Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Graphene Used for Energy Conversion and Storage by Electrochemistry: A Brief Global Overview

Author(s): Miao Liu, Yexin Dai, Bushra Maryam, Jinran Cui and Xianhua Liu*

Volume 20, Issue 1, 2024

Published on: 02 February, 2023

Page: [2 - 17] Pages: 16

DOI: 10.2174/1573413719666221230123553

open access plus

Abstract

Background: Graphene and its derivatives have been widely used in modern electrochemical- related technologies due to their versatile structure, tunable conductivity, and large specific surface area. However, there is a need to provide the latest global literature overview in this field.

Methods: In this study, we reported a literature overview of current developments in the applications of graphene in energy conversion and storage by electrochemistry. In this overview, 1285 pieces of literature were retrieved and analyzed based on the web of science core database using bibliometric tools.

Results: The major contributing countries are China and the United States. The most widespread fields are the development of novel nanomaterials and catalysts and approaches to improve the electrocatalytic performance of batteries and supercapacitors. The hotspots of current research include sodium-ion batteries, lithium-sulfur batteries, sulfur-doped electrodes, and the study of high-efficiency electrocatalysts for oxygen and evolution reactions.

Conclusion: With the continuous development in this field, scientists are committed to continuously improving the performance of energy equipment. The applications of graphene-based materials for electrochemical energy conversion and storage are briefly summarized. The challenges and prospects for future research in this field are also discussed.

Graphical Abstract

[1]
Karthikeyan, C.; Jenita, R.G.; Ng, F.L.; Periasamy, V.; Pappathi, M.; Jothi Rajan, M.; Al-Sehemi, A.G.; Pannipara, M.; Phang, S.M.; Abdul, A.M.; Gnana, K.G. 3D flower-like FeWO4/CeO2 hierarchical architectures on rGO for durable and high-performance microalgae biophotovoltaic fuel cells. Appl. Biochem. Biotechnol., 2020, 192(3), 751-769.
[http://dx.doi.org/10.1007/s12010-020-03352-4] [PMID: 32557232]
[2]
Senthilkumar, N.; Aziz, M.A.; Pannipara, M.; Alphonsa, A.T.; Al-Sehemi, A.G.; Balasubramani, A.; Gnana, K.G. Waste paper derived three-dimensional carbon aerogel integrated with ceria/nitrogen-doped reduced graphene oxide as freestanding anode for high performance and durable microbial fuel cells. Bioprocess Biosyst. Eng., 2020, 43(1), 97-109.
[http://dx.doi.org/10.1007/s00449-019-02208-4] [PMID: 31664507]
[3]
Shaheen, S.S.; Abu Nayem, S.M.; Sultana, N.; Saleh, A.J.; Abdul Aziz, M. Preparation of sulfur-doped carbon for supercapacitor applications: A review. ChemSusChem, 2022, 15(1), e202101282.
[http://dx.doi.org/10.1002/cssc.202101282] [PMID: 34747127]
[4]
Zhang, Y.; Manaig, D.; Freschi, D.J.; Liu, J. Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries. Energy Storage Mater., 2021, 40, 166-188.
[http://dx.doi.org/10.1016/j.ensm.2021.05.011]
[5]
Bhojane, P. Recent advances and fundamentals of Pseudocapacitors: Materials, mechanism, and its understanding. J. Energy Storage, 2022, 45, 103654.
[http://dx.doi.org/10.1016/j.est.2021.103654]
[6]
Manoharan, S.; Pazhamalai, P.; Mariappan, V.K.; Murugesan, K.; Subramanian, S.; Krishnamoorthy, K.; Kim, S.J. Proton conducting solid electrolyte-piezoelectric PVDF hybrids: Novel bifunctional separator for self-charging supercapacitor power cell. Nano Energy, 2021, 83, 105753.
[http://dx.doi.org/10.1016/j.nanoen.2021.105753]
[7]
He, H.; Fu, Y.; Zhao, T.; Gao, X.; Xing, L.; Zhang, Y.; Xue, X. All-solid-state flexible self-charging power cell basing on piezo-electrolyte for harvesting/storing body-motion energy and powering wearable electronics. Nano Energy, 2017, 39, 590-600.
[http://dx.doi.org/10.1016/j.nanoen.2017.07.033]
[8]
Fu, X.; Xia, Z.; Sun, R.; An, H.; Qi, F.; Wang, S.; Liu, Q.; Sun, G. A self-charging hybrid electric power device with high specific energy and power. ACS Energy Lett., 2018, 3(10), 2425-2432.
[http://dx.doi.org/10.1021/acsenergylett.8b01331]
[9]
Liu, R.; Takakuwa, M.; Li, A.; Inoue, D.; Hashizume, D.; Yu, K.; Umezu, S.; Fukuda, K.; Someya, T. An efficient ultra-flexible photo-charging system integrating organic photovoltaics and supercapacitors. Adv. Energy Mater., 2020, 10(20), 2000523.
[http://dx.doi.org/10.1002/aenm.202000523]
[10]
Muralidharan, N.; Li, M.; Carter, R.E.; Galioto, N.; Pint, C.L. Ultralow frequency electrochemical-mechanical strain energy harvester using 2D black phosphorus nanosheets. ACS Energy Lett., 2017, 2(8), 1797-1803.
[http://dx.doi.org/10.1021/acsenergylett.7b00478]
[11]
Ibanez, J.G.; Rincón, M.E.; Gutierrez-Granados, S.; Chahma, M.; Jaramillo-Quintero, O.A.; Frontana-Uribe, B.A. Conducting polymers in the fields of energy, environmental remediation, and chemical-chiral sensors. Chem. Rev., 2018, 118(9), 4731-4816.
[http://dx.doi.org/10.1021/acs.chemrev.7b00482] [PMID: 29630346]
[12]
Yakovenko, O.; Lazarenko, O.; Matzui, L.; Vovchenko, L.; Borovoy, M.; Tesel’ko, P.; Lozitsky, O.; Astapovich, K.; Trukhanov, A.; Trukhanov, S. Effect of Ga content on magnetic properties of BaFe12-xGaxO19/epoxy composites. J. Mater. Sci., 2020, 55(22), 9385-9395.
[http://dx.doi.org/10.1007/s10853-020-04661-z]
[13]
Darwish, M.A.; Zubar, T.I.; Kanafyev, O.D.; Zhou, D.; Trukhanova, E.L.; Trukhanov, S.V.; Trukhanov, A.V.; Henaish, A.M. Combined effect of microstructure, surface energy, and adhesion force on the friction of PVA/Ferrite spinel nanocomposites. Nanomaterials, 2022, 12(12), 1998.
[http://dx.doi.org/10.3390/nano12121998] [PMID: 35745337]
[14]
Trukhanov, A.V.; Turchenko, V.O.; Bobrikov, I.A.; Trukhanov, S.V.; Kazakevich, I.S.; Balagurov, A.M. Crystal structure and magnetic properties of the BaFe12−Al O19 (x=0.1-1.2) solid solutions. J. Magn. Magn. Mater., 2015, 393, 253-259.
[http://dx.doi.org/10.1016/j.jmmm.2015.05.076]
[15]
Trukhanov, S.V.; Trukhanov, A.V.; Kostishyn, V.G.; Panina, L.V.; Turchenko, V.A.; Kazakevich, I.S.; Trukhanov, A.V.; Trukhanova, E.L.; Natarov, V.O.; Balagurov, A.M. Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater., 2017, 426, 554-562.
[http://dx.doi.org/10.1016/j.jmmm.2016.10.151]
[16]
Mohan, V.B.; Lau, K.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos., Part B Eng., 2018, 142, 200-220.
[http://dx.doi.org/10.1016/j.compositesb.2018.01.013]
[17]
Siwal, S.S.; Zhang, Q.; Devi, N.; Thakur, V.K. Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymers, 2020, 12(3), 505.
[http://dx.doi.org/10.3390/polym12030505] [PMID: 32110927]
[18]
Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696), 666-669.
[http://dx.doi.org/10.1126/science.1102896] [PMID: 15499015]
[19]
Razaq, A.; Bibi, F.; Zheng, X.; Papadakis, R.; Jafri, S.H.M.; Li, H. Review on graphene, graphene oxide, reduced graphene oxide-based flexible composites: From fabrication to applications. Materials (Basel), 2022, 15(3), 1012.
[http://dx.doi.org/10.3390/ma15031012] [PMID: 35160958]
[20]
Nemati, F.; Rezaie, M.; Tabesh, H.; Eid, K.; Xu, G.; Ganjali, M.R.; Hosseini, M.; Karaman, C.; Erk, N.; Show, P.L.; Zare, N.; Karimi-Maleh, H. Cerium functionalized graphene nano-structures and their applications - A review. Environ. Res., 2022, 208, 112685.
[http://dx.doi.org/10.1016/j.envres.2022.112685] [PMID: 34999024]
[21]
Korkmaz, S. Kariper, İ.A. Graphene and graphene oxide based aerogels: Synthesis, characteristics and supercapacitor applications. J. Energy Storage, 2020, 27, 101038.
[http://dx.doi.org/10.1016/j.est.2019.101038]
[22]
Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. What is the choice for supercapacitors: Graphene or graphene oxide? Energy Environ. Sci., 2011, 4(8), 2826-2830.
[http://dx.doi.org/10.1039/c1ee01198g]
[23]
Bianco, A.; Cheng, H.M.; Enoki, T.; Gogotsi, Y.; Hurt, R.H.; Koratkar, N.; Kyotani, T.; Monthioux, M.; Park, C.R.; Tascon, J.M.D.; Zhang, J. All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. Carbon, 2013, 65, 1-6.
[http://dx.doi.org/10.1016/j.carbon.2013.08.038]
[24]
Habib, S.A.; Saafan, S.A.; Meaz, T.M.; Darwish, M.A.; Zhou, D.; Khandaker, M.U.; Islam, M.A.; Mohafez, H.; Trukhanov, A.V.; Trukhanov, S.V.; Omar, M.K. Structural, magnetic, and AC measurements of nanoferrites/graphene composites. Nanomaterials, 2022, 12(6), 931.
[http://dx.doi.org/10.3390/nano12060931] [PMID: 35335743]
[25]
Trukhanov, A.V.; Tishkevich, D.I.; Podgornaya, S.V.; Kaniukov, E.; Darwish, M.A.; Zubar, T.I.; Timofeev, A.V.; Trukhanova, E.L.; Kostishin, V.G.; Trukhanov, S.V. Impact of the nanocarbon on magnetic and electrodynamic properties of the ferrite/polymer composites. Nanomaterials, 2022, 12(5), 868.
[http://dx.doi.org/10.3390/nano12050868] [PMID: 35269356]
[26]
Ramos-Rodríguez, A.R.; Ruíz-Navarro, J. Changes in the intellectual structure of strategic management research: A bibliometric study of the strategic management journal, 1980-2000. Strateg. Manage. J., 2004, 25(10), 981-1004.
[http://dx.doi.org/10.1002/smj.397]
[27]
Dai, Y.X.; Wang, Z.; Li, Y.; Wang, J.; Ren, J.; Zhang, P.P.; Liu, X.H. Genome engineering and synthetic biology for biofuels: A bibliometric analysis. Biotechnol. Appl. Biochem., 2020, 67(6), 824-834.
[http://dx.doi.org/10.1002/bab.2069]
[28]
Singh, P.; Borthakur, A. A review on biodegradation and photocatalytic degradation of organic pollutants: A bibliometric and comparative analysis. J. Clean. Prod., 2018, 196, 1669-1680.
[http://dx.doi.org/10.1016/j.jclepro.2018.05.289]
[29]
Tao, J.; Qiu, D.; Yang, F.; Duan, Z. A bibliometric analysis of human reliability research. J. Clean. Prod., 2020, 260, 121041.
[http://dx.doi.org/10.1016/j.jclepro.2020.121041]
[30]
Su, Y.; Yu, Y.; Zhang, N. Carbon emissions and environmental management based on big data and streaming data: A bibliometric analysis. Sci. Total Environ., 2020, 733, 138984.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138984] [PMID: 32446050]
[31]
van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 2010, 84(2), 523-538.
[http://dx.doi.org/10.1007/s11192-009-0146-3] [PMID: 20585380]
[32]
Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol., 2006, 57(3), 359-377.
[http://dx.doi.org/10.1002/asi.20317]
[33]
Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opin. Biol. Ther., 2012, 12(5), 593-608.
[http://dx.doi.org/10.1517/14712598.2012.674507] [PMID: 22443895]
[34]
Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett., 2008, 8(3), 902-907.
[http://dx.doi.org/10.1021/nl0731872] [PMID: 18284217]
[35]
Allen, M.J.; Tung, V.C.; Kaner, R.B. Honeycomb carbon: A review of graphene. Chem. Rev., 2010, 110(1), 132-145.
[http://dx.doi.org/10.1021/cr900070d] [PMID: 19610631]
[36]
Viculis, L.M.; Mack, J.J.; Kaner, R.B. A chemical route to carbon nanoscrolls. Science, 2003, 299(5611), 1361.
[http://dx.doi.org/10.1126/science.1078842] [PMID: 12610297]
[37]
Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nat. Nanotechnol., 2010, 5(5), 321-325.
[http://dx.doi.org/10.1038/nnano.2010.54] [PMID: 20364133]
[38]
Hernandez, Y.; Lotya, M.; Rickard, D.; Bergin, S.D.; Coleman, J.N. Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir, 2010, 26(5), 3208-3213.
[http://dx.doi.org/10.1021/la903188a] [PMID: 19883090]
[39]
Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of graphene in energy storage device - A review. Renew. Sustain. Energy Rev., 2021, 135, 110026.
[http://dx.doi.org/10.1016/j.rser.2020.110026]
[40]
Zubar, T.; Fedosyuk, V.; Tishkevich, D.; Kanafyev, O.; Astapovich, K.; Kozlovskiy, A.; Zdorovets, M.; Vinnik, D.; Gudkova, S.; Kaniukov, E.; Sombra, A.S.B.; Zhou, D.; Jotania, R.B.; Singh, C.; Trukhanov, S.; Trukhanov, A. The effect of heat treatment on the microstructure and mechanical properties of 2D nanostructured Au/NiFe system. Nanomaterials), 2020, 10(6), 1077.
[http://dx.doi.org/10.3390/nano10061077] [PMID: 32486422]
[41]
Zubar, T.I.; Fedosyuk, V.M.; Trukhanov, S.V.; Tishkevich, D.I.; Michels, D.; Lyakhov, D.; Trukhanov, A.V. Method of surface energy investigation by lateral AFM: Application to control growth mechanism of nanostructured NiFe films. Sci. Rep.UK, 2020, 10, 14411.
[http://dx.doi.org/10.1038/s41598-020-71416-w]
[42]
Almessiere, M.A.; Trukhanov, A.V.; Slimani, Y.; You, K.Y.; Trukhanov, S.V.; Trukhanova, E.L.; Esa, F.; Sadaqat, A.; Chaudhary, K.; Zdorovets, M.; Baykal, A. Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials, 2019, 9(2), 202.
[http://dx.doi.org/10.3390/nano9020202] [PMID: 30720737]
[43]
Almessiere, M.A.; Algarou, N.A.; Slimani, Y.; Sadaqat, A.; Baykal, A.; Manikandan, A.; Trukhanov, S.V.; Trukhanov, A.V.; Ercan, I. Investigation of exchange coupling and microwave properties of hard/soft (SrNi0.02Zr0.01Fe11.96O19)/(CoFe2O4)x nanocomposites. Mater. Today Nano, 2022, 18, 100186.
[http://dx.doi.org/10.1016/j.mtnano.2022.100186]
[44]
Sun, L.; Zhou, H.; Li, L.; Yao, Y.; Qu, H.; Zhang, C.; Liu, S.; Zhou, Y. Double soft-template synthesis of nitrogen/sulfur-codoped hierarchically porous carbon materials derived from protic ionic liquid for supercapacitor. ACS Appl. Mater. Interfaces, 2017, 9(31), 26088-26095.
[http://dx.doi.org/10.1021/acsami.7b07877] [PMID: 28715170]
[45]
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Maegawa, K.; Tan, W.K.; Kawamura, G.; Kar, K.K.; Matsuda, A. Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today, 2020, 39, 47-65.
[http://dx.doi.org/10.1016/j.mattod.2020.04.010]
[46]
Yan, J.; Tjandra, R.; Fang, H.; Wang, L.X.; Yu, A. Boron acid catalyzed synthesis porous graphene sponge for high-performance electrochemical capacitive storage. Diamond Related Materials, 2018, 89, 114-121.
[http://dx.doi.org/10.1016/j.diamond.2018.08.016]
[47]
Ge, S.; He, J.; Ma, C.; Liu, J.; Xi, F.; Dong, X. One-step synthesis of boron-doped graphene quantum dots for fluorescent sensors and biosensor. Talanta, 2019, 199, 581-589.
[http://dx.doi.org/10.1016/j.talanta.2019.02.098] [PMID: 30952301]
[48]
Inagaki, M.; Toyoda, M.; Soneda, Y.; Morishita, T. Nitrogen-doped carbon materials. Carbon, 2018, 132, 104-140.
[http://dx.doi.org/10.1016/j.carbon.2018.02.024]
[49]
Zou, P.; Lin, Z.; Fan, M.; Wang, F.; Liu, Y.; Xiong, X. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl. Surf. Sci., 2020, 504, 144506.
[http://dx.doi.org/10.1016/j.apsusc.2019.144506]
[50]
Liu, Y.; Wei, H.; Zhai, X.; Wang, F.; Ren, X.; Xiong, Y.; Akiyoshi, O.; Pan, K.; Ren, F.; Wei, S. Graphene-based interlayer for high-performance lithium-sulfur batteries: A review. Mater. Des., 2021, 211, 110171.
[http://dx.doi.org/10.1016/j.matdes.2021.110171]
[51]
Chen, J.; Zhang, H.; Yang, H.; Lei, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Towards practical Li-S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Mater., 2020, 27, 307-315.
[http://dx.doi.org/10.1016/j.ensm.2020.02.013]
[52]
Wang, Z.; Xu, X.; Ji, S.; Liu, Z.; Zhang, D.; Shen, J.; Liu, J. Recent progress of flexible sulfur cathode based on carbon host for lithium-sulfur batteries. J. Mater. Sci. Technol., 2020, 55, 56-72.
[http://dx.doi.org/10.1016/j.jmst.2019.09.037]
[53]
Zhou, G.; Yin, L.C.; Wang, D.W.; Li, L.; Pei, S.; Gentle, I.R.; Li, F.; Cheng, H.M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano, 2013, 7(6), 5367-5375.
[http://dx.doi.org/10.1021/nn401228t] [PMID: 23672616]
[54]
Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q.; Wang, X.; Niu, Z.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater., 2016, 28(43), 9629-9636.
[http://dx.doi.org/10.1002/adma.201602262] [PMID: 27647294]
[55]
Yang, H.; Guo, C.; Chen, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem. Int. Ed., 2019, 58(3), 791-795.
[http://dx.doi.org/10.1002/anie.201811291] [PMID: 30426649]
[56]
Urbonaite, S.; Poux, T.; Novák, P. Progress towards commercially viable Li-S battery cells. Adv. Energy Mater., 2015, 5(16), 1500118.
[http://dx.doi.org/10.1002/aenm.201500118]
[57]
Chen, L.; Li, Y.; Li, S.P.; Fan, L.Z.; Nan, C.W.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018, 46, 176-184.
[http://dx.doi.org/10.1016/j.nanoen.2017.12.037]
[58]
Fang, R.; Chen, K.; Yin, L.; Sun, Z.; Li, F.; Cheng, H.M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater., 2019, 31(9), 1800863.
[http://dx.doi.org/10.1002/adma.201800863] [PMID: 29984484]
[59]
Cheng, D.D.; Fan, T.X. Synergetic pore structure optimization and nitrogen doping of 3D porous graphene for high performance lithium sulfur battery. Carbon, 2018, 143, 256.
[60]
Sun, Z.; Jiang, Y.; Cong, Z.; Zhao, B.; Shen, F.; Han, X. Ultra-fast and facile preparation of uniform sulfur/graphene composites with microwave for lithium-sulfur batteries. Nanotechnology, 2021, 32(28), 285401.
[http://dx.doi.org/10.1088/1361-6528/abf4a8] [PMID: 33799310]
[61]
Xie, X.; Zhao, M.Q.; Anasori, B.; Maleski, K.; Ren, C.E.; Li, J.; Byles, B.W.; Pomerantseva, E.; Wang, G.; Gogotsi, Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26, 513-523.
[http://dx.doi.org/10.1016/j.nanoen.2016.06.005]
[62]
Bao, W.; Xie, X.; Xu, J.; Guo, X.; Song, J.; Wu, W.; Su, D.; Wang, G. Confined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chemistry, 2017, 23(51), 12613-12619.
[http://dx.doi.org/10.1002/chem.201702387] [PMID: 28683155]
[63]
Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K.B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci., 2012, 5(3), 5884-5901.
[http://dx.doi.org/10.1039/c2ee02781j]
[64]
Lu, Y.; Lu, Y.; Niu, Z.; Chen, J. Graphene-based nanomaterials for sodium-ion batteries. Adv. Energy Mater., 2018, 8(17), 1702469.
[http://dx.doi.org/10.1002/aenm.201702469]
[65]
Kim, H.; Kim, J.C.; Bianchini, M.; Seo, D.H.; Rodriguez-Garcia, J.; Ceder, G. Recent progress and perspective in electrode materials for K-ion batteries. Adv. Energy Mater., 2018, 8(9), 1702384.
[http://dx.doi.org/10.1002/aenm.201702384]
[66]
Aurbach, D.; Gofer, Y.; Lu, Z.; Schechter, A.; Chusid, O.; Gizbar, H.; Cohen, Y.; Ashkenazi, V.; Moshkovich, M.; Turgeman, R. A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J. Power Sources, 2001, 97-98, 28-32.
[http://dx.doi.org/10.1016/S0378-7753(01)00585-7]
[67]
Song, M.; Tan, H.; Chao, D.; Fan, H.J. Recent advances in Zn-ion batteries. Adv. Funct. Mater., 2018, 28(41), 1802564.
[http://dx.doi.org/10.1002/adfm.201802564]
[68]
Xu, H.; Chen, H.; Gao, C. Advanced graphene materials for sodium/potassium/aluminum-ion batteries. ACS Mater. Lett., 2021, 3(8), 1221-1237.
[http://dx.doi.org/10.1021/acsmaterialslett.1c00280]
[69]
Ma, Y.; Guo, Q.; Yang, M.; Wang, Y.; Chen, T.; Chen, Q.; Zhu, X.; Xia, Q.; Li, S.; Xia, H. Highly doped graphene with multi-dopants for high-capacity and ultrastable sodium-ion batteries. Energy Storage Mater., 2018, 13, 134-141.
[http://dx.doi.org/10.1016/j.ensm.2018.01.005]
[70]
Lee, D.; Seo, J. Layer-by-layer-stacked graphene/graphene-island supercapacitor. AIP Adv., 2020, 10(5), 055202.
[http://dx.doi.org/10.1063/5.0007887]
[71]
Lin, S.; Tang, J.; Zhang, K.; Suzuki, T.S.; Wei, Q.; Mukaida, M.; Zhang, Y.; Mamiya, H.; Yu, X.; Qin, L.C. High-rate supercapacitor using magnetically aligned graphene. J. Power Sources, 2021, 482, 228995.
[http://dx.doi.org/10.1016/j.jpowsour.2020.228995]
[72]
Mochizuki, D.; Tanaka, R.; Makino, S.; Ayato, Y.; Sugimoto, W. Vertically aligned reduced graphite oxide nanosheet film and its application in a high-speed charge/discharge electrochemical capacitor. ACS Appl. Energy Mater., 2019, 2(2), 1033-1039.
[http://dx.doi.org/10.1021/acsaem.8b01478]
[73]
Wang, H.; Zhang, K.; Song, Y.; Qiu, J.; Wu, J.; Yan, L. MnCo2S4 nanoparticles anchored to N and S-codoped 3D graphene as a prominent electrode for asymmetric supercapacitors. Carbon, 2019, 146, 420-429.
[http://dx.doi.org/10.1016/j.carbon.2019.02.035]
[74]
Wu, J.; Shi, X.; Song, W.; Ren, H.; Tan, C.; Tang, S.; Meng, X. Hierarchically porous hexagonal microsheets constructed by well-interwoven MCo2S4 (M = Ni, Fe, Zn) nanotube networks via two-step anion-exchange for high-performance asymmetric supercapacitors. Nano Energy, 2018, 45, 439-447.
[http://dx.doi.org/10.1016/j.nanoen.2018.01.024]
[75]
Tang, S.; Zhu, B.; Shi, X.; Wu, J.; Meng, X. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4 -tube arrays for high-performance asymmetric all-solid-state pseudocapacitors. Adv. Energy Mater., 2017, 7(6), 1601985.
[http://dx.doi.org/10.1002/aenm.201601985]
[76]
Chen, T.; Tang, Y.; Guo, W.; Qiao, Y.; Yu, S.; Mu, S.; Wang, L.; Zhao, Y.; Gao, F. Synergistic effect of cobalt and nickel on the superior electrochemical performances of rGO anchored nickel cobalt binary sulfides. Electrochim. Acta, 2016, 212, 294-302.
[http://dx.doi.org/10.1016/j.electacta.2016.07.023]
[77]
Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo 2 S 4 nanosheets grown on nitrogen-doped carbon foams as an advanced electrode for supercapacitors. Adv. Energy Mater., 2015, 5(3), 1400977.
[http://dx.doi.org/10.1002/aenm.201400977]
[78]
Ma, X.X.; Su, Y.; He, X.Q. Use of cobalt polyphthalocyanine and graphene as precursors to construct an efficient Co9S8/N,S-G electrocatalyst for the oxygen electrode reaction in harsh media. ChemCatChem, 2017, 9(2), 308-315.
[http://dx.doi.org/10.1002/cctc.201601043]
[79]
Gu, M.; Kim, B.S. Electrochemistry of multilayer electrodes: From the basics to energy applications. Acc. Chem. Res., 2021, 54(1), 57-69.
[http://dx.doi.org/10.1021/acs.accounts.0c00524] [PMID: 33172254]
[80]
Li, J.; Zhang, M.; Zang, H.; Yu, B.; Ma, Y.; Qu, Y. Chemical doped ternary and quaternary transition-metal-based electrocatalysts for hydrogen evolution reaction. ChemCatChem, 2019, 11(20), 4998-5012.
[http://dx.doi.org/10.1002/cctc.201901127]
[81]
Liu, X.; Dai, L. Carbon-based metal-free catalysts. Nat. Rev. Mater., 2016, 1(11), 16064.
[http://dx.doi.org/10.1038/natrevmats.2016.64]
[82]
Chen, H.; Liu, J.; Wu, X.; Ye, C.; Zhang, J.; Luo, J.L.; Fu, X.Z. Pt-Co electrocatalysts: Syntheses, morphologies, and applications. Small, 2022, 18(40), 2204100.
[http://dx.doi.org/10.1002/smll.202204100] [PMID: 35996763]
[83]
Zhang, X.; Gao, J.; Xiao, Y.; Wang, J.; Sun, G.; Zhao, Y.; Qu, L. Regulation of 2D graphene materials for electrocatalysis. Chem. Asian J., 2020, 15(15), 2271-2281.
[http://dx.doi.org/10.1002/asia.202000249] [PMID: 32227581]
[84]
Zhou, M.; Wang, H.L.; Guo, S. Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev., 2016, 45(5), 1273-1307.
[http://dx.doi.org/10.1039/C5CS00414D] [PMID: 26647087]
[85]
Wu, G.; Santandreu, A.; Kellogg, W.; Gupta, S.; Ogoke, O.; Zhang, H.; Wang, H.L.; Dai, L. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition. Nano Energy, 2016, 29, 83-110.
[http://dx.doi.org/10.1016/j.nanoen.2015.12.032]
[86]
Ge, X.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts. ACS Catal., 2015, 5(8), 4643-4667.
[http://dx.doi.org/10.1021/acscatal.5b00524]
[87]
Li, R.; Liu, F.; Zhang, Y.; Guo, M.; Liu, D. Nitrogen, sulfur Co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction. ACS Appl. Mater. Interfaces, 2020, 12(40), 44578-44587.
[http://dx.doi.org/10.1021/acsami.0c06506] [PMID: 32902251]
[88]
Yang, J.; Liu, W.; Xu, M.; Liu, X.; Qi, H.; Zhang, L.; Yang, X.; Niu, S.; Zhou, D.; Liu, Y.; Su, Y.; Li, J.F.; Tian, Z.Q.; Zhou, W.; Wang, A.; Zhang, T. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc., 2021, 143(36), 14530-14539.
[http://dx.doi.org/10.1021/jacs.1c03788] [PMID: 34464109]
[89]
Li, Y.; Luo, Z.; Qin, H.; Liang, S.; Chen, L.; Wang, H.; Zhao, C.; Chen, S. Benzoate anions-intercalated cobalt-nickel layered hydroxide nanobelts as high-performance electrode materials for aqueous hybrid supercapacitors. J. Colloid Interface Sci., 2021, 582(Pt B), 842-851.
[http://dx.doi.org/10.1016/j.jcis.2020.08.097] [PMID: 32916577]
[90]
Salarizadeh, P.; Askari, M.B.; Di Bartolomeo, A. MoS2/Ni3S2/reduced graphene oxide nanostructure as an electrocatalyst for alcohol fuel cells. ACS Appl. Nano Mater., 2022, 5(3), 3361-3373.
[http://dx.doi.org/10.1021/acsanm.1c03946]
[91]
Askari, M.B.; Salarizadeh, P.; Beheshti-Marnani, A.; Di Bartolomeo, A. NiO-Co3O4-rGO as an efficient electrode material for supercapacitors and direct alcoholic fuel cells. Adv. Mater. Interfaces, 2021, 8(15), 2100149.
[http://dx.doi.org/10.1002/admi.202100149]
[92]
Askari, M.B. Salarizadeh, P.; Di Bartolomeo, A.; Şen, F. Enhanced electrochemical performance of MnNi2O4/rGO nanocomposite as pseudocapacitor electrode material and methanol electro-oxidation catalyst. Nanotechnology, 2021, 32(32), 325707.
[http://dx.doi.org/10.1088/1361-6528/abfded] [PMID: 33946059]
[93]
Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater., 2011, 10(10), 780-786.
[http://dx.doi.org/10.1038/nmat3087] [PMID: 21822263]
[94]
Zhou, Y.; Dong, C.K.; Han, L.L.; Yang, J.; Du, X.W. Top-down preparation of active cobalt oxide catalyst. ACS Catal., 2016, 6(10), 6699-6703.
[http://dx.doi.org/10.1021/acscatal.6b02416]
[95]
Trukhanov, S.V.; Bushinsky, M.V.; Troyanchuk, I.O.; Szymczak, H. Magnetic ordering in La1−x SrxMnO3−x/2 anion-deficient manganites. J. Exp. Theor. Phys., 2004, 99(4), 756-765.
[http://dx.doi.org/10.1134/1.1826167]
[96]
Trukhanov, S.V.; Troyanchuk, I.O.; Fita, I.M.; Szymczak, H.; Bärner, K. Comparative study of the magnetic and electrical properties of Pr1−xBaxMnO3−δ manganites depending on the preparation conditions. J. Magn. Magn. Mater., 2001, 237(3), 276-282.
[http://dx.doi.org/10.1016/S0304-8853(01)00477-2]
[97]
Wang, Y.; Xiao, X.; Li, Q.; Pang, H. Synthesis and progress of new oxygen-vacant electrode materials for high-energy rechargeable battery applications. Small, 2018, 14(41), 1802193.
[http://dx.doi.org/10.1002/smll.201802193] [PMID: 30080317]
[98]
Trukhanov, S.V.; Lobanovski, L.S.; Bushinsky, M.V.; Khomchenko, V.A.; Fedotova, V.V.; Troyanchuk, I.O.; Szymczak, H. Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites. Semiconductors, 2007, 41(5), 507-511.
[http://dx.doi.org/10.1134/S1063782607050041]
[99]
Trukhanov, S.V.; Troyanchuk, I.O.; Korshunov, F.P.; Sirenko, V.A.; Szymczak, H.; Baerner, K. Effect of oxygen content on magnetization and magnetoresistance properties of CMR manganites. Low Temp. Phys., 2001, 27(4), 283-287.
[http://dx.doi.org/10.1063/1.1365601]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy