Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Short Communication

Ruthenium-catalyzed Aromatic meta-C-H Nitration of 1,2,4-thiadiazoles

Author(s): Kai Wang, Wenjing Xu, Pengfei Zhang* and Xian-Ting Cao*

Volume 26, Issue 19, 2022

Published on: 26 December, 2022

Page: [1807 - 1811] Pages: 5

DOI: 10.2174/1385272827666221216105255

Price: $65

Abstract

Aim and Objective: To develop a ruthenium-catalyzed method to prepare metanitration containing 1,2,4-thiadiazoles with potential biological activity. Moreover, the current protocol should exhibit a relatively broad substrate scope and functional group compatibility.

Materials and Methods: The best condition for the synthesis of nitration containing 1,2,4- thiadiazoles derivatives was carried out employing a mixture of 0.20 mmol of 1 (1a: 47.6 mg, 1b: 53.2 mg, 1c: 70.1 mg, 1d: 59.7 mg, 1e: 81.2 mg, 1f: 54.8 mg, 1g: 61.4 mg, 1h: 74.8 mg, 1i: 53.2 mg, 1j: 59.0 mg, 1k: 54.9 mg, 1l: 50.0 mg), Cu(NO3)2•3H2O (120.8 mg, 0.5 mmol), Ru3CO12 (9.6 mg, 7.5 mol %), TBAOAc (18.0 mg, 30 mol %), AgTFA (66.2 mg, 1.5 equiv), oxone (123.0 mg, 1.0 equiv), DCE (1.0 mL) placing in a Schlenk tube and stirred at 90 oC under air atmosphere for 36.0 h.

Results: A series of 1,2,4-thiadiazoles containing compounds with potential biological activity were prepared in yield ranging from moderate to good under mild conditions, exhibiting a relatively broad substrate scope and functional group compatibility.

Conclusion: We have developed a ruthenium-catalyzed 1,2,4-thiadiazoles-assisted regioselective meta-C-H nitration of arenes. This study provides a simple and efficient approach for synthesizing 1,2,4-thiadiazoles derivatives, yielding the nitration products in moderate to good yields. A mechanistic study indicated that a radical pathway might be involved in this transformation.

« Previous
Graphical Abstract

[1]
(a) Li, H.; Huang, H.; Zhang, X.; Luo, X.; Lin, L.; Jiang, H.; Ding, J.; Chen, K.; Liu, H. Discovering novel 3-nitroquinolines as a new class of anticancer agents. Acta Pharmacol. Sin., 2008, 29(12), 1529-1538.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00907.x] [PMID: 19026174];
(b) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001.
[http://dx.doi.org/10.1002/0471224480];
(c) Feuer, H.; Nielson, A.T. Nitro Compounds: Recent Advances in Synthesis and Chemistry; VCH: New York, 1990.
[2]
Schofield, K. Aromatic Nitrations; Cambridge University Press: Cambridge, 1980. Olah, G.A.; Malhorta, R.; Narang, S.C. Nitration: Methods and Mechanisms; VCH: Weinheim, 1989.
[3]
(a) Rozen, S.; Carmeli, M. From azides to nitro compounds in a few seconds using HOF.CH3CN. J. Am. Chem. Soc., 2003, 125(27), 8118-8119.
[http://dx.doi.org/10.1021/ja035616d] [PMID: 12837078];
(b) Prakash, G.K.S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N.A.; Olah, G.A. ipso-nitration of arylboronic acids with chlorotrimethylsilane-nitrate salts. Org. Lett., 2004, 6(13), 2205-2207.
[http://dx.doi.org/10.1021/ol0493249] [PMID: 15200321];
(c) Prakash, G.K.S.; Mathew, T. ipso-Nitration of arenes. Angew. Chem. Int. Ed., 2010, 49(10), 1726-1728.
[http://dx.doi.org/10.1002/anie.200906940] [PMID: 20146295];
(d) Yan, G.; Yang, M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem., 2013, 11(16), 2554-2566.
[http://dx.doi.org/10.1039/c3ob27354g] [PMID: 23443836];
(e) Manna, S.; Maity, S.; Rana, S.; Agasti, S.; Maiti, D. ipso-Nitration of arylboronic acids with bismuth nitrate and perdisulfate. Org. Lett., 2012, 14(7), 1736-1739.
[http://dx.doi.org/10.1021/ol300325t] [PMID: 22409632];
(f) Fors, B.P.; Buchwald, S.L. Pd-catalyzed conversion of aryl chlorides, triflates, and nonaflates to nitroaromatics. J. Am. Chem. Soc., 2009, 131(36), 12898-12899.
[http://dx.doi.org/10.1021/ja905768k] [PMID: 19737014]
[4]
(a) Liu, S.L.; Li, Y.; Guo, J.R.; Yang, G.C.; Li, X.H.; Gong, J.F.; Song, M.P. An approach to 3-(Indol-2-yl)succinimide derivatives by manganese-catalyzed C–H activation. Org. Lett., 2017, 19(15), 4042-4045.
[http://dx.doi.org/10.1021/acs.orglett.7b01795] [PMID: 28745899];
(b) Chen, X.; Ren, J.; Xie, H.; Sun, W.; Sun, M.; Wu, B. Cobalt(III)-catalyzed 1,4-addition of C–H bonds of oximes to maleimides. Org. Chem. Front., 2018, 5(2), 184-188.
[http://dx.doi.org/10.1039/C7QO00687J];
(c) Wang, K.; Xu, W.; Qi, H.; Zhang, P.; Cao, X.T.; Wang, G.A. HCl-mediated, metal- and oxidant-free photocatalytic strategy for C3 arylation of quinoxalin(on)es with arylhydrazine. Catalysts, 2022, 12(6), 633.
[http://dx.doi.org/10.3390/catal12060633];
(d) Xu, J.; He, L.; Liang, C.; Yue, X.; Ouyang, Y.; Zhang, P. Multicomponent bifunctionalization of methyl ketones enabled by heterogeneous catalysis and solar photocatalysis in water. ACS Sustain. Chem.& Eng., 2021, 9(40), 13663-13671.
[http://dx.doi.org/10.1021/acssuschemeng.1c05237];
(e) Li, G.; Li, D.; Zhang, J.; Shi, D.Q.; Zhao, Y. Ligand-enabled regioselectivity in the oxidative cross-coupling of arenes with toluenes and cycloalkanes using ruthenium catalysts: Tuning the site-selectivity from the ortho to meta Positions. ACS Catal., 2017, 7(6), 4138-4143.
[http://dx.doi.org/10.1021/acscatal.7b01072];
(f) Huang, L.; Xu, J.; He, L.; Liang, C.; Ouyang, Y.; Yu, Y.; Li, W.; Zhang, P. Rapid alkenylation of quinoxalin-2(1H)-ones enabled by the sequential Mannich-type reaction and solar photocatalysis. Chin. Chem. Lett., 2021, 32(11), 3627-3631.
[http://dx.doi.org/10.1016/j.cclet.2021.04.016];
(g) Warratz, S.; Burns, D.J.; Zhu, C.; Korvorapun, K.; Rogge, T.; Scholz, J.; Jooss, C.; Gelman, D.; Ackermann, L. meta ‐C−H bromination on purine bases by heterogeneous ruthenium catalysis. Angew. Chem. Int. Ed., 2017, 56(6), 1557-1560.
[http://dx.doi.org/10.1002/anie.201609014];
(h) Xu, J.; Zhang, Y.; Yue, X.; Huo, J.; Xiong, D.; Zhang, P. Selective oxidation of alkenes to carbonyls under mild conditions. Green Chem., 2021, 23(15), 5549-5555.
[http://dx.doi.org/10.1039/D1GC01364E];
(i) Xu, J.; Huang, L.; He, L.; Liang, C.; Ouyang, Y.; Shen, J.; Jiang, M.; Li, W. Direct para -C–H heteroarylation of anilines with quinoxalinones by metal-free cross-dehydrogenative coupling under an aerobic atmosphere. Green Chem., 2021, 23(17), 6632-6638.
[http://dx.doi.org/10.1039/D1GC01899J];
(j) Wang, K.; Hou, J.; Zhang, C.; Cheng, K.; Bai, R.; Xie, Y. Palladiumcatalyzed picolinamide‐directed benzylic C( sp3 )−H chalcogenation with diaryl disulfides and diphenyl diselenide. Adv. Synth. Catal., 2020, 362(14), 2947-2952.
[http://dx.doi.org/10.1002/adsc.202000280]
[5]
(a) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. Palladium-catalyzed chelation-assisted aromatic C-H nitration: regiospecific synthesis of nitroarenes free from the effect of the orientation rules. J. Org. Chem., 2013, 78(12), 5932-5948.
[http://dx.doi.org/10.1021/jo400594j] [PMID: 23688006];
(b) Dong, J.; Jin, B.; Sun, P. Palladium-catalyzed direct ortho-nitration of azoarenes using NO2 as nitro source. Org. Lett., 2014, 16(17), 4540-4542.
[http://dx.doi.org/10.1021/ol502090n] [PMID: 25121997];
(c) Majhi, B.; Kundu, D.; Ahammed, S.; Ranu, B.C. tert-Butyl nitrite mediated regiospecific nitration of (E)-azoarenes through palladium-catalyzed directed C-H activation. Chemistry, 2014, 20(32), 9862-9866.
[http://dx.doi.org/10.1002/chem.201403325] [PMID: 25043150];
(d) Liang, Y.F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. Aerobic Oxidation of Pd II to Pd IV by active radical reactants: Direct C–H nitration and acylation of arenes via oxygenation process with molecular oxygen. ACS Catal., 2015, 5(3), 1956-1963.
[http://dx.doi.org/10.1021/cs502126n];
(e) Fan, Z.; Ni, J.; Zhang, A.; Meta-Selective, C. Ar –H Nitration of Arenes through a Ru 3 (CO) 12 -Catalyzed Ortho-Metalation Strategy. J. Am. Chem. Soc., 2016, 138(27), 8470-8475.
[http://dx.doi.org/10.1021/jacs.6b03402] [PMID: 27181121];
(f) Fan, Z.; Li, J.; Lu, H.; Wang, D.Y.; Wang, C.; Uchiyama, M.; Zhang, A. Monomeric Octahedral Ruthenium(II) Complex Enabled meta -C–H Nitration of Arenes with Removable Auxiliaries. Org. Lett., 2017, 19(12), 3199-3202.
[http://dx.doi.org/10.1021/acs.orglett.7b01297] [PMID: 28574271]
[6]
(a) Perlovich, G.L.; Proshin, A.N.; Volkova, T.V.; Petrova, L.N.; Bachurin, S.O. Novel 1,2,4-thiadiazole derivatives as potent neuroprotectors: Approach to creation of bioavailable drugs. Mol. Pharm., 2012, 9(8), 2156-2167.
[http://dx.doi.org/10.1021/mp300011r] [PMID: 22352779];
(b) Huang, D.; Lüthi, U.; Kolb, P.; Edler, K.; Cecchini, M.; Audetat, S.; Barberis, A.; Caflisch, A. Discovery of cell-permeable non-peptide inhibitors of β-secretase by high-throughput docking and continuum electrostatics calculations. J. Med. Chem., 2005, 48(16), 5108-5111.
[http://dx.doi.org/10.1021/jm050499d] [PMID: 16078830];
(c) Kharimian, K.; Tam, T.F.; Leung-Toung, R.C.; Li, W. Thiadiazole compounds useful as inhibitors of h+/k+ atpase. Patent WO9951584, 1999.;
(d) Johnstone, C.; Mckerrecher, D.; Pike, K.G.; Waring, M.J. Hetroaryl benzamide derivatives for use as glk activators in the treatment of diabetes. Patent WO2005121110, 2005.
[7]
Mayhoub, A.S.; Marler, L.; Kondratyuk, T.P.; Park, E.J.; Pezzuto, J.M.; Cushman, M. Optimizing thiadiazole analogues of resveratrol versus three chemopreventive targets. Bioorg. Med. Chem., 2012, 20(1), 510-520.
[http://dx.doi.org/10.1016/j.bmc.2011.09.031] [PMID: 22115839]
[8]
(a) Tian, T.; Dong, A.S.; Chen, D.; Cao, X.T.; Wang, G. Regioselective C–C cross-coupling of 1,2,4-thiadiazoles with maleimides through iridium-catalyzed C–H activation. Org. Biomol. Chem., 2019, 17(33), 7664-7668.
[http://dx.doi.org/10.1039/C9OB01539F] [PMID: 31365018];
(b) Cao, X.T.; Wei, S.N.; Sun, H.T.; Li, M.; Zheng, Z.L.; Wang, G. Iridium-catalyzed regioselective C–H sulfonamidation of 1,2,4-thiadiazoles with sulfonyl azides in water. RSC Advances, 2021, 11(36), 22000-22004.
[http://dx.doi.org/10.1039/D1RA04450H] [PMID: 35480792]
[9]
(a) Clark, A.M.; Rickard, C.E.F.; Roper, W.R.; Wright, L.J. Electrophilic substitution reactions at the phenyl ring of the chelated 2-(2‘-pyridyl)phenyl Ligand Bound to Ruthenium(II) or Osmium(II). Organometallics, 1999, 18(15), 2813-2820.
[http://dx.doi.org/10.1021/om990232a];
(b) Gagliardo, M.; Snelders, D.J.M.; Chase, P.A.; Klein Gebbink, R.J.M.; van Klink, G.P.M.; van Koten, G. Organic transformations on σ-aryl organometallic complexes. Angew. Chem. Int. Ed., 2007, 46(45), 8558-8573.
[http://dx.doi.org/10.1002/anie.200604290] [PMID: 17935096];
(c) Pawar, G.G.; Brahmanandan, A.; Kapur, M. Palladium(II)-catalyzed, heteroatom-directed, regioselective c–h nitration of anilines using pyrimidine as a removable directing group. Org. Lett., 2016, 18(3), 448-451.
[http://dx.doi.org/10.1021/acs.orglett.5b03493] [PMID: 26799985];
(d) Zhang, L.; Liu, Z.; Li, H.; Fang, G.; Barry, B.D.; Belay, T.A.; Bi, X.; Liu, Q. Copper-mediated chelation-assisted ortho nitration of (hetero)arenes. Org. Lett., 2011, 13(24), 6536-6539.
[http://dx.doi.org/10.1021/ol2028288] [PMID: 22077097];
(e) Liu, Y.K.; Lou, S.J.; Xu, D.Q.; Xu, Z.Y. Regiospecific synthesis of nitroarenes by palladium-catalyzed nitrogen-donor-directed aromatic C-H nitration. Chemistry, 2010, 16(46), 13590-13593.
[http://dx.doi.org/10.1002/chem.201002581] [PMID: 21064056]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy