Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Influence of Zhuanggu Guanjie Pill on Seven Cytochrome P450 Enzymes Based on Probe Cocktail and Pharmacokinetics Approaches

Author(s): Yuan-Yuan Chai, Yun-Xia Xu, Zi-Yin Xia, An-Qin Li, Xin Huang, Lu-Yong Zhang* and Zhen-Zhou Jiang*

Volume 23, Issue 13, 2022

Published on: 26 December, 2022

Page: [1054 - 1066] Pages: 13

DOI: 10.2174/1389200224666221209154002

Price: $65

Abstract

Background: The use of herbal medicines has tremendously increased over the past few decades. Case reports and controlled clinical investigations of herbal-drug interactions have been reported. Since Cytochrome P450 (CYP) enzymes play an important role in drug interactions. The evaluation of the influence of herbal medicines on the activities of CYPs is beneficial to promote scientific and rational clinical use of herbal medicines.

Objective: Herein, we aimed to develop and validate a method to simultaneously quantify seven CYP cocktail probe drugs consisting of phenacetin (PNC), bupropion (BPP), losartan potassium (LK), omeprazole (OMP), dextromethorphan (DM), chlorzoxazone (CZZ) and midazolam (MDZ) and their respective metabolites in a single acquisition run and use this method to evaluate the influence of Zhuanggu Guanjie Pill (ZGGJP) on seven CYPs.

Methods: A cost-effective and simple UHPLC-(±)ESI-MS/MS method for simultaneous determination of seven probe drugs and metabolites in rat plasma was developed and validated. Male and female rats were randomly divided into three groups and treated with 1.2 g/kg/d ZGGJP, 5 g/kg/d ZGGJP and 0.5% CMC-Na for 14 consecutive days. After 24 h of the last administration, all rats were administrated orally with probe drugs. The influence of ZGGJP on the CYPs was carried out by comparing the metabolic ratio (Cmax, AUC0-t) of metabolites/probe drugs in rats.

Results: The calibration curves were linear, with correlation coefficient > 0.99 for seven probe drugs and their corresponding metabolites. Intra- and inter-day precisions were not greater than 15% RSD and the accuracies were within ± 15% of nominal concentrations. The ZGGJP showed significant inductive effect on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats.

Conclusion: ZGGJP had inductive effects on CYP1A2, CYP2B6, CYP2C9 and CYP3A in male and female rats.

Graphical Abstract

[1]
Petsalo, A.; Turpeinen, M.; Pelkonen, O.; Tolonen, A. Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography–tandem mass spectrometry utilizing sub 2μm particle size column. J. Chromatogr. A, 2008, 1215(1-2), 107-115.
[http://dx.doi.org/10.1016/j.chroma.2008.10.122] [PMID: 19019380]
[2]
Lee, J.T.; Pao, L.H.; Hsiong, C.H.; Huang, P.W.; Shih, T.Y.; Yoa-Pu Hu, O. Validated liquid chromatography–tandem mass spectrometry method for determination of totally nine probe metabolites of cytochrome P450 enzymes and UDP-glucuronosyltransferases. Talanta, 2013, 106, 220-228.
[http://dx.doi.org/10.1016/j.talanta.2012.12.023] [PMID: 23598120]
[3]
Varshney, E.; Tandon, M.; Saha, N.; Ali, S. In vivo phenotyping of cytochrome 450 isoforms involved in the metabolism of anti-HIV and anti-tubercular drugs in human using cocktail approach: An LC–MS/MS analysis. J. Pharm. Biomed. Anal., 2019, 164, 698-705.
[http://dx.doi.org/10.1016/j.jpba.2018.11.026] [PMID: 30472588]
[4]
Cusinato, D.A.C.; Filgueira, G.C.O.; Rocha, A.; Cintra, M.A.C.T.; Lanchote, V.L.; Coelho, E.B. LC-MS/MS analysis of the plasma concentrations of a cocktail of 5 cytochrome P450 and P-glycoprotein probe substrates and their metabolites using subtherapeutic doses. J. Pharm. Biomed. Anal., 2019, 164, 430-441.
[http://dx.doi.org/10.1016/j.jpba.2018.10.029] [PMID: 30445356]
[5]
Williams, D.; Tao, X.; Zhu, L.; Stonier, M.; Lutz, J.D.; Masson, E.; Zhang, S.; Ganguly, B.; Tzogas, Z.; Lubin, S.; Murthy, B. Use of a cocktail probe to assess potential drug interactions with cytochrome P450 after administration of belatacept, a costimulatory immunomodulator. Br. J. Clin. Pharmacol., 2017, 83(2), 370-380.
[http://dx.doi.org/10.1111/bcp.13097] [PMID: 27552251]
[6]
Puris, E.; Pasanen, M.; Gynther, M.; Häkkinen, M.R.; Pihlajamäki, J.; Keränen, T.; Honkakoski, P.; Raunio, H.; Petsalo, A. A liquid chromatography-tandem mass spectrometry analysis of nine cytochrome P450 probe drugs and their corresponding metabolites in human serum and urine. Anal. Bioanal. Chem., 2017, 409(1), 251-268.
[http://dx.doi.org/10.1007/s00216-016-9994-x] [PMID: 27734142]
[7]
Chai, L.; Zhang, Y.; Zhang, P.; Bi, Y.; Yuan, X.; Li, Y.; Wang, Y.; Song, L.; Sun, L.; Zhou, K. The antiosteoporosis effects of Zhuanggu Guanjie Pill in vitro and in vivo. BioMed Res. Int., 2018, 2018, 1-11.
[http://dx.doi.org/10.1155/2018/9075318] [PMID: 30345311]
[8]
Liu, B.; Fan, D.; Sun, W.; Zheng, K.; Pang, G.; He, X.; Xiao, C.; Lu, C. Zhuang Gu Guan Jie Wan: Reasonable application can alleviate the liver injury for osteoarthritis treatment. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/6716529] [PMID: 30538762]
[9]
Qin, C.; Zhang, S.; Wang, Z. Clinical observation of treatment of knee osteoarthritis by internal and external washing with traditional Chinese medicine. J. Practical Trad. Chinese Med., 2015, 31(5), 382.
[10]
Chai, Y.; Xu, Y.; Xia, Z.; Huang, X.; Zhang, L.; Jiang, Z. Study on the effects of Zhuanggu Guanjie Pill, a modern Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. J. Ethnopharmacol., 2021, 281, 114521.
[http://dx.doi.org/10.1016/j.jep.2021.114521] [PMID: 34390794]
[11]
Ramakrishna, R.; Bhateria, M.; Singh, R.; Bhatta, R.S. Evaluation of the impact of 16-dehydropregnenolone on the activity and expression of rat hepatic cytochrome P450 enzymes. J. Steroid Biochem. Mol. Biol., 2016, 163, 183-192.
[http://dx.doi.org/10.1016/j.jsbmb.2016.05.018] [PMID: 27224941]
[12]
Lu, Y.Y.; Du, Z.Y.; Li, Y.; Wang, J.L.; Zhao, M.B.; Jiang, Y.; Guo, X.Y.; Tu, P.F. Effects of Baoyuan decoction, a traditional Chinese medicine formula, on the activities and mRNA expression of seven CYP isozymes in rats. J. Ethnopharmacol., 2018, 225, 327-335.
[http://dx.doi.org/10.1016/j.jep.2018.07.023] [PMID: 30048731]
[13]
FDA. Food and drug administration, bioanalytical method validation guidance for industry., 2018. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
[14]
Taylor, P.J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin. Biochem., 2005, 38(4), 328-334.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.11.007] [PMID: 15766734]
[15]
Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and comprehensive strategy for reducing matrix effects in LC/MS/MS analyses. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 22-34.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.030] [PMID: 17236825]
[16]
Eagles, S.K.; Wang, X.; Gross, A.S.; McLachlan, A.J. An improved cytochrome P450 phenotyping cocktail with a simplified and highly sensitive UHPLC-MS/MS assay in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1140, 122013.
[http://dx.doi.org/10.1016/j.jchromb.2020.122013] [PMID: 32050158]
[17]
He, F.; Jiang, T.; Hong, S.; Wang, L.; Chen, W.; Liu, L. Effect of You-Gui Yin on the activities of seven cytochrome P450 isozymes in rats. Evid. Based Complement. Alternat. Med., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9784946] [PMID: 32508959]
[18]
Wang, Z.; Sun, W.; Lin, Z.F.; Sun, R.; Huang, C.K.; Ye, W.J.; Dong, Y.Y.; Zhang, X.D.; Chen, R.J.A. UHPLC-MS/MS method coupled with liquid-liquid extraction for the quantitation of phenacetin, omeprazole, metoprolol, midazolam and their metabolites in rat plasma and its application to the study of four CYP450 activities. J. Pharm. Biomed. Anal., 2019, 163, 204-210.
[http://dx.doi.org/10.1016/j.jpba.2018.10.012] [PMID: 30317077]
[19]
Trivedi, V.; Shah, P.A.; Shrivastav, P.S.; Sanyal, M. Optimization of chromatography to overcome matrix effect for reliable estimation of four small molecular drugs from biological fluids using LC–MS/MS. Biomed. Chromatogr., 2020, 34(3), e4777.
[http://dx.doi.org/10.1002/bmc.4777] [PMID: 31826316]
[20]
Stahnke, H.; Reemtsma, T.; Alder, L. Compensation of matrix effects by postcolumn infusion of a monitor substance in multiresidue analysis with LC-MS/MS. Anal. Chem., 2009, 81(6), 2185-2192.
[http://dx.doi.org/10.1021/ac802362s] [PMID: 19220028]
[21]
Bonfiglio, R.; King, R.C.; Olah, T.V.; Merkle, K. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun. Mass Spectrom., 1999, 13(12), 1175-1185.
[http://dx.doi.org/10.1002/(SICI)1097-0231(19990630)13:12<1175::AID-RCM639>3.0.CO;2-0] [PMID: 10407294]
[22]
Wang, S.; Cyronak, M.; Yang, E. Does a stable isotopically labeled internal standard always correct analyte response? J. Pharm. Biomed. Anal., 2007, 43(2), 701-707.
[http://dx.doi.org/10.1016/j.jpba.2006.08.010] [PMID: 16959461]
[23]
Skillman, B.; Kerrigan, S. Identification of suvorexant in blood using LC-MS-MS: important considerations for matrix effects and quantitative interferences in targeted assays. J. Anal. Toxicol., 2020, 44(3), 245-255.
[http://dx.doi.org/10.1093/jat/bkz083] [PMID: 31788700]
[24]
Uchida, S.; Tanaka, S.; Namiki, N. Simultaneous and comprehensive in vivo analysis of cytochrome P450 activity by using a cocktail approach in rats. Biopharm. Drug Dispos., 2014, 35(4), 228-236.
[http://dx.doi.org/10.1002/bdd.1888] [PMID: 24395703]
[25]
Naritomi, Y.; Sanoh, S.; Ohta, S. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery. Drug Metab. Pharmacokinet., 2018, 33(1), 31-39.
[http://dx.doi.org/10.1016/j.dmpk.2017.11.001] [PMID: 29183653]
[26]
Taskar, K.S.; Pilla Reddy, V.; Burt, H.; Posada, M.M.; Varma, M.; Zheng, M.; Ullah, M.; Emami Riedmaier, A.; Umehara, K.; Snoeys, J.; Nakakariya, M.; Chu, X.; Beneton, M.; Chen, Y.; Huth, F.; Narayanan, R.; Mukherjee, D.; Dixit, V.; Sugiyama, Y.; Neuhoff, S. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations. Clin. Pharmacol. Ther., 2020, 107(5), 1082-1115.
[http://dx.doi.org/10.1002/cpt.1693] [PMID: 31628859]
[27]
Jones, H.M.; Gardner, I.B.; Watson, K.J. Modelling and PBPK simulation in drug discovery. AAPS J., 2009, 11(1), 155-166.
[http://dx.doi.org/10.1208/s12248-009-9088-1] [PMID: 19280352]
[28]
Dong, Z.; Dai, H.; Feng, Z.; Liu, W.; Gao, Y.; Liu, F.; Zhang, Z.; Zhang, N.; Dong, X.; Zhao, Q.; Zhou, X.; Du, J.; Liu, B. Mechanism of herbal medicine on hypertensive nephropathy. Mol. Med. Rep., 2021, 23(4), 234.
[http://dx.doi.org/10.3892/mmr.2021.11873] [PMID: 33537809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy