression of the effect by natriuretic peptides. Cell Biol. Int., 1997, 21(3), 175-180.
[http://dx.doi.org/10.1006/cbir.1997.0130] [PMID: 9151994]
[29]
Topalovski, M.; Hagopian, M.; Wang, M.; Brekken, R.A. Hypoxia and transforming growth factor β cooperate to induce fibulin-5 expression in pancreatic cancer. J. Biol. Chem., 2016, 291(42), 22244-22252.
[http://dx.doi.org/10.1074/jbc.M116.730945] [PMID: 27531748]
[30]
Ju, J.A.; Godet, I.; Ye, I.C.; Byun, J.; Jayatilaka, H.; Lee, S.J.; Xiang, L.; Samanta, D.; Lee, M.H.; Wu, P.H.; Wirtz, D.; Semenza, G.L.; Gilkes, D.M. Hypoxia selectively enhances integrin receptor expression to promote metastasis. Mol. Cancer Res., 2017, 15(6), 723-734.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0338] [PMID: 28213554]
[31]
Brooks, D.L.P.; Schwab, L.P.; Krutilina, R.; Parke, D.N.; Sethuraman, A.; Hoogewijs, D.; Schörg, A.; Gotwald, L.; Fan, M.; Wenger, R.H.; Seagroves, T.N. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol. Cancer, 2016, 15(1), 26.
[http://dx.doi.org/10.1186/s12943-016-0510-x] [PMID: 27001172]
[32]
Koike, T.; Kimura, N.; Miyazaki, K.; Yabuta, T.; Kumamoto, K.; Takenoshita, S.; Chen, J.; Kobayashi, M.; Hosokawa, M.; Taniguchi, A.; Kojima, T.; Ishida, N.; Kawakita, M.; Yamamoto, H.; Takematsu, H.; Suzuki, A.; Kozutsumi, Y.; Kanangi, R. Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci., 2004, 101(21), 8132-8137.
[http://dx.doi.org/10.1073/pnas.0402088101] [PMID: 15141079]
[33]
Aro, E.; Khatri, R.; Gerard-O’Riley, R.; Mangiavini, L.; Myllyharju, J.; Schipani, E. Hypoxia-inducible factor-1 (HIF-1) but not HIF-2 is essential for hypoxic induction of collagen prolyl 4-hydroxylases in primary newborn mouse epiphyseal growth plate chondrocytes. J. Biol. Chem., 2012, 287(44), 37134-37144.
[http://dx.doi.org/10.1074/jbc.M112.352872] [PMID: 22930750]
[34]
Bentovim, L.; Amarilio, R.; Zelzer, E. HIF1α is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development, 2012, 139(23), 4473-4483.
[http://dx.doi.org/10.1242/dev.083881] [PMID: 23095889]
[35]
Eisinger-Mathason, T.S.K.; Zhang, M.; Qiu, Q.; Skuli, N.; Nakazawa, M.S.; Karakasheva, T.; Mucaj, V.; Shay, J.E.S.; Stangenberg, L.; Sadri, N.; Puré, E.; Yoon, S.S.; Kirsch, D.G.; Simon, M.C. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis. Cancer Discov., 2013, 3(10), 1190-1205.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0118] [PMID: 23906982]
[36]
Elvidge, G.P.; Glenny, L.; Appelhoff, R.J.; Ratcliffe, P.J.; Ragoussis, J.; Gleadle, J.M. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol. Chem., 2006, 281(22), 15215-15226.
[http://dx.doi.org/10.1074/jbc.M511408200] [PMID: 16565084]
[37]
Gilkes, D.M.; Bajpai, S.; Wong, C.C.; Chaturvedi, P.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Procollagen lysyl hydroxylase 2 is essential for hypoxia-induced breast cancer metastasis. Mol. Cancer Res., 2013, 11(5), 456-466.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0629] [PMID: 23378577]
[38]
Gilkes, D.M.; Chaturvedi, P.; Bajpai, S.; Wong, C.C.; Wei, H.; Pitcairn, S.; Hubbi, M.E.; Wirtz, D.; Semenza, G.L. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res., 2013, 73(11), 3285-3296.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3963] [PMID: 23539444]
[39]
Hofbauer, K.H.; Gess, B.; Lohaus, C.; Meyer, H.E.; Katschinski, D.; Kurtz, A. Oxygen tension regulates the expression of a group of procollagen hydroxylases. Eur. J. Biochem., 2003, 270(22), 4515-4522.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03846.x] [PMID: 14622280]
[40]
Xiong, G.; Deng, L.; Zhu, J.; Rychahou, P.G.; Xu, R. Prolyl-4-hydroxylase α subunit 2 promotes breast cancer progression and metastasis by regulating collagen deposition. BMC Cancer, 2014, 14(1), 1.
[http://dx.doi.org/10.1186/1471-2407-14-1] [PMID: 24383403]
[41]
Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci., 2010, 123(24), 4195-4200.
[http://dx.doi.org/10.1242/jcs.023820] [PMID: 21123617]
[42]
Hynes, R.O. The extracellular matrix: Not just pretty fibrils. Science, 2009, 326(5957), 1216-1219.
[http://dx.doi.org/10.1126/science.1176009]
[43]
Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol., 2011, 3(12), a005058.
[http://dx.doi.org/10.1101/cshperspect.a005058] [PMID: 21917992]
[44]
Theocharis, A.D.; Skandalis, S.S.; Gialeli, C.; Karamanos, N.K. Extracellular matrix structure. Adv. Drug Deliv. Rev., 2016, 97, 4-27.
[http://dx.doi.org/10.1016/j.addr.2015.11.001] [PMID: 26562801]
[45]
Walker, C.; Mojares, E.; del Río Hernández, A. role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci., 2018, 19(10), 3028.
[http://dx.doi.org/10.3390/ijms19103028] [PMID: 30287763]
[46]
Lu, P.; Weaver, V.M.; Werb, Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol., 2012, 196(4), 395-406.
[http://dx.doi.org/10.1083/jcb.201102147] [PMID: 22351925]
[47]
Kim, S.H.; Turnbull, J.; Guimond, S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol., 2011, 209(2), 139-151.
[http://dx.doi.org/10.1530/JOE-10-0377] [PMID: 21307119]
[48]
Eble, J.A.; Niland, S. The extracellular matrix in tumor progression and metastasis. Clin. Exp. Metastasis, 2019, 36(3), 171-198.
[http://dx.doi.org/10.1007/s10585-019-09966-1] [PMID: 30972526]
[49]
Poltavets, V.; Kochetkova, M.; Pitson, S.M.; Samuel, M.S. The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity. Front. Oncol., 2018, 8, 431.
[http://dx.doi.org/10.3389/fonc.2018.00431] [PMID: 30356678]
[50]
Jabłońska-Trypuć A.; Matejczyk, M.; Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem., 2016, 31(S1), 177-183.
[http://dx.doi.org/10.3109/14756366.2016.1161620]
[51]
Zhang, R.; Ma, M.; Lin, X.H.; Liu, H.H.; Chen, J.; Chen, J.; Gao, D.M.; Cui, J.F.; Ren, Z.G.; Chen, R.X. Extracellular matrix collagen I promotes the tumor progression of residual hepatocellular carcinoma after heat treatment. BMC Cancer, 2018, 18(1), 901.
[http://dx.doi.org/10.1186/s12885-018-4820-9] [PMID: 30227844]
[52]
Xu, S.; Xu, H.; Wang, W.; Li, S.; Li, H.; Li, T.; Zhang, W.; Yu, X.; Liu, L. The role of collagen in cancer: From bench to bedside. J. Transl. Med., 2019, 17(1), 309.
[http://dx.doi.org/10.1186/s12967-019-2058-1] [PMID: 31521169]
[53]
Naito, Y.; Sakamoto, N.; Oue, N.; Yashiro, M.; Sentani, K.; Yanagihara, K.; Hirakawa, K.; Yasui, W. Micro RNA ‐143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci., 2014, 105(2), 228-235.
[http://dx.doi.org/10.1111/cas.12329] [PMID: 24283360]
[54]
Mu, W.; Rana, S.; Zöller, M. Hosts. Neoplasia, 2013, 15(8), 875-887.
[http://dx.doi.org/10.1593/neo.13786] [PMID: 23908589]
[55]
Natarajan, S.; Foreman, K.M.; Soriano, M.I.; Rossen, N.S.; Shehade, H.; Fregoso, D.R.; Eggold, J.T.; Krishnan, V.; Dorigo, O.; Krieg, A.J.; Heilshorn, S.C.; Sinha, S.; Fuh, K.C.; Rankin, E.B. Collagen remodeling in the hypoxic tumor-mesothelial niche promotes ovarian cancer metastasis. Cancer Res., 2019, 79(9), 2271-2284.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2616] [PMID: 30862717]
[56]
Saini, H.; Rahmani Eliato, K.; Silva, C.; Allam, M.; Mouneimne, G.; Ros, R.; Nikkhah, M. The role of desmoplasia and stromal fibroblasts on anti-cancer drug resistance in a microengineered tumor model. Cell. Mol. Bioeng., 2018, 11(5), 419-433.
[http://dx.doi.org/10.1007/s12195-018-0544-9] [PMID: 31719892]
[57]
Provenzano, P.P.; Eliceiri, K.W.; Campbell, J.M.; Inman, D.R.; White, J.G.; Keely, P.J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med., 2006, 4(1), 38.
[http://dx.doi.org/10.1186/1741-7015-4-38] [PMID: 17190588]
[58]
Hajdú, I.; Kardos, J.; Major, B.; Fabó, G. Lőrincz, Z.; Cseh, S.; Dormán, G. Inhibition of the LOX enzyme family members with old and new ligands. Selectivity analysis revisited. Bioorg. Med. Chem. Lett., 2018, 28(18), 3113-3118.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.001] [PMID: 30098867]
[59]
Puente, A.; Fortea, J.; Cabezas, J.; Arias Loste, M.; Iruzubieta, P.; Llerena, S.; Huelin, P.; Fábrega, E.; Crespo, J. LOXL2-a new target in antifibrogenic therapy? Int. J. Mol. Sci., 2019, 20(7), 1634.
[http://dx.doi.org/10.3390/ijms20071634] [PMID: 30986934]
[60]
Raavé, R.; van Kuppevelt, T.H.; Daamen, W.F. Chemotherapeutic drug delivery by tumoral extracellular matrix targeting. J. Control. Release, 2018, 274, 1-8.
[http://dx.doi.org/10.1016/j.jconrel.2018.01.029] [PMID: 29382546]
[61]
Orend, G.; Chiquet-Ehrismann, R. Tenascin-C induced signaling in cancer. Cancer Lett., 2006, 244(2), 143-163.
[http://dx.doi.org/10.1016/j.canlet.2006.02.017] [PMID: 16632194]
[62]
Lowy, C.M.; Oskarsson, T. Tenascin C in metastasis: A view from the invasive front. Cell Adhes. Migr., 2015, 9(1-2), 112-124.
[http://dx.doi.org/10.1080/19336918.2015.1008331] [PMID: 25738825]
[63]
Dal Corso, A.; Gébleux, R.; Murer, P.; Soltermann, A.; Neri, D. A non-internalizing antibody-drug conjugate based on an anthracycline payload displays potent therapeutic activity in vivo. J. Control. Release, 2017, 264, 211-218.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.040] [PMID: 28867376]
[64]
Chen, B.; Dai, W.; Mei, D.; Liu, T.; Li, S.; He, B.; He, B.; Yuan, L.; Zhang, H.; Wang, X.; Zhang, Q. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J. Control. Release, 2016, 241, 68-80.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.014] [PMID: 27641831]
[65]
Ishihara, J.; Ishihara, A.; Sasaki, K.; Lee, S.S.Y.; Williford, J.M.; Yasui, M.; Abe, H.; Potin, L.; Hosseinchi, P.; Fukunaga, K.; Raczy, M.M.; Gray, L.T.; Mansurov, A.; Katsumata, K.; Fukayama, M.; Kron, S.J.; Swartz, M.A.; Hubbell, J.A. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci. Transl. Med., 2019, 11(487), eaau3259.
[http://dx.doi.org/10.1126/scitranslmed.aau3259] [PMID: 30971453]
[66]
Okur, A.C.; Erkoc, P.; Kizilel, S. Targeting cancer cells viatumor-homing peptide CREKA functional PEG nanoparticles. Colloids Surf. B Biointerfaces, 2016, 147, 191-200.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.005] [PMID: 27513587]
[67]
Park, J.; Kim, S.; Saw, P.E.; Lee, I.H.; Yu, M.K.; Kim, M.; Lee, K.; Kim, Y.C.; Jeong, Y.Y.; Jon, S. Fibronectin extra domain B-specific aptide conjugated nanoparticles for targeted cancer imaging. J. Control. Release, 2012, 163(2), 111-118.
[http://dx.doi.org/10.1016/j.jconrel.2012.08.029] [PMID: 22964395]
[68]
Jayatilaka, H.; Tyle, P.; Chen, J.J.; Kwak, M.; Ju, J.; Kim, H.J.; Lee, J.S.H.; Wu, P.H.; Gilkes, D.M.; Fan, R.; Wirtz, D. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun., 2017, 8(1), 15584.
[http://dx.doi.org/10.1038/ncomms15584] [PMID: 28548090]
[69]
Upreti, M.; Jyoti, A.; Johnson, S.E.; Swindell, E.P.; Napier, D.; Sethi, P.; Chan, R.; Feddock, J.M.; Weiss, H.L.; O’Halloran, T.V.; Evers, B.M. Radiation-enhanced therapeutic targeting of galectin-1 enriched malignant stroma in triple negative breast cancer. Oncotarget, 2016, 7(27), 41559-41574.
[http://dx.doi.org/10.18632/oncotarget.9490]
[70]
Miot-Noirault, E.; Vidal, A.; Morlieras, J.; Bonazza, P.; Auzeloux, P.; Besse, S.; Dauplat, M.M.; Peyrode, C.; Degoul, F.; Billotey, C.; Lux, F.; Rédini, F.; Tillement, O.; Chezal, J.M.; Kryza, D.; Janier, M. Small rigid platforms functionalization with quaternary ammonium: Targeting extracellular matrix of chondrosarcoma. Nanomedicine, 2014, 10(8), 1887-1895.
[http://dx.doi.org/10.1016/j.nano.2014.06.011] [PMID: 24972007]
[71]
Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA, 1995, 92(12), 5510-5514.
[http://dx.doi.org/10.1073/pnas.92.12.5510] [PMID: 7539918]
[72]
Jaakkola, P.; Mole, D.R.; Tian, Y.M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001, 292(5516), 468-472.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[73]
Ohh, M.; Park, C.W.; Ivan, M.; Hoffman, M.A.; Kim, T.Y.; Huang, L.E.; Pavletich, N.; Chau, V.; Kaelin, W.G. Ubiquitination of hypoxia-inducible factor requires direct binding to the β-domain of the von Hippel-Lindau protein. Nat. Cell Biol., 2000, 2(7), 423-427.
[http://dx.doi.org/10.1038/35017054] [PMID: 10878807]
[74]
Koivunen, P.; Hirsilä, M.; Günzler, V.; Kivirikko, K.I.; Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem., 2004, 279(11), 9899-9904.
[http://dx.doi.org/10.1074/jbc.M312254200] [PMID: 14701857]
[75]
Mahon, P.C.; Hirota, K.; Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev., 2001, 15(20), 2675-2686.
[http://dx.doi.org/10.1101/gad.924501] [PMID: 11641274]
[76]
Mandl, M.; Lieberum, M.K.; Depping, R.A. HIF-1α-driven feed-forward loop augments HIF signalling in Hep3B cells by upregulation of ARNT. Cell Death Dis., 2016, 7(6), e2284.
[http://dx.doi.org/10.1038/cddis.2016.187] [PMID: 27362802]
[77]
Iyer, N.V.; Kotch, L.E.; Agani, F.; Leung, S.W.; Laughner, E.; Wenger, R.H.; Gassmann, M.; Gearhart, J.D.; Lawler, A.M.; Yu, A.Y.; Semenza, G.L. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev., 1998, 12(2), 149-162.
[http://dx.doi.org/10.1101/gad.12.2.149] [PMID: 9436976]
[78]
Peng, J.; Zhang, L.; Drysdale, L.; Fong, G.H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8386-8391.
[http://dx.doi.org/10.1073/pnas.140087397] [PMID: 10880563]
[79]
Bergers, G.; Benjamin, L.E. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 2003, 3(6), 401-410.
[http://dx.doi.org/10.1038/nrc1093] [PMID: 12778130]
[80]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[81]
Ferrara, N.; Kerbel, R.S. Angiogenesis as a therapeutic target. Nature, 2005, 438(7070), 967-974.
[http://dx.doi.org/10.1038/nature04483] [PMID: 16355214]
[82]
Watson, E.C.; Whitehead, L.; Adams, R.H.; Dewson, G.; Coultas, L. Endothelial cell survival during angiogenesis requires the pro-survival protein MCL1. Cell Death Differ., 2016, 23(8), 1371-1379.
[http://dx.doi.org/10.1038/cdd.2016.20] [PMID: 26943318]
[83]
Folkman, J.; Watson, K.; Ingber, D.; Hanahan, D. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 1989, 339(6219), 58-61.
[http://dx.doi.org/10.1038/339058a0] [PMID: 2469964]
[84]
Coulon, C.; Georgiadou, M.; Roncal, C.; De Bock, K.; Langenberg, T.; Carmeliet, P. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler. Thromb. Vasc. Biol., 2010, 30(12), 2331-2336.
[http://dx.doi.org/10.1161/ATVBAHA.110.214106] [PMID: 20966400]
[85]
Skuli, N.; Liu, L.; Runge, A.; Wang, T.; Yuan, L.; Patel, S.; Iruela-Arispe, L.; Simon, M.C.; Keith, B. Endothelial deletion of hypoxia-inducible factor-2α (HIF-2α) alters vascular function and tumor angiogenesis. Blood, 2009, 114(2), 469-477.
[http://dx.doi.org/10.1182/blood-2008-12-193581] [PMID: 19439736]
[86]
Skuli, N.; Majmundar, A.J.; Krock, B.L.; Mesquita, R.C.; Mathew, L.K.; Quinn, Z.L.; Runge, A.; Liu, L.; Kim, M.N.; Liang, J.; Schenkel, S.; Yodh, A.G.; Keith, B.; Simon, M.C. Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes. J. Clin. Invest., 2012, 122(4), 1427-1443.
[http://dx.doi.org/10.1172/JCI57322] [PMID: 22426208]
[87]
Tang, N.; Wang, L.; Esko, J.; Giordano, F.J.; Huang, Y.; Gerber, H.P.; Ferrara, N.; Johnson, R.S. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell, 2004, 6(5), 485-495.
[http://dx.doi.org/10.1016/j.ccr.2004.09.026] [PMID: 15542432]
[88]
Du, R.; Lu, K.V.; Petritsch, C.; Liu, P.; Ganss, R.; Passegué, E.; Song, H.; VandenBerg, S.; Johnson, R.S.; Werb, Z.; Bergers, G. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell, 2008, 13(3), 206-220.
[http://dx.doi.org/10.1016/j.ccr.2008.01.034] [PMID: 18328425]
[89]
Fernandez-Alonso, R.; Martin-Lopez, M.; Gonzalez-Cano, L.; Garcia, S.; Castrillo, F.; Diez-Prieto, I.; Fernandez-Corona, A.; Lorenzo-Marcos, M.E.; Li, X.; Claesson-Welsh, L.; Marques, M.M.; Marin, M.C. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ., 2015, 22(8), 1287-1299.
[http://dx.doi.org/10.1038/cdd.2014.214] [PMID: 25571973]
[90]
Nauta, T.D.; van den Broek, M.; Gibbs, S.; van der Pouw-Kraan, T.C.T.M.; Oudejans, C.B.; van Hinsbergh, V.W.M.; Koolwijk, P. Identification of HIF-2α-regulated genes that play a role in human microvascular endothelial sprouting during prolonged hypoxia in vitro. Angiogenesis, 2017, 20(1), 39-54.
[http://dx.doi.org/10.1007/s10456-016-9527-4] [PMID: 27699500]
[91]
Hielscher, A.; Qiu, C.; Porterfield, J.; Smith, Q.; Gerecht, S. Hypoxia affects the structure of breast cancer cell-derived matrix to support angiogenic responses of endothelial cells. J. Carcinog. Mutagen., 2013, S13(13)(Suppl. 13), 005.
[http://dx.doi.org/10.4172/2157-2518.S13-005] [PMID: 24600535]
[92]
Wang, L.; Zhang, X.; Pang, N.; Xiao, L.; Li, Y.; Chen, N.; Ren, M.; Deng, X.; Wu, J. Glycation of vitronectin inhibits VEGF-induced angiogenesis by uncoupling VEGF receptor-2-αvβ3 integrin cross-talk. Cell Death Dis., 2015, 6(6), e1796.
[http://dx.doi.org/10.1038/cddis.2015.174] [PMID: 26111058]
[93]
Brurberg, K.G.; Graff, B.A.; Olsen, D.R.; Rofstad, E.K. Tumor-line specific pO2 fluctuations in human melanoma xenografts. Int. J. Radiat. Oncol. Biol. Phys., 2004, 58(2), 403-409.
[http://dx.doi.org/10.1016/j.ijrobp.2003.09.049] [PMID: 14751509]
[94]
Franses, J.W.; Baker, A.B.; Chitalia, V.C.; Edelman, E.R. Stromal endothelial cells directly influence cancer progression. Sci. Transl. Med., 2011, 3(66), 66ra5.
[http://dx.doi.org/10.1126/scitranslmed.3001542] [PMID: 21248315]
[95]
Branco-Price, C.; Zhang, N.; Schnelle, M.; Evans, C.; Katschinski, D.M.; Liao, D.; Ellies, L.; Johnson, R.S. Endothelial cell HIF-1α and HIF-2α differentially regulate metastatic success. Cancer Cell, 2012, 21(1), 52-65.
[http://dx.doi.org/10.1016/j.ccr.2011.11.017] [PMID: 22264788]
[96]
Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci., 2016, 19(6), 771-783.
[http://dx.doi.org/10.1038/nn.4288] [PMID: 27227366]
[97]
Kawakami, T.; Mimura, I.; Shoji, K.; Tanaka, T.; Nangaku, M. Hypoxia and fibrosis in chronic kidney disease: Crossing at pericytes. Kidney Int. Suppl., 2014, 4(1), 107-112.
[http://dx.doi.org/10.1038/kisup.2014.20]
[98]
Mohammed, R.A.A.; Ellis, I.O.; Elsheikh, S.; Paish, E.C.; Martin, S.G. Lymphatic and angiogenic characteristics in breast cancer: morphometric analysis and prognostic implications. Breast Cancer Res. Treat., 2009, 113(2), 261-273.
[http://dx.doi.org/10.1007/s10549-008-9936-1] [PMID: 18293084]
[99]
Bos, R.; van der Groep, P.; Greijer, A.E.; Shvarts, A.; Meijer, S.; Pinedo, H.M.; Semenza, G.L.; van Diest, P.J.; van der Wall, E. Levels of hypoxia-inducible factor-1? independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 2003, 97(6), 1573-1581.
[http://dx.doi.org/10.1002/cncr.11246] [PMID: 12627523]
[100]
Schoppmann, S.F.; Fenzl, A.; Schindl, M.; Bachleitner-Hofmann, T.; Nagy, K.; Gnant, M.; Horvat, R.; Jakesz, R.; Birner, P. Hypoxia inducible factor-1α correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res. Treat., 2006, 99(2), 135-141.
[http://dx.doi.org/10.1007/s10549-006-9190-3] [PMID: 16555123]
[101]
Kurokawa, T.; Miyamoto, M.; Kato, K.; Cho, Y.; Kawarada, Y.; Hida, Y.; Shinohara, T.; Itoh, T.; Okushiba, S.; Kondo, S.; Katoh, H. Overexpression of hypoxia-inducible-factor 1α(HIF-1α) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br. J. Cancer, 2003, 89(6), 1042-1047.
[http://dx.doi.org/10.1038/sj.bjc.6601186] [PMID: 12966423]
[102]
Ji, R.C. Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis. Cancer Lett., 2014, 346(1), 6-16.
[http://dx.doi.org/10.1016/j.canlet.2013.12.001] [PMID: 24333723]
[103]
Zampell, J.C.; Yan, A.; Avraham, T.; Daluvoy, S.; Weitman, E.S.; Mehrara, B.J. HIF‐1α coordinates lymphangiogenesis during wound healing and in response to inflammation. FASEB J., 2012, 26(3), 1027-1039.
[http://dx.doi.org/10.1096/fj.11-195321] [PMID: 22067482]
[104]
Liang, X.; Yang, D.; Hu, J.; Hao, X.; Gao, J.; Mao, Z. Hypoxia inducible factor-alpha expression correlates with vascular endothelial growth factor-C expression and lymphangiogenesis/angiogenesis in oral squamous cell carcinoma. Anticancer Res., 2008, 28(3A), 1659-1666.
[PMID: 18630523]
[105]
Min, Y.; Ghose, S.; Boelte, K.; Li, J.; Yang, L.; Lin, P.C. C/EBP-δ regulates VEGF-C autocrine signaling in lymphangiogenesis and metastasis of lung cancer through HIF-1α. Oncogene, 2011, 30(49), 4901-4909.
[http://dx.doi.org/10.1038/onc.2011.187] [PMID: 21666710]
[106]
Morfoisse, F.; Kuchnio, A.; Frainay, C.; Gomez-Brouchet, A.; Delisle, M.B.; Marzi, S.; Helfer, A.C.; Hantelys, F.; Pujol, F.; Guillermet-Guibert, J.; Bousquet, C.; Dewerchin, M.; Pyronnet, S.; Prats, A.C.; Carmeliet, P.; Garmy-Susini, B. Hypoxia induces VEGF-C expression in metastatic tumor cells viaa HIF-1α-independent translation-mediated mechanism. Cell Rep., 2014, 6(1), 155-167.
[http://dx.doi.org/10.1016/j.celrep.2013.12.011] [PMID: 24388748]
[107]
Hirakawa, S.; Kodama, S.; Kunstfeld, R.; Kajiya, K.; Brown, L.F.; Detmar, M. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J. Exp. Med., 2005, 201(7), 1089-1099.
[http://dx.doi.org/10.1084/jem.20041896] [PMID: 15809353]
[108]
Geis, T.; Popp, R.; Hu, J.; Fleming, I.; Henke, N.; Dehne, N.; Brüne, B. HIF-2α attenuates lymphangiogenesis by up-regulating IGFBP1 in hepatocellular carcinoma. Biol. Cell, 2015, 107(6), 175-188.
[http://dx.doi.org/10.1111/boc.201400079] [PMID: 25757011]
[109]
Zhang, R.; Qi, F.; Zhao, F.; Li, G.; Shao, S.; Zhang, X.; Yuan, L.; Feng, Y. Cancer-associated fibroblasts enhance tumor-associated macrophages enrichment and suppress NK cells function in colorectal cancer. Cell Death Dis., 2019, 10(4), 273.
[http://dx.doi.org/10.1038/s41419-019-1435-2] [PMID: 30894509]
[110]
Noy, R.; Pollard, J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity, 2014, 41(1), 49-61.
[http://dx.doi.org/10.1016/j.immuni.2014.06.010] [PMID: 25035953]
[111]
Larionova, I.; Cherdyntseva, N.; Liu, T.; Patysheva, M.; Rakina, M.; Kzhyshkowska, J. Interaction of tumor-associated macrophages and cancer chemotherapy. OncoImmunology, 2019, 8(7), e1596004.
[http://dx.doi.org/10.1080/2162402X.2019.1596004] [PMID: 31143517]
[112]
Laviron, M.; Boissonnas, A. Ontogeny of tumor-associated macrophages. Front. Immunol., 2019, 10, 1799.
[http://dx.doi.org/10.3389/fimmu.2019.01799] [PMID: 31417566]
[113]
Mantovani, A.; Sica, A.; Sozzani, S.; Allavena, P.; Vecchi, A.; Locati, M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, 25(12), 677-686.
[http://dx.doi.org/10.1016/j.it.2004.09.015] [PMID: 15530839]
[114]
Cassetta, L.; Kitamura, T. Targeting tumor-associated macrophages as a potential strategy to enhance the response to immune checkpoint inhibitors. Front. Cell Dev. Biol., 2018, 6(38), 93.
[http://dx.doi.org/10.3389/fcell.2018.00038]
[115]
Solinas, G.; Schiarea, S.; Liguori, M.; Fabbri, M.; Pesce, S.; Zammataro, L.; Pasqualini, F.; Nebuloni, M.; Chiabrando, C.; Mantovani, A.; Allavena, P. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol., 2010, 185(1), 642-652.
[http://dx.doi.org/10.4049/jimmunol.1000413] [PMID: 20530259]
[116]
Wei, C.; Yang, C.; Wang, S.; Shi, D.; Zhang, C.; Lin, X.; Liu, Q.; Dou, R.; Xiong, B. Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol. Cancer, 2019, 18(1), 64.
[http://dx.doi.org/10.1186/s12943-019-0976-4] [PMID: 30927925]
[117]
Kim, Y.B.; Ahn, Y.H.; Jung, J.H.; Lee, Y.J.; Lee, J.H.; Kang, J.L. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell. Mol. Immunol., 2019, 16(11), 851-867.
[http://dx.doi.org/10.1038/s41423-019-0209-1] [PMID: 30842627]
[118]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[119]
Qian, B.; Deng, Y. Im, J.H.; Muschel, R.J.; Zou, Y.; Li, J.; Lang, R.A.; Pollard, J.W. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One, 2009, 4(8), e6562.
[http://dx.doi.org/10.1371/journal.pone.0006562] [PMID: 19668347]
[120]
Ghanaati, S.; Udeabor, S.E.; Adisa, A.O.; Orlowska, A.; Sader, R.A. Tumor-associated macrophages, angiogenesis, and tumor cell migration in oral squamous cell carcinoma. Ann. Afr. Med., 2017, 16(4), 181-185.
[http://dx.doi.org/10.4103/aam.aam_8_17] [PMID: 29063902]
[121]
Chen, Y.; Song, Y.; Du, W.; Gong, L.; Chang, H.; Zou, Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J. Biomed. Sci., 2019, 26(1), 78.
[http://dx.doi.org/10.1186/s12929-019-0568-z] [PMID: 31629410]
[122]
Chen, Y.; Tan, W.; Wang, C. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial-mesenchymal transition. OncoTargets Ther., 2018, 11, 3817-3826.
[http://dx.doi.org/10.2147/OTT.S168317] [PMID: 30013362]
[123]
Kowal, J.; Kornete, M.; Joyce, J.A. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy, 2019, 11(8), 677-689.
[http://dx.doi.org/10.2217/imt-2018-0156] [PMID: 31088236]
[124]
Zhan, X.; Jia, L.; Niu, Y.; Qi, H.; Chen, X.; Zhang, Q.; Zhang, J.; Wang, Y.; Dong, L.; Wang, C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials, 2014, 35(38), 10046-10057.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.007] [PMID: 25245263]
[125]
Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, 14(7), 399-416.
[http://dx.doi.org/10.1038/nrclinonc.2016.217] [PMID: 28117416]
[126]
Kudo, M. Combination cancer immunotherapy with molecular targeted agents/anti-CTLA-4 antibody for hepatocellular carcinoma. Liver Cancer, 2019, 8(1), 1-11.
[http://dx.doi.org/10.1159/000496277] [PMID: 30815391]
[127]
DeNardo, D.G.; Brennan, D.J.; Rexhepaj, E.; Ruffell, B.; Shiao, S.L.; Madden, S.F.; Gallagher, W.M.; Wadhwani, N.; Keil, S.D.; Junaid, S.A.; Rugo, H.S.; Hwang, E.S.; Jirström, K.; West, B.L.; Coussens, L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov., 2011, 1(1), 54-67.
[http://dx.doi.org/10.1158/2159-8274.CD-10-0028] [PMID: 22039576]
[128]
Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; Setty, M.; Leslie, C.S.; Oei, Y.; Pedraza, A.; Zhang, J.; Brennan, C.W.; Sutton, J.C.; Holland, E.C.; Daniel, D.; Joyce, J.A. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med., 2013, 19(10), 1264-1272.
[http://dx.doi.org/10.1038/nm.3337] [PMID: 24056773]
[129]
Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; Jones, T.; Jucknischke, U.; Scheiblich, S.; Kaluza, K.; Gorr, I.H.; Walz, A.; Abiraj, K.; Cassier, P.A.; Sica, A.; Gomez-Roca, C.; de Visser, K.E.; Italiano, A.; Le Tourneau, C.; Delord, J.P.; Levitsky, H.; Blay, J.Y.; Rüttinger, D. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 2014, 25(6), 846-859.
[http://dx.doi.org/10.1016/j.ccr.2014.05.016] [PMID: 24898549]
[130]
Arlauckas, S.P.; Garris, C.S.; Kohler, R.H.; Kitaoka, M.; Cuccarese, M.F.; Yang, K.S.; Miller, M.A.; Carlson, J.C.; Freeman, G.J.; Anthony, R.M.; Weissleder, R.; Pittet, M.J. in vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med., 2017, 9(389), eaal3604.
[http://dx.doi.org/10.1126/scitranslmed.aal3604] [PMID: 28490665]
[131]
de Taeye, S.W.; Rispens, T.; Vidarsson, G. The ligands for human IgG and their effector functions. Antibodies (Basel), 2019, 8(2), 30.
[http://dx.doi.org/10.3390/antib8020030] [PMID: 31544836]
[132]
Li, R.; Hebert, J.D.; Lee, T.A.; Xing, H.; Boussommier-Calleja, A.; Hynes, R.O.; Lauffenburger, D.A.; Kamm, R.D. Macrophage-secreted TNFα and TGFβ1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res., 2017, 77(2), 279-290.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0442] [PMID: 27872091]
[133]
Han, J.; Zhen, J.; Go, G.; Choi, Y.; Ko, S.Y.; Park, J-O. Park SJSr: Hybrid-actuating macrophage-based microrobots for active cancer therapy. Sci. Rep., 2016, 6, 28717.
[http://dx.doi.org/10.1038/srep28717] [PMID: 27346486]
[134]
Jahanban-Esfahlan, A.; Seidi, K.; Jaymand, M.; Schmidt, T.L.; Majdi, H.; Javaheri, T.; Jahanban-Esfahlan, R.; Zare, P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J. Control. Release, 2019, 315, 166-185.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.003] [PMID: 31669209]
[135]
Caruso, S.; Poon, I.K.H. Apoptotic cell-derived extracellular vesicles: More than just debris. Front. Immunol., 2018, 9, 1486.
[http://dx.doi.org/10.3389/fimmu.2018.01486] [PMID: 30002658]
[136]
Wickman, G.; Julian, L.; Olson, M.F. How apoptotic cells aid in the removal of their own cold dead bodies. Cell Death Differ., 2012, 19(5), 735-742.
[http://dx.doi.org/10.1038/cdd.2012.25] [PMID: 22421963]
[137]
Ogden, C.A.; deCathelineau, A.; Hoffmann, P.R.; Bratton, D.; Ghebrehiwet, B.; Fadok, V.A.; Henson, P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med., 2001, 194(6), 781-796.
[http://dx.doi.org/10.1084/jem.194.6.781] [PMID: 11560994]
[138]
Julian, L.; Olson, M.F. Apoptotic membrane dynamics in health and disease. Cell Health Cytoskelet., 2015, 2015, 133-142.
[139]
Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci. Rep., 2019, 39(1), BSR20180992.
[http://dx.doi.org/10.1042/BSR20180992] [PMID: 30530866]
[140]
Gordon, S.; Plüddemann, A. Macrophage clearance of apoptotic cells: A critical assessment. Front. Immunol., 2018, 9, 127.
[http://dx.doi.org/10.3389/fimmu.2018.00127] [PMID: 29441073]
[141]
Bergsmedh, A.; Szeles, A.; Henriksson, M.; Bratt, A.; Folkman, M.J.; Spetz, A.L.; Holmgren, L. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6407-6411.
[http://dx.doi.org/10.1073/pnas.101129998]
[142]
Samos, J.; García-Olmo, D.C.; Picazo, M.G.; Rubio-Vitaller, A.; García-Olmo, D. Circulating nucleic acids in plasma/serum and tumor progression: are apoptotic bodies involved? An experimental study in a rat cancer model. Ann. N. Y. Acad. Sci., 2006, 1075(1), 165-173.
[http://dx.doi.org/10.1196/annals.1368.022] [PMID: 17108207]
[143]
Rønnov-Jessen, L.; Petersen, O.W.; Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev., 1996, 76(1), 69-125.
[http://dx.doi.org/10.1152/physrev.1996.76.1.69] [PMID: 8592733]
[144]
Sivridis, E.; Giatromanolaki, A.; Koukourakis, M.I. “Stromatogenesis” and tumor progression. Int. J. Surg. Pathol., 2004, 12(1), 1-9.
[http://dx.doi.org/10.1177/106689690401200101] [PMID: 14765266]
[145]
Camps, J.L.; Chang, S.M.; Hsu, T.C.; Freeman, M.R.; Hong, S.J.; Zhau, H.E.; von Eschenbach, A.C.; Chung, L.W. Fibroblast-mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA, 1990, 87(1), 75-79.
[http://dx.doi.org/10.1073/pnas.87.1.75] [PMID: 2296606]
[146]
Fromigué, O.; Louis, K.; Dayem, M.; Milanini, J.; Pages, G.; Tartare-Deckert, S.; Ponzio, G.; Hofman, P.; Barbry, P.; Auberger, P.; Mari, B. Gene expression profiling of normal human pulmonary fibroblasts following coculture with non-small-cell lung cancer cells reveals alterations related to matrix degradation, angiogenesis, cell growth and survival. Oncogene, 2003, 22(52), 8487-8497.
[http://dx.doi.org/10.1038/sj.onc.1206918] [PMID: 14627989]
[147]
Nakagawa, H.; Liyanarachchi, S.; Davuluri, R.V.; Auer, H.; Martin, E.W., Jr; de la Chapelle, A.; Frankel, W.L. Role of cancer-associated stromal fibroblasts in metastatic colon cancer to the liver and their expression profiles. Oncogene, 2004, 23(44), 7366-7377.
[http://dx.doi.org/10.1038/sj.onc.1208013] [PMID: 15326482]
[148]
Giatromanolaki, A.; Sivridis, E.; Koukourakis, M.I. The pathology of tumor stromatogenesis. Cancer Biol. Ther., 2007, 6(5), 639-645.
[http://dx.doi.org/10.4161/cbt.6.5.4198] [PMID: 17534144]
[149]
Figueras, A.; Arbos, M.A.; Quiles, M.T.; Viñals, F.; Germà, J.R.; Capellà, G. The impact of KRAS mutations on VEGF-A production and tumour vascular network. BMC Cancer, 2013, 13(1), 125.
[http://dx.doi.org/10.1186/1471-2407-13-125] [PMID: 23506169]
[150]
Talks, K.L.; Turley, H.; Gatter, K.C.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J.; Harris, A.L. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol., 2000, 157(2), 411-421.
[http://dx.doi.org/10.1016/S0002-9440(10)64554-3] [PMID: 10934146]
[151]
Baggiolini, M. Chemokines in pathology and medicine. J. Intern. Med., 2001, 250(2), 91-104.
[http://dx.doi.org/10.1046/j.1365-2796.2001.00867.x] [PMID: 11489059]
[152]
Zlotnik, A.; Yoshie, O.; Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol., 2006, 7(12), 243.
[http://dx.doi.org/10.1186/gb-2006-7-12-243]
[153]
Benelli, R.; Lorusso, G.; Albini, A.; Noonan, D. Cytokines and chemokines as regulators of angiogenesis in health and disease. Curr. Pharm. Des., 2006, 12(24), 3101-3115.
[http://dx.doi.org/10.2174/138161206777947461] [PMID: 16918437]
[154]
Rebenko-Moll, N.M.; Liu, L.; Cardona, A.; Ransohoff, R.M. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Curr. Opin. Immunol., 2006, 18(6), 683-689.
[http://dx.doi.org/10.1016/j.coi.2006.09.005] [PMID: 17010588]
[155]
Hill, B.S.; Sarnella, A.; D’Avino, G.; Zannetti, A. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin. Cancer Biol., 2020, 60, 202-213.
[http://dx.doi.org/10.1016/j.semcancer.2019.07.028] [PMID: 31377307]
[156]
Austenaa, L.; Natoli, G. A shortcut for early macrophage recruitment into tumors by activated oncogenes. Genes Dev., 2017, 31(3), 223-225.
[http://dx.doi.org/10.1101/gad.296905.117] [PMID: 28270513]
[157]
Almand, B.; Clark, J.I.; Nikitina, E.; van Beynen, J.; English, N.R.; Knight, S.C.; Carbone, D.P.; Gabrilovich, D.I. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol., 2001, 166(1), 678-689.
[http://dx.doi.org/10.4049/jimmunol.166.1.678] [PMID: 11123353]
[158]
Yang, L.; DeBusk, L.M.; Fukuda, K.; Fingleton, B.; Green-Jarvis, B.; Shyr, Y.; Matrisian, L.M.; Carbone, D.P.; Lin, P.C. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 2004, 6(4), 409-421.
[http://dx.doi.org/10.1016/j.ccr.2004.08.031] [PMID: 15488763]
[159]
Dolcetti, L.; Marigo, I.; Mantelli, B.; Peranzoni, E.; Zanovello, P.; Bronte, V. Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett., 2008, 267(2), 216-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.012] [PMID: 18433992]
[160]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[161]
Murdoch, C.; Muthana, M.; Coffelt, S.B.; Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer, 2008, 8(8), 618-631.
[http://dx.doi.org/10.1038/nrc2444] [PMID: 18633355]
[162]
Bruchard, M.; Mignot, G.; Derangère, V.; Chalmin, F.; Chevriaux, A.; Végran, F.; Boireau, W.; Simon, B.; Ryffel, B.; Connat, J.L.; Kanellopoulos, J.; Martin, F.; Rébé, C.; Apetoh, L.; Ghiringhelli, F. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med., 2013, 19(1), 57-64.
[http://dx.doi.org/10.1038/nm.2999] [PMID: 23202296]
[163]
Yang, L.; Huang, J.; Ren, X.; Gorska, A.E.; Chytil, A.; Aakre, M.; Carbone, D.P.; Matrisian, L.M.; Richmond, A.; Lin, P.C.; Moses, H.L. Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 2008, 13(1), 23-35.
[http://dx.doi.org/10.1016/j.ccr.2007.12.004] [PMID: 18167337]
[164]
Gao, J.Q.; Okada, N.; Mayumi, T.; Nakagawa, S. Immune cell recruitment and cell-based system for cancer therapy. Pharm. Res., 2008, 25(4), 752-768.
[http://dx.doi.org/10.1007/s11095-007-9443-9] [PMID: 17891483]
[165]
Nakamura, S.; Yaguchi, T.; Kawamura, N.; Kobayashi, A.; Sakurai, T.; Higuchi, H.; Takaishi, H.; Hibi, T.; Kawakami, Y. TGF-beta1 in tumor microenvironments induces immunosuppression in the tumors and sentinel lymph nodes and promotes tumor progressionJ. J. Immunother., 2014, 37(2), 63-72.
[http://dx.doi.org/10.1097/CJI.0000000000000011]
[166]
Casey, S.C.; Li, Y.; Felsher, D.W. An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation. Immunol. Res., 2014, 58(2-3), 282-291.
[http://dx.doi.org/10.1007/s12026-014-8503-6] [PMID: 24791942]
[167]
Casey, S.C.; Tong, L.; Li, Y.; Do, R.; Walz, S.; Fitzgerald, K.N.; Gouw, A.M.; Baylot, V.; Gütgemann, I.; Eilers, M.; Felsher, D.W. MYC regulates the antitumor immune response through CD47 and PD-L1. Science, 2016, 352(6282), 227-231.
[http://dx.doi.org/10.1126/science.aac9935] [PMID: 26966191]
[168]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[169]
Schäfer, M.; Werner, S. Cancer as an overhealing wound: An old hypothesis revisited. Nat. Rev. Mol. Cell Biol., 2008, 9(8), 628-638-63879.
[http://dx.doi.org/10.1038/nrm2455]
[170]
Riss, J.; Khanna, C.; Koo, S.; Chandramouli, G.V.R.; Yang, H.H.; Hu, Y.; Kleiner, D.E.; Rosenwald, A.; Schaefer, C.F.; Ben-Sasson, S.A.; Yang, L.; Powell, J.; Kane, D.W.; Star, R.A.; Aprelikova, O.; Bauer, K.; Vasselli, J.R.; Maranchie, J.K.; Kohn, K.W.; Buetow, K.H.; Linehan, W.M.; Weinstein, J.N.; Lee, M.P.; Klausner, R.D.; Barrett, J.C. Cancers as wounds that do not heal: differences and similarities between renal regeneration/repair and renal cell carcinoma. Cancer Res., 2006, 66(14), 7216-7224.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0040] [PMID: 16849569]
[171]
Pesic, M.; Greten, F.R. Inflammation and cancer: tissue regeneration gone awray. Curr. Opin. Cell Biol., 2016, 43, 55-61.
[http://dx.doi.org/10.1016/j.ceb.2016.07.010] [PMID: 27521599]
[172]
Kondratova, M.; Czerwinska, U.; Sompairac, N.; Amigorena, S.D.; Soumelis, V.; Barillot, E.; Zinovyev, A.; Kuperstein, I. A multiscale signalling network map of innate immune response in cancer reveals cell heterogeneity signatures. Nat. Commun., 2019, 10(1), 4808.
[http://dx.doi.org/10.1038/s41467-019-12270-x] [PMID: 31641119]
[173]
Liu, Y.; Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother., 2012, 35(4), 299-308.
[http://dx.doi.org/10.1097/CJI.0b013e3182518e83] [PMID: 22495387]
[174]
Wong, R.; Pepper, C.; Brennan, P.; Nagorsen, D.; Man, S.; Fegan, C. Blinatumomab induces autologous T-cell killing of chronic lymphocytic leukemia cells. Haematologica, 2013, 98(12), 1930-1938.
[http://dx.doi.org/10.3324/haematol.2012.082248] [PMID: 23812940]
[175]
Xiong, G.F.; Xu, R. Function of cancer cell-derived extracellular matrix in tumor progression. J. Cancer Metastasis Treat., 2016, 2(9), 357-364.
[http://dx.doi.org/10.20517/2394-4722.2016.08]
[176]
Farc, O.; Criatea, V. Pro-And Antitumour Role of Interleukins 1 to 41. Roum. Arch. Microbiol. Immunol., 2019, 78, 149-162.
[177]
Langley, R.R.; Fidler, I.J. Tumor cell-organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr. Rev., 2007, 28(3), 297-321.
[http://dx.doi.org/10.1210/er.2006-0027] [PMID: 17409287]
[178]
Flaxman, B.A.; Harper, R.A. In vitro analysis of the control of keratinocyte proliferation in human epidermis by physiologic and pharmacologic agents. J. Invest. Dermatol., 1975, 65(1), 52-59.
[http://dx.doi.org/10.1111/1523-1747.ep12598043] [PMID: 239072]
[179]
Carie, A.E.; Sebti, S.M. A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/Mek-1/Erk1/2 pathway. Oncogene, 2007, 26(26), 3777-3788.
[http://dx.doi.org/10.1038/sj.onc.1210172] [PMID: 17260025]
[180]
Pifl, C.; Zezula, J.; Spittler, A.; Kattinger, A.; Reither, H.; Caron, M.G.; Hornykiewicz, O. Antiproliferative action of dopamine and norepinephrine in neuroblastoma cells expressing the human dopamine transporter. FASEB J., 2001, 15(9), 1607-1609.
[http://dx.doi.org/10.1096/fj.00-0738fje] [PMID: 11427501]
[181]
Armaiz-Pena, G.N.; Lutgendorf, S.K.; Cole, S.W.; Sood, A.K. Neuroendocrine modulation of cancer progression. Brain Behav. Immun., 2009, 23(1), 10-15.
[http://dx.doi.org/10.1016/j.bbi.2008.06.007] [PMID: 18638541]
[182]
Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; Schloesser, H.; Heinemann, V.; Subklewe, M.; Boeck, S.; Werner, J.; von Bergwelt-Baildon, M. Advances in cancer immunotherapy 2019 - latest trends. J. Exp. Clin. Cancer Res., 2019, 38(1), 268.
[http://dx.doi.org/10.1186/s13046-019-1266-0] [PMID: 31217020]
[183]
Farkona, S.; Diamandis, E.P.; Blasutig, I.M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med., 2016, 14(1), 73.
[http://dx.doi.org/10.1186/s12916-016-0623-5] [PMID: 27151159]
[184]
Clancy, T.; Hovig, E. Profiling networks of distinct immune-cells in tumors. BMC Bioinformatics, 2016, 17(1), 263.
[http://dx.doi.org/10.1186/s12859-016-1141-3] [PMID: 27377892]
[185]
Munks, M.; Levitsky, V.; Hill, A.; Knoetgen, H. Cytomegalovirus-specific CD8 T cells kill B16 melanoma cells in vivo whe activated by bifunctional major histocompatibility class I-antibody fusion molecules (pMHCI-IgGs). J. Immunother. Cancer, 2015, 3(237)
[http://dx.doi.org/10.1186/2051-1426-3-S2-P237]
[186]
DeSantis, C.E.; Lin, C.C.; Mariotto, A.B.; Siegel, R.L.; Stein, K.D.; Kramer, J.L.; Alteri, R.; Robbins, A.S.; Jemal, A. Cancer treatment and survivorship statistics, 2014. CA Cancer J. Clin., 2014, 64(4), 252-271.
[http://dx.doi.org/10.3322/caac.21235] [PMID: 24890451]
[187]
Kumar, P.; Yadav, N.; Chaudhary, B.; Jain, V.; Balaramnavar, V.M.; Alharbi, K.S.; Alenezi, S.K.; Al-Malki, W.H.; Ghoneim, M.M.; Alshehri, S.; Imam, S.S.; Gupta, M.M. Promises of phytochemical based nano drug delivery systems in the management of cancer. Chem. Biol. Interact., 2022, 351, 109745.
[http://dx.doi.org/10.1016/j.cbi.2021.109745] [PMID: 34774839]
[188]
Earlam, R.; Cunha-Melo, J.R. Oesophageal squamous cell carcinoma: I. A critical review of surgery. Br. J. Surg., 2005, 67(6), 381-390.
[http://dx.doi.org/10.1002/bjs.1800670602] [PMID: 6155968]
[189]
Green, J.A.; Kirwan, J.M.; Tierney, J.F.; Symonds, P.; Fresco, L.; Collingwood, M.; Williams, C.J. Survival and recurrence after concomitant chemotherapy and radiotherapy for cancer of the uterine cervix: A systematic review and meta-analysis. Lancet, 2001, 358(9284), 781-786.
[http://dx.doi.org/10.1016/S0140-6736(01)05965-7] [PMID: 11564482]
[190]
Sharma, P.; Wagner, K.; Wolchok, J.D.; Allison, J.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat. Rev. Cancer, 2011, 11(11), 805-812.
[http://dx.doi.org/10.1038/nrc3153] [PMID: 22020206]
[191]
Chen, F.; Zhuang, X.; Lin, L.; Yu, P.; Wang, Y.; Shi, Y.; Hu, G.; Sun, Y. New horizons in tumor microenvironment biology: Challenges and opportunities. BMC Med., 2015, 13(1), 45.
[http://dx.doi.org/10.1186/s12916-015-0278-7] [PMID: 25857315]
[192]
Sun, B.; Hyun, H.; Li, L.; Wang, A.Z. Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacol. Sin., 2020, 41(7), 970-985.
[http://dx.doi.org/10.1038/s41401-020-0424-4] [PMID: 32424240]
[193]
Jiang, W.; von Roemeling, C.A.; Chen, Y.X. Designing nanomedicine forimmuno-oncology. Nat. Biomed. Eng., 2017, 1(0029)
[http://dx.doi.org/10.1038/s41551-017-0029]
[194]
Pathak, M.; Deo, S.V.S.; Dwivedi, S.N.; Thakur, B.; Sreenivas, V.; Rath, G.K. Regimens of neo-adjuvant chemotherapy in the treatment of breast cancer: A systematic review & network meta-analysis with PRISMA-NMA compliance. Crit. Rev. Oncol. Hematol., 2020, 153, 103015.
[http://dx.doi.org/10.1016/j.critrevonc.2020.103015] [PMID: 32563131]
[195]
Wu, H.C.; Chang, D.K. Peptide-mediated liposomal drug delivery system targeting tumor blood vessels in anticancer therapy. J. Oncol., 2010, 2010, 1-8.
[http://dx.doi.org/10.1155/2010/723798] [PMID: 20454584]
[196]
Siddik, Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003, 22(47), 7265-7279.
[http://dx.doi.org/10.1038/sj.onc.1206933] [PMID: 14576837]
[197]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[198]
Cohen, R.; Kanaan, H.; Grant, G.J.; Barenholz, Y. Prolonged analgesia from bupisome and bupigel formulations: from design and fabrication to improved stability. J. Control. Release, 2012, 160(2), 346-352.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.030] [PMID: 22233969]
[199]
Von Hoff, D.D.; Ramanathan, R.K.; Borad, M.J.; Laheru, D.A.; Smith, L.S.; Wood, T.E.; Korn, R.L.; Desai, N.; Trieu, V.; Iglesias, J.L.; Zhang, H.; Soon-Shiong, P.; Shi, T.; Rajeshkumar, N.V.; Maitra, A.; Hidalgo, M. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol., 2011, 29(34), 4548-4554.
[http://dx.doi.org/10.1200/JCO.2011.36.5742] [PMID: 21969517]
[200]
Sherman-Baust, C.A.; Becker, K.G.; Wood, W.H., III; Zhang, Y.; Morin, P.J. Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J. Ovarian Res., 2011, 4(1), 21.
[http://dx.doi.org/10.1186/1757-2215-4-21] [PMID: 22141344]
[201]
Sanches, B.M.A.; Ferreira, E.I. Is prodrug design an approach to increase water solubility? Int. J. Pharm., 2019, 568, 118498.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118498] [PMID: 31301465]
[202]
Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev., 2014, 34(1), 106-135.
[http://dx.doi.org/10.1002/med.21280] [PMID: 23494977]
[203]
Gunasekaran, T.; Haile, T.; Nigusse, T.; Dhanaraju, M.D. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac. J. Trop. Biomed., 2014, 4(S1), S1-S7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[204]
Rosso, L.; Brock, C.S.; Gallo, J.M.; Saleem, A.; Price, P.M.; Turkheimer, F.E.; Aboagye, E.O. A new model for prediction of drug distribution in tumor and normal tissues: pharmacokinetics of temozolomide in glioma patients. Cancer Res., 2009, 69(1), 120-127.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2356] [PMID: 19117994]
[205]
Meng, Q.; Hu, H.; Zhou, L.; Zhang, Y.; Yu, B.; Shen, Y.; Cong, H. Logical design and application of prodrug platforms. Polym. Chem., 2019, 10(3), 306-324.
[http://dx.doi.org/10.1039/C8PY01160E]
[206]
Cong, H.; Wang, K.; Zhou, Z.; Yang, J.; Piao, Y.; Yu, B.; Shen, Y.; Zhou, Z. Tuning the brightness and photostability of organic dots for multivalent targeted cancer imaging and surgery. ACS Nano, 2020, 14(5), 5887-5900.
[http://dx.doi.org/10.1021/acsnano.0c01034] [PMID: 32356972]
[207]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[208]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, 197(197), 55-86.
[http://dx.doi.org/10.1007/978-3-642-00477-3_2] [PMID: 20217526]
[209]
Swami, A.; Shi, J.; Gadde, S.; Votruba, A.R.; Kolishetti, N.; Farokhzad, O.C. Nanoparticles for targeted and temporally controlled drug delivery. In: Multifunctional nanoparticles for drug delivery applications; Prud, H.; Robert, K.; Svenson, S., Eds.; Springer: Berlin, 2012; pp. 9-29.
[http://dx.doi.org/10.1007/978-1-4614-2305-8_2]
[210]
Estanqueiro, M.; Amaral, M.H.; Conceição, J.; Sousa, Lobo, J.M. Nanotechnological carriers for cancer chemotherapy: The state of the art. Colloids Surf. B Biointerfaces, 2015, 126, 631-648.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.041] [PMID: 25591851]
[211]
Thotakura, N.; Gupta, M.M.; Rajawat, J.S.; Raza, K. promises of lipid-based drug delivery systems in the management of breast cancer. Curr. Pharm. Des., 2021, 27(45), 4568-4577.
[http://dx.doi.org/10.2174/1381612827666210728104318] [PMID: 34323182]
[212]
Yhee, J.Y.; Lee, S.; Kim, K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale, 2014, 6(22), 13383-13390.
[http://dx.doi.org/10.1039/C4NR04334K] [PMID: 25273283]
[213]
Kazmierczak, R.; Choe, E.; Sinclair, J.; Eisenstark, A. Direct attachment of nanoparticle cargo to Salmonella typhimurium membranes designed for combination bacteriotherapy against tumors. Methods Mol. Biol., 2015, 1225, 151-163.
[http://dx.doi.org/10.1007/978-1-4939-1625-2_11] [PMID: 25253255]
[214]
Dawidczyk, C.M.; Russell, L.M.; Searson, P.C. Nanomedicines for cancer therapy: State-of-the-art and limitations to pre-clinical studies that hinder future developments. Front Chem., 2014, 2, 69.
[http://dx.doi.org/10.3389/fchem.2014.00069] [PMID: 25202689]
[215]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[216]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[217]
Tesauro, D.; Accardo, A.; Aloj, L.; Morelli, G.; Aurilio, M. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int. J. Nanomedicine, 2014, 9, 1537-1557.
[http://dx.doi.org/10.2147/IJN.S53593] [PMID: 24741304]
[218]
Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem. Mater., 2014, 26(1), 435-451.
[http://dx.doi.org/10.1021/cm402592t]
[219]
Lee, J.H.; Kim, J.; Cheon, J. Magnetic nanoparticles for multi-imaging and drug delivery. Mol. Cells, 2013, 35(4), 274-284.
[http://dx.doi.org/10.1007/s10059-013-0103-0] [PMID: 23579479]
[220]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[221]
Chen, S.; Ni, B.; Huang, H.; Chen, X.; Ma, H. siRNA-loaded PEGylated porous silicon nanoparticles for lung cancer therapy. J. Nanopart. Res., 2014, 16(10), 2648.
[http://dx.doi.org/10.1007/s11051-014-2648-z]
[222]
Roggers, R.; Kanvinde, S.; Boonsith, S.; Oupický, D. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech, 2014, 15(5), 1163-1171.
[http://dx.doi.org/10.1208/s12249-014-0142-7] [PMID: 24871552]
[223]
Rejeeth, C.; Nag, T.C.; Kannan, S. Cisplatin-functionalized silica nanoparticles for cancer chemotherapy. Cancer Nanotechnol., 2013, 4(6), 127-136.
[http://dx.doi.org/10.1007/s12645-013-0043-6] [PMID: 26069508]
[224]
Maxwell, A. The usage of chitosan-functionalized mesoporous silica nanoparticles as a pH sensitive mechanism for drug delivery in cancer treatment; Da Vinci’s Notebook, 2016, Vol. 8, .
[225]
Yang, X. The role of vegf family in angiogenesis, tumor growth and metastasis. Thesis; Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Nov, 2014.
[226]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[227]
Qi, W.X.; Sun, Y.J.; Tang, L.N.; Shen, Z.; Yao, Y. Risk of gastrointestinal perforation in cancer patients treated with vascular endothelial growth factor receptor tyrosine kinase inhibitors: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol., 2014, 89(3), 394-403.
[http://dx.doi.org/10.1016/j.critrevonc.2013.10.002] [PMID: 24182420]
[228]
Sagadevan, S.; Periasamy, M. A review on role of nanostructures in drug-delivery system. Rev. Adv. Mater. Sci., 2014, 36(2), 112-117.
[229]
Mody, V.V.; Cox, A.; Shah, S.; Singh, A.; Bevins, W.; Parihar, H. Magnetic nanoparticle drug delivery systems for targeting tumor. Appl. Nanosci., 2014, 4(4), 385-392.
[http://dx.doi.org/10.1007/s13204-013-0216-y]
[230]
Huang, J.; Li, Y.; Orza, A.; Lu, Q.; Guo, P.; Wang, L.; Yang, L.; Mao, H. Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv. Funct. Mater., 2016, 26(22), 3818-3836.
[http://dx.doi.org/10.1002/adfm.201504185] [PMID: 27790080]
[231]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[232]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[233]
Padera, T.P.; Kadambi, A.; di Tomaso, E.; Carreira, C.M.; Brown, E.B.; Boucher, Y.; Choi, N.C.; Mathisen, D.; Wain, J.; Mark, E.J.; Munn, L.L.; Jain, R.K. Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 2002, 296(5574), 1883-1886.
[http://dx.doi.org/10.1126/science.1071420] [PMID: 11976409]
[234]
Sun, Q.; Sun, X.; Ma, X.; Zhou, Z.; Jin, E.; Zhang, B.; Shen, Y.; Van Kirk, E.A.; Murdoch, W.J.; Lott, J.R.; Lodge, T.P.; Radosz, M.; Zhao, Y. Integration of nanoassembly functions for an effective delivery cascade for cancer drugs. Adv. Mater., 2014, 26(45), 7615-7621.
[http://dx.doi.org/10.1002/adma.201401554] [PMID: 25328159]
[235]
Zhong, W.; Pang, L.; Feng, H.; Dong, H.; Wang, S.; Cong, H.; Shen, Y.; Bing, Y. Recent advantage of hyaluronic acid for anti-cancer application: A review of “3S” transition approach. Carbohydr. Polym., 2020, 238, 116204.
[http://dx.doi.org/10.1016/j.carbpol.2020.116204] [PMID: 32299556]
[236]
Scott, L.C.; Yao, J.C.; Benson, A.B., III; Thomas, A.L.; Falk, S.; Mena, R.R.; Picus, J.; Wright, J.; Mulcahy, M.F.; Ajani, J.A.; Evans, T.R.J. A phase II study of pegylated-camptothecin (pegamotecan) in the treatment of locally advanced and metastatic gastric and gastro-oesophageal junction adenocarcinoma. Cancer Chemother. Pharmacol., 2009, 63(2), 363-370.
[http://dx.doi.org/10.1007/s00280-008-0746-2] [PMID: 18398613]
[237]
He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 2010, 31(13), 3657-3666.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[238]
Fischer, D.; Li, Y.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials, 2003, 24(7), 1121-1131.
[http://dx.doi.org/10.1016/S0142-9612(02)00445-3] [PMID: 12527253]
[239]
Pack, D.W.; Hoffman, A.S.; Pun, S.; Stayton, P.S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov., 2005, 4(7), 581-593.
[http://dx.doi.org/10.1038/nrd1775] [PMID: 16052241]
[240]
Vermeulen, L.M.P.; Brans, T.; Samal, S.K.; Dubruel, P.; Demeester, J.; De Smedt, S.C.; Remaut, K.; Braeckmans, K. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano, 2018, 12(3), 2332-2345.
[http://dx.doi.org/10.1021/acsnano.7b07583] [PMID: 29505236]
[241]
Chen, Y.; Feng, S.; Liu, W.; Yuan, Z.; Yin, P.; Gao, F. Vitamin E succinate-grafted-chitosan oligosaccharide/rgd-conjugated tpgs mixed micelles loaded with paclitaxel for u87mg tumor therapy. Mol. Pharm., 2017, 14(4), 1190-1203.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01068] [PMID: 28212490]
[242]
Thakkar, S.; Sharma, D.; Kalia, K.; Tekade, R.K. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. Acta Biomater., 2020, 101, 43-68.
[http://dx.doi.org/10.1016/j.actbio.2019.09.009] [PMID: 31518706]
[243]
Dvorak, H.F.; Nagy, J.A.; Dvorak, J.T.; Dvorak, A.M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am. J. Pathol., 1988, 133(1), 95-109.
[PMID: 2459969]
[244]
Wilhelm, S.; Tavares, A.J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H.F.; Chan, W.C.W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater., 2016, 1(5), 16014.
[http://dx.doi.org/10.1038/natrevmats.2016.14]
[245]
Xiao, W.; Ruan, S.; Yu, W.; Wang, R.; Hu, C.; Liu, R.; Gao, H. Normalizing tumor vessels to increase the enzyme-induced retention and targeting of gold nanoparticle for breast cancer imaging and treatment. Mol. Pharm., 2017, 14(10), 3489-3498.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00475] [PMID: 28845990]
[246]
Zuccari, G.; Milelli, A.; Pastorino, F.; Loi, M.; Petretto, A.; Parise, A.; Marchetti, C.; Minarini, A.; Cilli, M.; Emionite, L.; Di Paolo, D.; Brignole, C.; Piaggio, F.; Perri, P.; Tumiatti, V.; Pistoia, V.; Pagnan, G.; Ponzoni, M. Tumor vascular targeted liposomal-bortezomib minimizes side effects and increases therapeutic activity in human neuroblastoma. J. Control. Release, 2015, 211, 44-52.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.286] [PMID: 26031842]
[247]
Wang, L.; Zhang, M.; Zhang, N.; Shi, J.; Zhang, H.; Zhang, Z.; Wang, L. Li, Synergistic enhancement of cancer therapy using a combination of docetaxel and photothermal ablation induced by single-walled carbon nanotubes. Int. J. Nanomedicine, 2011, 6, 2641-2652.
[http://dx.doi.org/10.2147/IJN.S24167] [PMID: 22114495]
[248]
Xu, L.; Stevens, J.; Hilton, M. B.; Seaman, S.; Conrads, T. P.; Veenstra, T. D.; Logsdon, D.; Morris, H.; Swing, D. A.; Patel, N. L.; Kalen, J.; Haines, D. C.; Zudaire, E.; St Croix, B. COX-2 inhibition potentiates antiangiogenic cancer therapy and prevents metastasis in preclinical models. Sci. Transl. Med., 2014, 6(242), 242ra84-242ra84.
[http://dx.doi.org/10.1126/scitranslmed.3008455]
[249]
Leuci, V.; Maione, F.; Rotolo, R.; Giraudo, E.; Sassi, F.; Migliardi, G.; Todorovic, M.; Gammaitoni, L.; Mesiano, G.; Giraudo, L.; Luraghi, P.; Leone, F.; Bussolino, F.; Grignani, G.; Aglietta, M.; Trusolino, L.; Bertotti, A.; Sangiolo, D. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity. J. Transl. Med., 2016, 14(1), 119.
[http://dx.doi.org/10.1186/s12967-016-0872-2] [PMID: 27149858]
[250]
Li, W.; Li, X.; Liu, S.; Yang, W.; Pan, F.; Yang, X.Y.; Du, B.; Qin, L.; Pan, Y. Gold nanoparticles attenuate metastasis by tumor vasculature normalization and epithelial-mesenchymal transition inhibition. Int. J. Nanomedicine, 2017, 12, 3509-3520.
[http://dx.doi.org/10.2147/IJN.S128802] [PMID: 28496326]
[251]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D. Popović Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[http://dx.doi.org/10.1038/nnano.2012.45] [PMID: 22484912]
[252]
Li, W.; Zhao, X.; Du, B.; Li, X.; Liu, S.; Yang, X.Y.; Ding, H.; Yang, W.; Pan, F.; Wu, X.; Qin, L.; Pan, Y. Gold nanoparticle-mediated targeted delivery of recombinant human endostatin normalizes tumour vasculature and improves cancer therapy. Sci. Rep., 2016, 6(1), 30619.
[http://dx.doi.org/10.1038/srep30619] [PMID: 27470938]
[253]
Dolor, A.; Szoka, F.C., Jr Digesting a path forward: The utility of collagenase tumor treatment for improved drug delivery. Mol. Pharm., 2018, 15(6), 2069-2083.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00319] [PMID: 29767984]
[254]
Kato, M.; Hattori, Y.; Kubo, M.; Maitani, Y. Collagenase-1 injection improved tumor distribution and gene expression of cationic lipoplex. Int. J. Pharm., 2012, 423(2), 428-434.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.015] [PMID: 22197775]
[255]
Zheng, X.; Goins, B.A.; Cameron, I.L.; Santoyo, C.; Bao, A.; Frohlich, V.C.; Fullerton, G.D. Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemother. Pharmacol., 2011, 67(1), 173-182.
[http://dx.doi.org/10.1007/s00280-010-1305-1] [PMID: 20306263]
[256]
Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P. Popović Z.; Huang, P.; Bawendi, M.G.; Boucher, Y.; Jain, R.K. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun., 2013, 4(1), 2516.
[http://dx.doi.org/10.1038/ncomms3516] [PMID: 24084631]
[257]
Villegas, M.R.; Baeza, A.; Vallet-Regí, M. Hybrid Collagenase Nanocapsules for Enhanced Nanocarrier Penetration in Tumoral Tissues. ACS Appl. Mater. Interfaces, 2015, 7(43), 24075-24081.
[http://dx.doi.org/10.1021/acsami.5b07116] [PMID: 26461206]
[258]
Wang, A.; Liang, D.; Liu, Y.; Qi, X. Roles of ligand and TPGS of micelles in regulating internalization, penetration and accumulation against sensitive or resistant tumor and therapy for multidrug resistant tumors. Biomaterials, 2015, 53, 160-172.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.077] [PMID: 25890716]
[259]
Scodeller, P. Hyaluronidase and other extracellular matrix degrading enzymes for cancer therapy: New uses and nano-formulations. J. Carcinog. Mutagen., 2014, 5(4), 1-5.
[http://dx.doi.org/10.4172/2157-2518.1000178]
[260]
Eikenes, L.; Tari, M.; Tufto, I.; Bruland, Ø.S.; de Lange Davies, C. Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx™) in human osteosarcoma xenografts. Br. J. Cancer, 2005, 93(1), 81-88.
[http://dx.doi.org/10.1038/sj.bjc.6602626] [PMID: 15942637]
[261]
Danhier, F.; Préat, V. Strategies to improve the EPR effect for the delivery of anticancer nanomedicines. Cancer Cell Microenviron., 2015, 2(3)
[262]
Bookbinder, L.H.; Hofer, A.; Haller, M.F.; Zepeda, M.L.; Keller, G.A.; Lim, J.E.; Edgington, T.S.; Shepard, H.M.; Patton, J.S.; Frost, G.I. A recombinant human enzyme for enhanced interstitia transport of therapeutics. J. Control. Release, 2006, 114(2), 230-241.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.027] [PMID: 16876899]
[263]
Gillies, R.J.; Raghunand, N.; Karczmar, G.S.; Bhujwalla, Z.M. MRI of the tumor microenvironment. J. Magn. Reson. Imaging, 2002, 16(4), 430-450.
[http://dx.doi.org/10.1002/jmri.10181] [PMID: 12353258]
[264]
Zhang, X.; Lin, Y.; Gillies, R.J. Tumor pH and its measurement. J. Nucl. Med., 2010, 51(8), 1167-1170.
[http://dx.doi.org/10.2967/jnumed.109.068981] [PMID: 20660380]
[265]
Fais, S.; De Milito, A.; You, H.; Qin, W. Targeting vacuolar H+-ATPases as a new strategy against cancer. Cancer Res., 2007, 67(22), 10627-10630.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1805] [PMID: 18006801]
[266]
De Milito, A.; Canese, R.; Marino, M.L.; Borghi, M.; Iero, M.; Villa, A.; Venturi, G.; Lozupone, F.; Iessi, E.; Logozzi, M.; Mina, P.D.; Santinami, M.; Rodolfo, M.; Podo, F.; Rivoltini, L.; Fais, S. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. Int. J. Cancer, 2010, 127(1), 207-219.
[http://dx.doi.org/10.1002/ijc.25009] [PMID: 19876915]
[267]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[268]
Du, J.Z.; Mao, C.Q.; Yuan, Y.Y.; Yang, X.Z.; Wang, J. Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol. Adv., 2014, 32(4), 789-803.
[http://dx.doi.org/10.1016/j.biotechadv.2013.08.002] [PMID: 23933109]
[269]
Li, J.; Han, Y.; Chen, Q.; Shi, H. ur Rehman, S.; Siddiq, M.; Ge, Z.; Liu, S. Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(13), 1813-1824.
[http://dx.doi.org/10.1039/C3TB21383H] [PMID: 32261518]
[270]
Li, H.J.; Du, J.Z.; Liu, J.; Du, X.J.; Shen, S.; Zhu, Y.H.; Wang, X.; Ye, X.; Nie, S.; Wang, J. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: Instantaneous size switching and improved tumor penetration. ACS Nano, 2016, 10(7), 6753-6761.
[http://dx.doi.org/10.1021/acsnano.6b02326] [PMID: 27244096]
[271]
Wang, T.; Wang, D.; Yu, H.; Wang, M.; Liu, J.; Feng, B.; Zhou, F.; Yin, Q.; Zhang, Z.; Huang, Y.; Li, Y. Intracellularly acid-switchable multifunctional micelles for combinational photo/chemotherapy of the drug-resistant tumor. ACS Nano, 2016, 10(3), 3496-3508.
[http://dx.doi.org/10.1021/acsnano.5b07706] [PMID: 26866752]
[272]
Zhang, Y.X.; Zhao, Y.Y.; Shen, J.; Sun, X.; Liu, Y.; Liu, H.; Wang, Y.; Wang, J. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett., 2019, 19(5), 2774-2783.
[http://dx.doi.org/10.1021/acs.nanolett.8b04296] [PMID: 30943039]
[273]
Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release, 2017, 250, 62-76.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.006] [PMID: 28167286]
[274]
Deng, C.; Xu, X.; Tashi, D.; Wu, Y.; Su, B.; Zhang, Q. Co-administration of biocompatible self-assembled polylactic acid-hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(19), 3163-3180.
[http://dx.doi.org/10.1039/C8TB00319J] [PMID: 32254351]
[275]
Liu, X.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y.P.; Chang, C.H.; Jiang, J.; Wu, N.; Donahue, T.; Wainberg, Z.; Nel, A.E.; Meng, H. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Invest., 2017, 127(5), 2007-2018.
[http://dx.doi.org/10.1172/JCI92284] [PMID: 28414297]
[276]
Wang, Y.; Xie, Y.; Li, J.; Peng, Z.H.; Sheinin, Y.; Zhou, J.; Oupický, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano, 2017, 11(2), 2227-2238.
[http://dx.doi.org/10.1021/acsnano.6b08731] [PMID: 28165223]
[277]
Wang, J.; Lu, Z.; Gao, Y.; Wientjes, M.G.; Au, J.L.S. Improving delivery and efficacy of nanomedicines in solid tumors: role of tumor priming. Nanomedicine, 2011, 6(9), 1605-1620.
[http://dx.doi.org/10.2217/nnm.11.141] [PMID: 22077464]
[278]
Yu, Q.; Qiu, Y.; Chen, X.; Wang, X.; Mei, L.; Wu, H.; Liu, K.; Liu, Y.; Li, M.; Zhang, Z.; He, Q. Chemotherapy priming of the pancreatic tumor microenvironment promotes delivery and anti-metastasis efficacy of intravenous low-molecular-weight heparin-coated lipid-siRNA complex. Theranostics, 2019, 9(2), 355-368.
[http://dx.doi.org/10.7150/thno.29137] [PMID: 30809279]
[279]
Lu, D.; Wientjes, M.G.; Lu, Z.; Au, J.L.S. Tumor priming enhances delivery and efficacy of nanomedicines. J. Pharmacol. Exp. Ther., 2007, 322(1), 80-88.
[http://dx.doi.org/10.1124/jpet.107.121632] [PMID: 17420296]
[280]
Melillo, G. Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev., 2007, 26(2), 341-352.
[http://dx.doi.org/10.1007/s10555-007-9059-x] [PMID: 17415529]
[281]
Semenza, G.L. Hypoxia-inducible factors: Mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci., 2012, 33(4), 207-214.
[http://dx.doi.org/10.1016/j.tips.2012.01.005] [PMID: 22398146]
[282]
Wilson, W.R.; Hay, M.P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer, 2011, 11(6), 393-410.
[http://dx.doi.org/10.1038/nrc3064] [PMID: 21606941]
[283]
Denny, W.A. The role of hypoxia-activated prodrugs in cancer therapy. Lancet Oncol., 2000, 1(1), 25-29.
[http://dx.doi.org/10.1016/S1470-2045(00)00006-1] [PMID: 11905684]
[284]
Astigiano, S.; Puglisi, A.; Mastracci, L.; Fais, S.; Barbieri, O. Systemic alkalinisation delays prostate cancer cell progression in TRAMP mice. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 363-368.
[http://dx.doi.org/10.1080/14756366.2016.1252760] [PMID: 28095711]
[285]
Azzarito, T.; Lugini, L.; Spugnini, E.P.; Canese, R.; Gugliotta, A.; Fidanza, S.; Fais, S. Effect of modified alkaline supplementation on syngenic melanoma growth in CB57/BL mice. PLoS One, 2016, 11(7), e0159763.
[http://dx.doi.org/10.1371/journal.pone.0159763] [PMID: 27447181]
[286]
Ibrahim Hashim, A.; Cornnell, H.H.; Coelho Ribeiro, M.L.; Abrahams, D.; Cunningham, J.; Lloyd, M.; Martinez, G.V.; Gatenby, R.A.; Gillies, R.J. Reduction of metastasis using a non-volatile buffer. Clin. Exp. Metastasis, 2011, 28(8), 841-849.
[http://dx.doi.org/10.1007/s10585-011-9415-7] [PMID: 21861189]
[287]
Ibrahim-Hashim, A.; Cornnell, H.H.; Abrahams, D.; Lloyd, M.; Bui, M.; Gillies, R.J.; Gatenby, R.A. Systemic buffers inhibit carcinogenesis in TRAMP mice. J. Urol., 2012, 188(2), 624-631.
[http://dx.doi.org/10.1016/j.juro.2012.03.113] [PMID: 22704445]
[288]
Ibrahim-Hashim, A.; Robertson-Tessi, M.; Enriquez-Navas, P.M.; Damaghi, M.; Balagurunathan, Y.; Wojtkowiak, J.W.; Russell, S.; Yoonseok, K.; Lloyd, M.C.; Bui, M.M.; Brown, J.S.; Anderson, A.R.A.; Gillies, R.J.; Gatenby, R.A. Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Res., 2017, 77(9), 2242-2254.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2844] [PMID: 28249898]
[289]
Mahoney, B.P.; Raghunand, N.; Baggett, B.; Gillies, R.J. Tumor acidity, ion trapping and chemotherapeutics. i. acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem. Pharmacol., 2003, 66(7), 1207-1218.
[http://dx.doi.org/10.1016/S0006-2952(03)00467-2]
[290]
Raghunand, N.; Mahoney, B.P.; Gillies, R.J. Tumor acidity, ion trapping and chemotherapeutics. Biochem. Pharmacol., 2003, 66(7), 1219-1229.
[http://dx.doi.org/10.1016/S0006-2952(03)00468-4] [PMID: 14505801]
[291]
Robey, I.F.; Baggett, B.K.; Kirkpatrick, N.D.; Roe, D.J.; Dosescu, J.; Sloane, B.F.; Hashim, A.I.; Morse, D.L.; Raghunand, N.; Gatenby, R.A.; Gillies, R.J. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res., 2009, 69(6), 2260-2268.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5575] [PMID: 19276390]
[292]
Silva, A.S.; Yunes, J.A.; Gillies, R.J.; Gatenby, R.A. The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Res., 2009, 69(6), 2677-2684.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2394] [PMID: 19276380]
[293]
Fong, C.W. Platinum based radiochemotherapies: Free radical mechanisms and radiotherapy sensitizers. Free Radic. Biol. Med., 2016, 99, 99-109.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.07.006] [PMID: 27417937]
[294]
Fong, C.W. Platinum anti-cancer drugs: Free radical mechanism of Pt-DNA adduct formation and anti-neoplastic effect. Free Radic. Biol. Med., 2016, 95, 216-229.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.03.006] [PMID: 27012421]
[295]
Kovacic, P. Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Med. Hypotheses, 2007, 69(3), 510-516.
[http://dx.doi.org/10.1016/j.mehy.2006.08.046] [PMID: 17383109]
[296]
Lu, Q.B.; Zhang, Q.R.; Ou, N.; Wang, C.R.; Warrington, J. In vitro and in vivo studies of non-platinum-based halogenated compounds as potent antitumor agents for natural targeted chemotherapy of cancers. EBio. Med., 2015, 2, 543-552.
[297]
Neesse, A.; Hessmann, E. Electron transfer-based compounds: A novel weapon in the cancer battlespace? EBioMedicine, 2015, 2(6), 484-485.
[http://dx.doi.org/10.1016/j.ebiom.2015.05.017300]
[298]
Lu, Q.B.; Lu, Q.B.; Kalantari, S.; Wang, C.R. Electron transfer reaction mechanism of cisplatin with DNA at the molecular level. Mol. Pharm., 2007, 4(4), 624-628.
[http://dx.doi.org/10.1021/mp070040a]
[299]
Sainz, R.M.; Lombo, F.; Mayo, J.C. Radical decisions in cancer: Redox control of cell growth and death. Cancers, 2012, 4(2), 442-474.
[http://dx.doi.org/10.3390/cancers4020442] [PMID: 24213319]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy