Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy

Author(s): Shahram Taeb, Davoud Rostamzadeh, Sahar Mafi, Mohammad Mofatteh, Ali Zarrabi, Kiavash Hushmandi, Arash Safari, Ehsan Khodamoradi and Masoud Najafi*

Volume 24, Issue 1, 2024

Published on: 27 January, 2023

Page: [98 - 113] Pages: 16

DOI: 10.2174/1566524023666221226143814

Price: $65

Abstract

The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.

[1]
Wang M, Zhao J, Zhang L, et al. Role of tumor microenvironment in tumorigenesis. J Cancer 2017; 8(5): 761-73.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[2]
Baghban R, Roshangar L, Jahanban-Esfahlan R, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 2020; 18(1): 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[3]
Spees JL, Lee RH, Gregory CA. Mechanisms of mesenchymal stem/stromal cell function. Stem Cell Res Ther 2016; 7(1): 125.
[http://dx.doi.org/10.1186/s13287-016-0363-7] [PMID: 27581859]
[4]
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases. Front Immunol 2021; 11: 591065.
[http://dx.doi.org/10.3389/fimmu.2020.591065] [PMID: 33613514]
[5]
Lai RC, Yeo RWY, Lim SK. Mesenchymal stem cell exosomes. In: Seminars in cell & developmental biology. Elsevier: Amsterdam 2015; pp. 82-8.
[6]
Marquez-Curtis LA, Janowska-Wieczorek A, McGann LE, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology 2015; 71(2): 181-97.
[http://dx.doi.org/10.1016/j.cryobiol.2015.07.003] [PMID: 26186998]
[7]
Minguell JJ, Erices A, Conget P. Mesenchymal stem cells. Exp Biol Med 2001; 226(6): 507-20.
[http://dx.doi.org/10.1177/153537020122600603] [PMID: 11395921]
[8]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[9]
Teixeira FG, Carvalho MM, Sousa N, Salgado AJ. Mesenchymal stem cells secretome: a new paradigm for central nervous system regeneration? Cell Mol Life Sci 2013; 70(20): 3871-82.
[http://dx.doi.org/10.1007/s00018-013-1290-8] [PMID: 23456256]
[10]
Rivera-Cruz CM, Shearer JJ, Figueiredo NM, Figueiredo ML. The immunomodulatory effects of mesenchymal stem cell polarization within the tumor microenvironment niche. Stem Cells Int 2017; 2017: 1-7.
[http://dx.doi.org/10.1155/2017/4015039]
[11]
Teo AKK, Vallier L. Emerging use of stem cells in regenerative medicine. Biochem J 2010; 428(1): 11-23.
[http://dx.doi.org/10.1042/BJ20100102] [PMID: 20423328]
[12]
English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 2013; 91(1): 19-26.
[http://dx.doi.org/10.1038/icb.2012.56] [PMID: 23090487]
[13]
Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107(1): 367-72.
[http://dx.doi.org/10.1182/blood-2005-07-2657] [PMID: 16141348]
[14]
Prigione I, Benvenuto F, Bocca P, Battistini L, Uccelli A, Pistoia V. Reciprocal interactions between human mesenchymal stem cells and gammadelta T cells or invariant natural killer T cells. Stem Cells 2009; 27(3): 693-702.
[http://dx.doi.org/10.1634/stemcells.2008-0687] [PMID: 19096038]
[15]
Raffaghello L, Bianchi G, Bertolotto M, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche. Stem Cells 2008; 26(1): 151-62.
[http://dx.doi.org/10.1634/stemcells.2007-0416] [PMID: 17932421]
[16]
Glennie S, Soeiro I, Dyson PJ, Lam EWF, Dazzi F. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105(7): 2821-7.
[http://dx.doi.org/10.1182/blood-2004-09-3696] [PMID: 15591115]
[17]
Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther 2019; 10(1): 68.
[http://dx.doi.org/10.1186/s13287-019-1165-5] [PMID: 30808416]
[18]
Gonzalez MA, Bernad A. Characteristics of adult stem cells Stem Cell Transplantation. Springer: Berlin 2012; pp. 103-20.
[http://dx.doi.org/10.1007/978-1-4614-2098-9_8]
[19]
Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy. J Hematol Oncol 2021; 14(1): 195.
[http://dx.doi.org/10.1186/s13045-021-01208-w] [PMID: 34789315]
[20]
Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev 2014; 23(8): 796-812.
[http://dx.doi.org/10.1089/scd.2013.0364] [PMID: 24368070]
[21]
Tarkowski AK. Experiments on the development of isolated blastomers of mouse eggs. Nature 1959; 184(4695): 1286-7.
[http://dx.doi.org/10.1038/1841286a0] [PMID: 13836947]
[22]
Hashiyada Y. The contribution of efficient production of monozygotic twins to beef cattle breeding. J Reprod Dev 2017; 63(6): 527-38.
[http://dx.doi.org/10.1262/jrd.2017-096] [PMID: 29033399]
[23]
Suwińska A. Preimplantation mouse embryo: developmental fate and potency of blastomeres Mouse Development. Springer: Berlin 2012; pp. 141-63.
[http://dx.doi.org/10.1007/978-3-642-30406-4_8]
[24]
Chan MM, Smith ZD, Egli D, Regev A, Meissner A. Mouse ooplasm confers context-specific reprogramming capacity. Nat Genet 2012; 44(9): 978-80.
[http://dx.doi.org/10.1038/ng.2382] [PMID: 22902786]
[25]
Wasson JA, Ruppersburg CC, Katz DJ. Restoring totipotency through epigenetic reprogramming. Brief Funct Genomics 2013; 12(2): 118-28.
[http://dx.doi.org/10.1093/bfgp/els042] [PMID: 23117862]
[26]
Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020; 16(1): 3-32.
[http://dx.doi.org/10.1007/s12015-019-09935-x] [PMID: 31760627]
[27]
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145-7.
[28]
Brouwer M, Zhou H, Nadif Kasri N. Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies. Stem Cell Rev 2016; 12(1): 54-72.
[http://dx.doi.org/10.1007/s12015-015-9622-8] [PMID: 26424535]
[29]
Caplan AI. Mesenchymal stem cells: time to change the name! Stem Cells Transl Med 2017; 6(6): 1445-51.
[http://dx.doi.org/10.1002/sctm.17-0051] [PMID: 28452204]
[30]
Mahmoudifar N, Doran PM. Mesenchymal stem cells derived from human adipose tissue. In: Cartilage Tissue Engineering. Springer: Berlin 2015; pp. 53-64.
[http://dx.doi.org/10.1007/978-1-4939-2938-2_4]
[31]
Yun C, Lee S. Enhancement of functionality and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for cardiovascular disease. Int J Mol Sci 2019; 20(4): 982.
[http://dx.doi.org/10.3390/ijms20040982] [PMID: 30813471]
[32]
Beys-da-Silva WO, Rosa RL, Santi L, et al. Zika virus infection of human mesenchymal stem cells promotes differential expression of proteins linked to several neurological diseases. Mol Neurobiol 2019; 56(7): 4708-17.
[http://dx.doi.org/10.1007/s12035-018-1417-x] [PMID: 30377986]
[33]
Gnecchi M, Danieli P, Malpasso G, Ciuffreda MC. Paracrine mechanisms of mesenchymal stem cells in tissue repair Mesenchymal Stem Cells. Springer: Berlin 2016; pp. 123-46.
[http://dx.doi.org/10.1007/978-1-4939-3584-0_7]
[34]
Son MY, Lee MO, Jeon H, et al. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med 2016; 48(5): e232-.
[http://dx.doi.org/10.1038/emm.2016.27] [PMID: 27174201]
[35]
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol 2018; 233(4): 2815-23.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]
[36]
Ansboro S, Roelofs AJ, De Bari C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr Opin Rheumatol 2017; 29(2): 201-7.
[http://dx.doi.org/10.1097/BOR.0000000000000370] [PMID: 27941390]
[37]
Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat 2017; 3(10): 250-61.
[http://dx.doi.org/10.20517/2394-4722.2017.41]
[38]
Decker WK, Safdar A. Bioimmunoadjuvants for the treatment of neoplastic and infectious disease: Coley’s legacy revisited. Cytokine Growth Factor Rev 2009; 20(4): 271-81.
[http://dx.doi.org/10.1016/j.cytogfr.2009.07.004] [PMID: 19656718]
[39]
Decker WK, da Silva RF, Sanabria MH, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol 2017; 8: 829.
[http://dx.doi.org/10.3389/fimmu.2017.00829] [PMID: 28824608]
[40]
Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P. Immune checkpoint inhibitors: a promising anticancer therapy. Drug Discov Today 2020; 25(1): 223-9.
[http://dx.doi.org/10.1016/j.drudis.2019.11.003] [PMID: 31738877]
[41]
Wu Y, Li J, Jabbarzadeh Kaboli P, et al. Natural killer cells as a double-edged sword in cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacol Res 2020; 155: 104691.
[http://dx.doi.org/10.1016/j.phrs.2020.104691] [PMID: 32070721]
[42]
Luo D. Chimeric Antigen Receptor T-Cell Immunotherapy for Cancer. Proceedings of the Fourth International Conference on Biological Information and Biomedical Engineering Jul 21 2021. New York, NY, United States. 1-4.
[http://dx.doi.org/10.1145/3403782.3403802]
[43]
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for conventional and in situ cancer vaccine strategies and combination with immunotherapy for gastrointestinal cancers, A review. Cancers 2020; 12(5): 1121.
[http://dx.doi.org/10.3390/cancers12051121] [PMID: 32365838]
[44]
Luke JJ, Flaherty KT, Ribas A, Long GV. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol 2017; 14(8): 463-82.
[http://dx.doi.org/10.1038/nrclinonc.2017.43] [PMID: 28374786]
[45]
Weiss SA, Wolchok JD, Sznol M. Immunotherapy of melanoma: facts and hopes. Clin Cancer Res 2019; 25(17): 5191-201.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1550] [PMID: 30923036]
[46]
Yarchoan M, Hopkins A, Jaffee EM. Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 2017; 377(25): 2500-1.
[http://dx.doi.org/10.1056/NEJMc1713444] [PMID: 29262275]
[47]
Liu YH, Zang XY, Wang JC, Huang SS, Xu J, Zhang P. Diagnosis and Management of Immune Related Adverse Events (irAEs) in Cancer Immunotherapy. Biomed Pharmacother 2019; 120: 109437.
[http://dx.doi.org/10.1016/j.biopha.2019.109437] [PMID: 31590992]
[48]
Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 2018; 19(2): 360.
[http://dx.doi.org/10.3390/ijms19020360] [PMID: 29370110]
[49]
Jiang M, Duan X, Pang N, et al. Adipose tissue derived stem cells modulate immune function in-vivo and promote long term hematopoiesis in-vitro using the aGVHD model. Exp Ther Med 2020; 19(3): 1725-32.
[http://dx.doi.org/10.3892/etm.2020.8430] [PMID: 32104226]
[50]
Xishan Z, Bin Z, Haiyue Z, Xiaowei D, Jingwen B, Guojun Z. Jagged-2 enhances immunomodulatory activity in adipose derived mesenchymal stem cells. Sci Rep 2015; 5(1): 14284.
[http://dx.doi.org/10.1038/srep14284] [PMID: 26412454]
[51]
Consentius C, Reinke P, Volk HD. Immunogenicity of allogeneic mesenchymal stromal cells: what has been seen in vitro and in vivo? Regen Med 2015; 10(3): 305-15.
[http://dx.doi.org/10.2217/rme.15.14] [PMID: 25933239]
[52]
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal stem cell migration and tissue repair. Cells 2019; 8(8): 784.
[http://dx.doi.org/10.3390/cells8080784] [PMID: 31357692]
[53]
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system. Cell Mol Life Sci 2017; 74(13): 2345-60.
[http://dx.doi.org/10.1007/s00018-017-2473-5] [PMID: 28214990]
[54]
Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal stromal cells and immunomodulation: A gathering of regulatory immune cells. Cytotherapy 2016; 18(2): 160-71.
[http://dx.doi.org/10.1016/j.jcyt.2015.10.011] [PMID: 26794710]
[55]
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, et al. Biodistribution of mesenchymal stromal cells after administration in animal models and humans: a systematic review. J Clin Med 2021; 10(13): 2925.
[http://dx.doi.org/10.3390/jcm10132925] [PMID: 34210026]
[56]
Jo CH, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: A 2-year follow-up study. Am J Sports Med 2017; 45(12): 2774-83.
[http://dx.doi.org/10.1177/0363546517716641] [PMID: 28746812]
[57]
Chen X, Armstrong MA, Li G. Mesenchymal stem cells in immunoregulation. Immunol Cell Biol 2006; 84(5): 413-21.
[http://dx.doi.org/10.1111/j.1440-1711.2006.01458.x] [PMID: 16869941]
[58]
Klyushnenkova E, Mosca JD, Zernetkina V, et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005; 12(1): 47-57.
[http://dx.doi.org/10.1007/s11373-004-8183-7] [PMID: 15864738]
[59]
Tumangelova-Yuzeir K, Naydenov E, Ivanova-Todorova E, Krasimirova E, Vasilev G, Nachev S, et al. Mesenchymal stem cells derived and cultured from glioblastoma multiforme increase Tregs, downregulate Th17, and induce the tolerogenic phenotype of monocyte-derived cells. Stem Cells Int 2019; 2019: 1-16.
[http://dx.doi.org/10.1155/2019/6904638]
[60]
Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun 2018; 95: 77-99.
[http://dx.doi.org/10.1016/j.jaut.2018.08.007] [PMID: 30174217]
[61]
Melief SM, Schrama E, Brugman MH, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 2013; 31(9): 1980-91.
[http://dx.doi.org/10.1002/stem.1432] [PMID: 23712682]
[62]
Giuliani M, Fleury M, Vernochet A, et al. Long-lasting inhibitory effects of fetal liver mesenchymal stem cells on T-lymphocyte proliferation. PLoS One 2011; 6(5): e19988.
[http://dx.doi.org/10.1371/journal.pone.0019988] [PMID: 21625521]
[63]
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99(10): 3838-43.
[http://dx.doi.org/10.1182/blood.V99.10.3838] [PMID: 11986244]
[64]
Krampera M, Cosmi L, Angeli R, et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 2006; 24(2): 386-98.
[http://dx.doi.org/10.1634/stemcells.2005-0008] [PMID: 16123384]
[65]
Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal stromal cell secretion of programmed death‐1 ligands regulates T cell mediated immunosuppression. Stem Cells 2017; 35(3): 766-76.
[http://dx.doi.org/10.1002/stem.2509] [PMID: 27671847]
[66]
Fiori A, Uhlig S, Klüter H, Bieback K. Human adipose tissuE-derived mesenchymal stromal cells inhibit CD4+ T cell proliferation and induce regulatory T cells as well as CD127 expression on CD4+CD25+ T cells. Cells 2021; 10(1): 58.
[http://dx.doi.org/10.3390/cells10010058] [PMID: 33401501]
[67]
Luk F, Carreras-Planella L, Korevaar SS, et al. Inflammatory conditions dictate the effect of mesenchymal stem or stromal cells on B cell function. Front Immunol 2017; 8: 1042.
[http://dx.doi.org/10.3389/fimmu.2017.01042] [PMID: 28894451]
[68]
Palomares Cabeza V, Hoogduijn MJ, Kraaijeveld R, et al. Pediatric mesenchymal stem cells exhibit immunomodulatory properties towards allogeneic T and B cells under inflammatory conditions. Front Bioeng Biotechnol 2019; 7: 142.
[http://dx.doi.org/10.3389/fbioe.2019.00142] [PMID: 31245368]
[69]
Fan L, Hu C, Chen J, Cen P, Wang J, Li L. Interaction between mesenchymal stem cells and B-cells. Int J Mol Sci 2016; 17(5): 650.
[http://dx.doi.org/10.3390/ijms17050650] [PMID: 27164080]
[70]
Feng X, Che N, Liu Y, et al. Restored immunosuppressive effect of mesenchymal stem cells on B cells after olfactory 1/early B cell factor-associated zinc-finger protein down-regulation in patients with systemic lupus erythematosus. Arthritis Rheumatol 2014; 66(12): 3413-23.
[http://dx.doi.org/10.1002/art.38879] [PMID: 25219468]
[71]
Wang W. li J, Wu K, Azhati B, Rexiati M. Culture and identification of mouse bone marrow-derived dendritic cells and their capability to induce T lymphocyte proliferation. Med Sci Monit 2016; 22: 244-50.
[http://dx.doi.org/10.12659/MSM.896951] [PMID: 26802068]
[72]
Tuettenberg A, Becker C, Correll A, Steinbrink K, Jonuleit H. Immune regulation by dendritic cells and T cells--basic science, diagnostic, and clinical application. Clin Lab 2011; 57(1-2): 1-12.
[PMID: 21391459]
[73]
Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105(10): 4120-6.
[http://dx.doi.org/10.1182/blood-2004-02-0586] [PMID: 15692068]
[74]
Spaggiari GM, Abdelrazik H, Becchetti F, Moretta L. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood 2009; 113(26): 6576-83.
[http://dx.doi.org/10.1182/blood-2009-02-203943] [PMID: 19398717]
[75]
English K, Barry FP, Mahon BP. Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett 2008; 115(1): 50-8.
[http://dx.doi.org/10.1016/j.imlet.2007.10.002] [PMID: 18022251]
[76]
Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105(4): 1815-22.
[http://dx.doi.org/10.1182/blood-2004-04-1559] [PMID: 15494428]
[77]
Vacca P, Pietra G, Tumino N, Munari E, Mingari MC, Moretta L. Exploiting human NK cells in tumor therapy. Front Immunol 2020; 10: 3013.
[http://dx.doi.org/10.3389/fimmu.2019.03013] [PMID: 32010130]
[78]
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12(5): 383-96.
[http://dx.doi.org/10.1038/nri3209] [PMID: 22531326]
[79]
Rezaei Kahmini F, Shahgaldi S, Moazzeni SM. Mesenchymal stem cells alter the frequency and cytokine profile of natural killer cells in abortion‐prone mice. J Cell Physiol 2020; 235(10): 7214-23.
[http://dx.doi.org/10.1002/jcp.29620] [PMID: 32037542]
[80]
Pedroso JF, de Souza Valim V, Pezzi A, et al. An experimental study comparing the expansion of peripheral blood natural killer (NK) cells cultured with artificial antigen-presenting cells, in the presence or absence of bone marrow mesenchymal stem cells (MSCs). Mol Biotechnol 2020; 62(5): 306-15.
[http://dx.doi.org/10.1007/s12033-020-00250-2] [PMID: 32193710]
[81]
Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006; 24(1): 74-85.
[http://dx.doi.org/10.1634/stemcells.2004-0359] [PMID: 16099998]
[82]
Najar M, Fayyad-Kazan M, Meuleman N, Bron D, Fayyad-Kazan H, Lagneaux L. Mesenchymal stromal cells of the bone marrow and natural killer cells: cell interactions and cross modulation. J Cell Commun Signal 2018; 12(4): 673-88.
[http://dx.doi.org/10.1007/s12079-018-0448-4] [PMID: 29350342]
[83]
Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer–cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111(3): 1327-33.
[http://dx.doi.org/10.1182/blood-2007-02-074997] [PMID: 17951526]
[84]
Chatterjee D, Marquardt N, Tufa DM, et al. Human umbilical cord-derived mesenchymal stem cells utilize activin-a to suppress interferon-gamma production by natural killer cells. Front Immunol 2014; 5: 662.
[http://dx.doi.org/10.3389/fimmu.2014.00662] [PMID: 25584044]
[85]
Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 2010; 62(12): 1156-66.
[http://dx.doi.org/10.1016/j.addr.2010.08.010] [PMID: 20828588]
[86]
Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cell Intl 2013.
[http://dx.doi.org/10.1155/2013/732742]
[87]
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells 2014; 6(5): 526-39.
[http://dx.doi.org/10.4252/wjsc.v6.i5.526] [PMID: 25426250]
[88]
Wang J, Zhu L, Chen X, Huang R, Wang S, Dong P. Human bone marrow mesenchymal stem cells functionalized by hybrid baculovirus-adeno-associated viral vectors for targeting hypopharyngeal carcinoma. Stem Cells Dev 2019; 28(8): 543-53.
[http://dx.doi.org/10.1089/scd.2018.0252] [PMID: 30747033]
[89]
Muhammad T, Sakhawat A, Khan AA, Ma L, Gjerset RA, Huang Y. Mesenchymal stem cell-mediated delivery of therapeutic adenoviral vectors to prostate cancer. Stem Cell Res Ther 2019; 10(1): 190.
[http://dx.doi.org/10.1186/s13287-019-1268-z] [PMID: 31238944]
[90]
Martín F, Tristán-Manzano M, Maldonado-Perez N, Sanchez-Hernandez S, Benabdellah K, Cobo M. Stable genetic modification of mesenchymal stromal cells using lentiviral vectors. Viral Vectors for Gene Therapy. Springer: Berlin 2019; pp. 267-80.
[http://dx.doi.org/10.1007/978-1-4939-9065-8_17]
[91]
Jazowiecka-Rakus J, Sochanik A, Rusin A, et al. Myxoma virus-loaded mesenchymal stem cells in experimental oncolytic therapy of murine pulmonary melanoma. Mol Ther Oncolytics 2020; 18: 335-50.
[http://dx.doi.org/10.1016/j.omto.2020.07.003] [PMID: 32775618]
[92]
Esmaeilzadeh A, Farshbaf A. Mesenchymal stem cell as a vector for gene and cell therapy strategies. Stud Stem Cells Res Ther 2015; 1(1): 017-8.
[http://dx.doi.org/10.17352/sscrt.000005]
[93]
Zhang L, Sun J, Liu Z, et al. Mesenchymal stem cells regulate cytoskeletal dynamics and promote cancer cell invasion through low dose nitric oxide. Curr Mol Med 2014; 14(6): 749-61.
[http://dx.doi.org/10.2174/1566524014666140724102301] [PMID: 24894170]
[94]
Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: a new era in the cell-based targeted gene therapy of cancer. Front Immunol 2017; 8: 1770.
[http://dx.doi.org/10.3389/fimmu.2017.01770] [PMID: 29326689]
[95]
Wang Y, Han Z-b, Song Y-p, Han ZC. Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012.
[http://dx.doi.org/10.1155/2012/652034]
[96]
Almeida-Porada G, Atala AJ, Porada CD. Therapeutic mesenchymal stromal cells for immunotherapy and for gene and drug delivery. Mol Ther Methods Clin Dev 2020; 16: 204-24.
[http://dx.doi.org/10.1016/j.omtm.2020.01.005] [PMID: 32071924]
[97]
Rossignoli F, Grisendi G, Spano C, et al. Inducible Caspase9-mediated suicide gene for MSC-based cancer gene therapy. Cancer Gene Ther 2019; 26(1-2): 11-6.
[http://dx.doi.org/10.1038/s41417-018-0034-1] [PMID: 29955091]
[98]
Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin Biol Ther 2005; 5(12): 1571-84.
[http://dx.doi.org/10.1517/14712598.5.12.1571] [PMID: 16318421]
[99]
Hwang BW, Kim SJ, Park KM, et al. Genetically engineered mesenchymal stem cell therapy using self-assembling supramolecular hydrogels. J Control Release 2015; 220(Pt A): 119-29.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.034] [PMID: 26485045]
[100]
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014; 15(8): 541-55.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[101]
Nowakowski A, Andrzejewska A, Janowski M, Walczak P, Lukomska B. Genetic engineering of stem cells for enhanced therapy. Acta Neurobiol Exp 2013; 73(1): 1-18.
[PMID: 23595280]
[102]
Huang S, Kamihira M. Development of hybrid viral vectors for gene therapy. Biotechnol Adv 2013; 31(2): 208-23.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.001] [PMID: 23070017]
[103]
Kim SM, Lim JY, Park SI, et al. Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. Cancer Res 2008; 68(23): 9614-23.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0451] [PMID: 19047138]
[104]
Kumar S, Chanda D, Ponnazhagan S. Therapeutic potential of genetically modified mesenchymal stem cells. Gene Ther 2008; 15(10): 711-5.
[http://dx.doi.org/10.1038/gt.2008.35] [PMID: 18356815]
[105]
Chen X, Lin X, Zhao J, et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol Ther 2008; 16(4): 749-56.
[http://dx.doi.org/10.1038/mt.2008.3] [PMID: 18362930]
[106]
Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62(13): 3603-8.
[PMID: 12097260]
[107]
Hong X, Miller C, Savant-Bhonsale S, Kalkanis SN. Antitumor treatment using interleukin- 12-secreting marrow stromal cells in an invasive glioma model. Neurosurgery 2009; 64(6): 1139-47.
[http://dx.doi.org/10.1227/01.NEU.0000345646.85472.EA] [PMID: 19487894]
[108]
Duan X, Guan H, Cao Y, Kleinerman ES. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors. Cancer 2009; 115(1): 13-22.
[http://dx.doi.org/10.1002/cncr.24013] [PMID: 19051291]
[109]
Keshavarz Shahbaz S, Mansourabadi AH, Jafari D. Genetically engineered mesenchymal stromal cells as a new trend for treatment of severe acute graft-versus-host disease. Clin Exp Immunol 2022; 208(1): 12-24.
[http://dx.doi.org/10.1093/cei/uxac016] [PMID: 35274673]
[110]
Park MJ, Park HS, Cho ML, et al. Transforming growth factor β-transduced mesenchymal stem cells ameliorate experimental autoimmune arthritis through reciprocal regulation of Treg/Th17 cells and osteoclastogenesis. Arthritis Rheum 2011; 63(6): 1668-80.
[http://dx.doi.org/10.1002/art.30326] [PMID: 21384335]
[111]
Payne NL, Dantanarayana A, Sun G, et al. Early intervention with gene-modified mesenchymal stem cells overexpressing interleukin-4 enhances anti-inflammatory responses and functional recovery in experimental autoimmune demyelination. Cell Adhes Migr 2012; 6(3): 179-89.
[http://dx.doi.org/10.4161/cam.20341] [PMID: 22568986]
[112]
Chen H, Tang S, Liao J, Liu M, Lin Y. VEGF165 gene-modified human umbilical cord blood mesenchymal stem cells protect against acute liver failure in rats. J Gene Med 2021; 23(10): e3369.
[http://dx.doi.org/10.1002/jgm.3369] [PMID: 34057770]
[113]
Taeb S, Mosleh-Shirazi MA, Ghaderi A, Mortazavi SMJ, Razmkhah M. Effects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue. Int J Radiat Res 2021; 19(1): 175-82.
[http://dx.doi.org/10.29252/ijrr.19.1.175]
[114]
Taeb S, Mosleh-Shiraz MA, Ghaderi A, Mortazavi SMJ, Razmkhah M. Adipose-derived mesenchymal stem cells responses to different doses of gamma radiation. J Biomed Phys Eng 2022; 12(1): 35-42.
[http://dx.doi.org/10.31661/jbpe.v0i0.1212] [PMID: 35155291]
[115]
Taeb S, Mosleh-Shirazi MA, Ghaderi A, Mortazavi SMJ, Razmkhah M. Radiation-induced bystander effects of adipose-derived mesenchymal stem cells. Cell J 2021; 23(6): 612-8.
[PMID: 34939753]
[116]
Donlon NE, Power R, Hayes C, Reynolds JV, Lysaght J. Radiotherapy, immunotherapy, and the tumour microenvironment: Turning an immunosuppressive milieu into a therapeutic opportunity. Cancer Lett 2021; 502: 84-96.
[http://dx.doi.org/10.1016/j.canlet.2020.12.045] [PMID: 33450360]
[117]
Hagan CT IV, Mi Y, Knape NM, Wang AZ. Enhancing combined immunotherapy and radiotherapy through nanomedicine. Bioconjug Chem 2020; 31(12): 2668-78.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00520] [PMID: 33251789]
[118]
Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 2015; 520(7547): 373-7.
[http://dx.doi.org/10.1038/nature14292] [PMID: 25754329]
[119]
Chera BS, Amdur RJ, Mendenhall W, Zevallos J, Hayes DN. Beware of deintensification of radiation therapy in patients with p16-positive oropharynx cancer and rheumatological diseases. Pract Radiat Oncol 2017; 7(4): e261-2.
[http://dx.doi.org/10.1016/j.prro.2016.12.004] [PMID: 28242189]
[120]
Mouw KW, D’Andrea AD. DNA Repair Deficiency and Immunotherapy Response. J Clin Oncol 2018; 36(17): 1710-3.
[http://dx.doi.org/10.1200/JCO.2018.78.2425] [PMID: 29683789]
[121]
Samstein RM. The DNA damage response in immunotherapy and radiation. 2018.
[122]
Huang RX, Zhou PK. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther 2020; 5(1): 60.
[http://dx.doi.org/10.1038/s41392-020-0150-x] [PMID: 32355263]
[123]
Martinez-Velez N, Marigil M, García-Moure M, et al. Delta-24-RGD combined with radiotherapy exerts a potent antitumor effect in diffuse intrinsic pontine glioma and pediatric high grade glioma models. Acta Neuropathol Commun 2019; 7(1): 64.
[http://dx.doi.org/10.1186/s40478-019-0714-6] [PMID: 31036068]
[124]
Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Frelinger JG, Lord EM. IFN-γ mediates the antitumor effects of radiation therapy in a murine colon tumor. Am J Pathol 2013; 182(6): 2345-54.
[http://dx.doi.org/10.1016/j.ajpath.2013.02.041] [PMID: 23583648]
[125]
Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8+ T cells. Cancer Immunol Immunother 2014; 63(3): 259-71.
[http://dx.doi.org/10.1007/s00262-013-1506-7] [PMID: 24357146]
[126]
Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 2006; 203(5): 1259-71.
[http://dx.doi.org/10.1084/jem.20052494] [PMID: 16636135]
[127]
Sasaki A, Nakamura Y, Togashi Y, et al. Enhanced tumor response to radiotherapy after PD-1 blockade in metastatic gastric cancer. Gastric Cancer 2020; 23(5): 893-903.
[http://dx.doi.org/10.1007/s10120-020-01058-4] [PMID: 32180056]
[128]
Nagasaka M, Zaki M, Kim H, et al. PD1/PD-L1 inhibition as a potential radiosensitizer in head and neck squamous cell carcinoma: a case report. J Immunother Cancer 2016; 4(1): 83.
[http://dx.doi.org/10.1186/s40425-016-0187-0] [PMID: 27895920]
[129]
Martin JD, Jain RK. Normalizing the Tumor Microenvironment for Radiosensitization. In: Molecular Targeted Radiosensitizers. Springer 2020; pp. 301-38.
[http://dx.doi.org/10.1007/978-3-030-49701-9_12]
[130]
Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015; 3: 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[131]
Huang Y, Kim BYS, Chan CK, Hahn SM, Weissman IL, Jiang W. Improving immune–vascular crosstalk for cancer immunotherapy. Nat Rev Immunol 2018; 18(3): 195-203.
[http://dx.doi.org/10.1038/nri.2017.145] [PMID: 29332937]
[132]
Danhier P, De Saedeleer CJ, Karroum O, et al. Optimization of tumor radiotherapy with modulators of cell metabolism: toward clinical applications Seminars in radiation oncology. Elsevier 2013; pp. 262-72.
[http://dx.doi.org/10.1016/j.semradonc.2013.05.008]
[133]
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39(1): 129.
[http://dx.doi.org/10.1186/s13046-020-01639-2] [PMID: 32631383]
[134]
Rodemann HP, Blaese MA. Responses of normal cells to ionizing radiation Semin Radiat Oncol. Elsevier 2007; pp. 81-8.
[http://dx.doi.org/10.1016/j.semradonc.2006.11.005]
[135]
Gerweck LE, Vijayappa S, Kurimasa A, Ogawa K, Chen DJ. Tumor cell radiosensitivity is a major determinant of tumor response to radiation. Cancer Res 2006; 66(17): 8352-5.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0533] [PMID: 16951142]
[136]
Li L, Story M, Legerski RJ. Cellular responses to ionizing radiation damage. Int J Radiat Oncol Biol Phys 2001; 49(4): 1157-62.
[http://dx.doi.org/10.1016/S0360-3016(00)01524-8]
[137]
Daguenet E, Louati S, Wozny AS, et al. Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 2020; 123(3): 339-48.
[http://dx.doi.org/10.1038/s41416-020-0942-3] [PMID: 32581341]
[138]
Wang R, Zhou T, Liu W, Zuo L. Molecular mechanism of bystander effects and related abscopal/cohort effects in cancer therapy. Oncotarget 2018; 9(26): 18637-47.
[http://dx.doi.org/10.18632/oncotarget.24746] [PMID: 29719632]
[139]
Droujinine IA, Eckert MA, Zhao W. To grab the stroma by the horns: From biology to cancer therapy with mesenchymal stem cells. Oncotarget 2013; 4(5): 651-64.
[http://dx.doi.org/10.18632/oncotarget.1040] [PMID: 23744479]
[140]
Spaeth E, Klopp A, Dembinski J, Andreeff M, Marini F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 2008; 15(10): 730-8.
[http://dx.doi.org/10.1038/gt.2008.39] [PMID: 18401438]
[141]
Najafi M, Shirazi A, Motevaseli E, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 9(2): 139-48.
[http://dx.doi.org/10.1007/s12551-017-0256-8] [PMID: 28510090]
[142]
Ashrafizadeh M, Farhood B, Eleojo Musa A, Taeb S, Rezaeyan A, Najafi M. Abscopal effect in radioimmunotherapy. Int Immunopharmacol 2020; 85: 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[143]
Kim SM, Oh JH, Park SA, et al. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy. Stem Cells 2010; 28(12): 2217-28.
[http://dx.doi.org/10.1002/stem.543] [PMID: 20945331]
[144]
Lee HY, Hong IS. Double‐edged sword of mesenchymal stem cells: Cancer‐promoting versus therapeutic potential. Cancer Sci 2017; 108(10): 1939-46.
[http://dx.doi.org/10.1111/cas.13334] [PMID: 28756624]
[145]
Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell 2011; 9(1): 11-5.
[http://dx.doi.org/10.1016/j.stem.2011.06.008] [PMID: 21726829]
[146]
Atiya H, Frisbie L, Pressimone C, Coffman L. Mesenchymal stem cells in the tumor microenvironment. Adv Exp Med Biol 2020; 1234: 31-42.
[http://dx.doi.org/10.1007/978-3-030-37184-5_3] [PMID: 32040853]
[147]
Lee RH, Yoon N, Reneau JC, Prockop DJ. Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity. Cell Stem Cell 2012; 11(6): 825-35.
[http://dx.doi.org/10.1016/j.stem.2012.10.001] [PMID: 23142520]
[148]
Schoefinius JS, Brunswig‐Spickenheier B, Speiseder T, Krebs S, Just U, Lange CJSC. Mesenchymal stromal cell‐derived extracellular vesicles provide long‐term survival after total body irradiation without additional hematopoietic stem cell support 2017.
[http://dx.doi.org/10.1002/stem.2716]
[149]
de Araujo Farias V, O’Valle F, Serrano-Saenz S, et al. Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci. Mol Cancer 2018; 17(1): 122.
[http://dx.doi.org/10.1186/s12943-018-0867-0] [PMID: 30111323]
[150]
de Araújo Farias V, O’Valle F, Lerma BA, et al. Human mesenchymal stem cells enhance the systemic effects of radiotherapy. Oncotarget 2015; 6(31): 31164-80.
[http://dx.doi.org/10.18632/oncotarget.5216] [PMID: 26378036]
[151]
Goto T, Fujiya M, Konishi H, et al. An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 2018; 18(1): 116.
[http://dx.doi.org/10.1186/s12885-018-4006-5] [PMID: 29385987]
[152]
Li Z, Wang Y, Xiao K, Xiang S, Li Z, Weng X. Emerging role of exosomes in the joint diseases. Cell Physiol Biochem 2018; 47(5): 2008-17.
[http://dx.doi.org/10.1159/000491469] [PMID: 29969758]
[153]
Tang Z, Li D, Hou S, Zhu X. The cancer exosomes: Clinical implications, applications and challenges. Int J Cancer 2020; 146(11): 2946-59.
[http://dx.doi.org/10.1002/ijc.32762] [PMID: 31671207]
[154]
Shang S, Wang J, Chen S, et al. Exosomal miRNA‐1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer. Cancer Med 2019; 8(18): 7728-40.
[http://dx.doi.org/10.1002/cam4.2633] [PMID: 31642612]
[155]
Reza AMMT, Choi YJ, Yasuda H, Kim JH. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells. Sci Rep 2016; 6(1): 38498.
[http://dx.doi.org/10.1038/srep38498] [PMID: 27929108]
[156]
Gentile P, Garcovich S. Concise review: adipose-derived stem cells (ASCs) and adipocyte-secreted exosomal microRNA (A-SE-miR) modulate cancer growth and promote wound repair. J Clin Med 2019; 8(6): 855.
[http://dx.doi.org/10.3390/jcm8060855] [PMID: 31208047]
[157]
Lin W, Huang L, Li Y, Fang B, Li G, Chen L, et al. Mesenchymal stem cells and cancer: clinical challenges and opportunities. BioMed Res Int 2019; 2019: 1-12.
[http://dx.doi.org/10.1155/2019/2820853]
[158]
Zhang X, Zhang H, Gu J, et al. Engineered Extracellular Vesicles for Cancer Therapy. Adv Mater 2021; 33(14): 2005709.
[http://dx.doi.org/10.1002/adma.202005709] [PMID: 33644908]
[159]
Chen W, Li M, Cheng H, et al. Overexpression of the mesenchymal stem cell Cxcr4 gene in irradiated mice increases the homing capacity of these cells. Cell Biochem Biophys 2013; 67(3): 1181-91.
[http://dx.doi.org/10.1007/s12013-013-9632-6] [PMID: 23712865]
[160]
Zhou Y, Yamamoto Y, Xiao Z, Ochiya T. The immunomodulatory functions of mesenchymal stromal/stem cells mediated via paracrine activity. J Clin Med 2019; 8(7): 1025.
[http://dx.doi.org/10.3390/jcm8071025] [PMID: 31336889]
[161]
de Araújo Farias V, Carrillo-Gálvez AB, Martín F, Anderson P. TGF-β and mesenchymal stromal cells in regenerative medicine, autoimmunity and cancer. Cytokine Growth Factor Rev 2018; 43: 25-37.
[http://dx.doi.org/10.1016/j.cytogfr.2018.06.002] [PMID: 29954665]
[162]
Ding W, Knox TR, Tschumper RC, et al. Platelet-derived growth factor (PDGF)–PDGF receptor interaction activates bone marrow–derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 2010; 116(16): 2984-93.
[http://dx.doi.org/10.1182/blood-2010-02-269894] [PMID: 20606160]
[163]
Ritter E, Perry A, Yu J, Wang T, Tang L, Bieberich E. Breast cancer cell-derived fibroblast growth factor 2 and vascular endothelial growth factor are chemoattractants for bone marrow stromal stem cells. Ann Surg 2008; 247(2): 310-4.
[http://dx.doi.org/10.1097/SLA.0b013e31816401d5] [PMID: 18216538]
[164]
Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers (Basel) 2020; 12(7): 1765.
[http://dx.doi.org/10.3390/cancers12071765] [PMID: 32630699]
[165]
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose tissue-derived mesenchymal stromal/stem cells, obesity and the tumor microenvironment of breast cancer. Cancers 2022; 14(16): 3908.
[http://dx.doi.org/10.3390/cancers14163908] [PMID: 36010901]
[166]
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7(1): 272.
[http://dx.doi.org/10.1038/s41392-022-01134-4] [PMID: 35933430]
[167]
Kucerova L, Matuskova M, Hlubinova K, Altanerova V, Altaner C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol Cancer 2010; 9(1): 129.
[http://dx.doi.org/10.1186/1476-4598-9-129] [PMID: 20509882]
[168]
Schmohl KA, Müller AM, Nelson PJ, Spitzweg C. Thyroid hormone effects on mesenchymal stem cell biology in the tumour microenvironment. Exp Clin Endocrinol Diabetes 2020; 128(06/07): 462-8.
[http://dx.doi.org/10.1055/a-1022-9874] [PMID: 31648351]
[169]
Liu J, Han G, Liu H, Qin C. Suppression of cholangiocarcinoma cell growth by human umbilical cord mesenchymal stem cells: a possible role of Wnt and Akt signaling. PLoS One 2013; 8(4): e62844.
[http://dx.doi.org/10.1371/journal.pone.0062844] [PMID: 23646150]
[170]
Ho IAW, Toh HC, Ng WH, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013; 31(1): 146-55.
[http://dx.doi.org/10.1002/stem.1247] [PMID: 23034897]
[171]
Liang W, Chen X, Zhang S, et al. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26(1): 3.
[http://dx.doi.org/10.1186/s11658-020-00246-5] [PMID: 33472580]
[172]
Diomede F, Gugliandolo A, Cardelli P, et al. Three-dimensional printed PLA scaffold and human gingival stem cell-derived extracellular vesicles: a new tool for bone defect repair. Stem Cell Res Ther 2018; 9(1): 104.
[http://dx.doi.org/10.1186/s13287-018-0850-0] [PMID: 29653587]
[173]
Hmadcha A, Martin-Montalvo A, Gauthier BR, Soria B, Capilla-Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front Bioeng Biotechnol 2020; 8: 43.
[http://dx.doi.org/10.3389/fbioe.2020.00043] [PMID: 32117924]
[174]
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H. Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 2021; 12(1): 126.
[http://dx.doi.org/10.1186/s13287-021-02196-x] [PMID: 33579346]
[175]
Somaiah C, Kumar A, Sharma R, et al. Mesenchymal stem cells show functional defect and decreased anti-cancer effect after exposure to chemotherapeutic drugs. J Biomed Sci 2018; 25(1): 5.
[http://dx.doi.org/10.1186/s12929-018-0407-7] [PMID: 29351753]
[176]
Rühle A, Huber PE, Saffrich R, Lopez Perez R, Nicolay NH. The current understanding of mesenchymal stem cells as potential attenuators of chemotherapy-induced toxicity. Int J Cancer 2018; 143(11): 2628-39.
[http://dx.doi.org/10.1002/ijc.31619] [PMID: 29931767]
[177]
Sang W, Lv B, Li K, Lu Y. Therapeutic efficacy and safety of umbilical cord mesenchymal stem cell transplantation for liver cirrhosis in Chinese population: A meta-analysis. Clin Res Hepatol Gastroenterol 2018; 42(3): 193-204.
[http://dx.doi.org/10.1016/j.clinre.2017.11.003] [PMID: 29223366]
[178]
Hu C, Zhao L, Duan J, Li L. Strategies to improve the efficiency of mesenchymal stem cell transplantation for reversal of liver fibrosis. J Cell Mol Med 2019; 23(3): 1657-70.
[http://dx.doi.org/10.1111/jcmm.14115] [PMID: 30635966]
[179]
Wang Y, Zhang Z, Chi Y, Zhang Q, Xu F, Yang Z, et al. Long-term cultured mesenchymal stem cells frequently develop genomic mutations but do not undergo malignant transformation. Cell Death 2013; 4: e950-0.
[http://dx.doi.org/10.1038/cddis.2013.480]
[180]
Zheng XB, He XW, Zhang LJ, et al. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol Rep 2019; 7(2): 127-38.
[http://dx.doi.org/10.1093/gastro/goy017] [PMID: 30976426]
[181]
McLean K, Gong Y, Choi Y, et al. Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 2011; 121(8): 3206-19.
[http://dx.doi.org/10.1172/JCI45273] [PMID: 21737876]
[182]
Melzer C, von der Ohe J, Hass R. MSC stimulate ovarian tumor growth during intercellular communication but reduce tumorigenicity after fusion with ovarian cancer cells. Cell Commun Signal 2018; 16(1): 67.
[http://dx.doi.org/10.1186/s12964-018-0279-1] [PMID: 30316300]
[183]
Shinagawa K, Kitadai Y, Tanaka M, et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010; 127(10): 2323-33.
[http://dx.doi.org/10.1002/ijc.25440] [PMID: 20473928]
[184]
Lu X, Kang Y. Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010; 16(24): 5928-35.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1360] [PMID: 20962028]
[185]
Brown JM, Wilson WR. Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004; 4(6): 437-47.
[http://dx.doi.org/10.1038/nrc1367] [PMID: 15170446]
[186]
Chaturvedi P, Gilkes DM, Wong CCL, et al. Hypoxia-inducible factor–dependent breast cancer–mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 2012; 123(1): 189-205.
[http://dx.doi.org/10.1172/JCI64993] [PMID: 23318994]
[187]
Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-α, LPS, or hypoxia produce growth factors by an NFκB- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 2008; 294(3): C675-82.
[http://dx.doi.org/10.1152/ajpcell.00437.2007] [PMID: 18234850]
[188]
Efimenko A, Starostina E, Kalinina N, Stolzing A. Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 2011; 9(1): 10.
[http://dx.doi.org/10.1186/1479-5876-9-10] [PMID: 21244679]
[189]
Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10(1): 105-15.
[http://dx.doi.org/10.1016/S1074-7613(00)80011-4] [PMID: 10023775]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy