Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Pyocyanin is the Microbial Blue-green Pigment: A Review on its History, Virulence, and Therapeutic Use

Author(s): Sameer Ranjan Sahoo, Arun Kumar Pradhan*, Rohit Pritam Das, Lipsa Leena Panigrahi and Manoranjan Arakha

Volume 19, Issue 6, 2023

Published on: 16 February, 2023

Article ID: e091222211798 Pages: 15

DOI: 10.2174/1573407219666221209092023

Price: $65

Abstract

Background: P. aeruginosa, has been frequently connected to immune-compromised individuals. Dynamic electrochemical metabolite assists in the creation of biofilms, the production of genes, and the maintenance of bacterial cells. The bacteria produce several phenazine derivatives, as well as the blue-green pigment pyocyanin, which works as a signalling molecule in quorum signalling and virulence factors.

Objective: This review paper intends to give information on the compound's history, virulence mechanism, current biological horizon opened, as well as antagonism and bio-control actions in other bacteria. Current industrial trends and the prospects of pyocyanin-based development were also analysed.

Methods: A bibliographic search of scientific literature published up to 2020 was conducted using scientific databases and search engines. Pyocyanin, phenazine, Pseudomonas, virulence, quorum signalling, health, in vivo, and clinical investigations were among the keywords used in various combinations. The data were retrieved independently from eligible papers using the usual data extraction approach.

Results: Due to pyocyanin's antibacterial properties, the pharmaceutical industry is predicted to grow faster than other businesses. P. aeruginosa which has had its respiratory chain altered by protonated 3,5-dichlorophenol in water can be used as a biosensor. Cellular systems exposed to the chemical experience increased oxidative stress, which leads to gradual apoptosis. Pyocyanin is engaged in bacterial signalling processes, influencing colony shape and alarming innate immune cells.

Conclusion: Focused research on the virulence factor is required, as the specific contribution remains unknown. The link between biological and therapeutic features needed well description to determine the precise action mechanism(s) to design novel medications.

Graphical Abstract

[1]
Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E. Historical evolution and current status of the taxonomy of genus Pseudomonas. Infect. Genet. Evol., 2009, 9(6), 1132-1147.
[http://dx.doi.org/10.1016/j.meegid.2009.08.001] [PMID: 19712752]
[2]
Glazebrook, J.S.; Campbell, R.S.F.; Hutchinson, G.W.; Stallman, N.D. Rodent zoonoses in North Queensland: The occurrence and distribution of zoonotic infections in North Queensland rodents. Aust. J. Exp. Biol. Med. Sci., 1978, 56(2), 147-156.
[http://dx.doi.org/10.1038/icb.1978.16] [PMID: 678225]
[3]
Coggan, K.A.; Wolfgang, M.C. Global regulatory pathways and cross-talk control Pseudomonas aeruginosa environmental lifestyle and virulence phenotype. Curr. Issues Mol. Biol., 2012, 14(2), 47-70.
[PMID: 22354680]
[4]
Jander, G.; Rahme, L.G.; Ausubel, F.M. Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J. Bacteriol., 2000, 182(13), 3843-3845.
[http://dx.doi.org/10.1128/JB.182.13.3843-3845.2000] [PMID: 10851003]
[5]
Engel, J.; Balachandran, P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol., 2009, 12(1), 61-66.
[http://dx.doi.org/10.1016/j.mib.2008.12.007] [PMID: 19168385]
[6]
Baron, S.S.; Rowe, J.J. Antibiotic action of pyocyanin. Antimicrob. Agents Chemother., 1981, 20(6), 814-820.
[http://dx.doi.org/10.1128/AAC.20.6.814] [PMID: 6798928]
[7]
Koch, C.; Høiby, N. Pathogenesis of cystic fibrosis. Lancet, 1993, 341(8852), 1065-1069.
[http://dx.doi.org/10.1016/0140-6736(93)92422-P] [PMID: 7682274]
[8]
Huhulescu, S.; Simon, M.; Lubnow, M.; Kaase, M.; Wewalka, G.; Pietzka, A.T.; Stöger, A.; Ruppitsch, W.; Allerberger, F. Fatal Pseudomonas aeruginosa pneumonia in a previously healthy woman was most likely associated with a contaminated hot tub. Infection, 2011, 39(3), 265-269.
[http://dx.doi.org/10.1007/s15010-011-0096-6] [PMID: 21455711]
[9]
Meyer, J.M. Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol., 2000, 174(3), 135-142.
[http://dx.doi.org/10.1007/s002030000188] [PMID: 11041343]
[10]
Ran, H.; Hassett, D.J.; Lau, G.W. Human targets of Pseudomonas aeruginosa pyocyanin. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 14315-14320.
[http://dx.doi.org/10.1073/pnas.2332354100] [PMID: 14605211]
[11]
Cox, C.D. Role of pyocyanin in the acquisition of iron from transferrin. Infect. Immun., 1986, 52(1), 263-270.
[http://dx.doi.org/10.1128/iai.52.1.263-270.1986] [PMID: 2937736]
[12]
Norman, R.S.; Moeller, P.; McDonald, T.J.; Morris, P.J. Effect of pyocyanin on a crude-oil-degrading microbial community. Appl. Environ. Microbiol., 2004, 70(7), 4004-4011.
[http://dx.doi.org/10.1128/AEM.70.7.4004-4011.2004] [PMID: 15240276]
[13]
Gohain, N.; Thomashow, L.S.; Mavrodi, D.V.; Blankenfeldt, W. The purification, crystallization and preliminary structural characterization of PhzM, a phenazine-modifying methyltransferase from Pseudomonas aeruginosa. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(9), 887-890.
[http://dx.doi.org/10.1107/S1744309106029149] [PMID: 16946471]
[14]
Turner, J.M.; Messenger, A.J. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol., 1986, 27, 211-275.
[http://dx.doi.org/10.1016/S0065-2911(08)60306-9] [PMID: 3532716]
[15]
O’Malley, Y.Q.; Reszka, K.J.; Britigan, B.E. Direct oxidation of 2′,7′-dichlorodihydrofluorescein by pyocyanin and other redox-active compounds independent of reactive oxygen species production. Free Radic. Biol. Med., 2004, 36(1), 90-100.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.09.021] [PMID: 14732293]
[16]
Lau, G.W.; Hassett, D.J.; Ran, H.; Kong, F. The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol. Med., 2004, 10(12), 599-606.
[http://dx.doi.org/10.1016/j.molmed.2004.10.002] [PMID: 15567330]
[17]
Van Delden, C.; Iglewski, B.H. Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg. Infect. Dis., 1998, 4(4), 551-560.
[http://dx.doi.org/10.3201/eid0404.980405] [PMID: 9866731]
[18]
Reimer, Å.; Edvaller, B.; Johansson, B. Concentrations of the Pseudomonas aeruginosa toxin pyocyanin in human ear secretions. Acta Oto-LaryngologicaSuppl, 2000, 86-88.
[http://dx.doi.org/10.1080/000164800454062]
[19]
Lau, G.W.; Ran, H.; Kong, F.; Hassett, D.J.; Mavrodi, D. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun., 2004, 72(7), 4275-4278.
[http://dx.doi.org/10.1128/IAI.72.7.4275-4278.2004] [PMID: 15213173]
[20]
Denning, G.M.; Wollenweber, L.A.; Railsback, M.A.; Cox, C.D.; Stoll, L.L.; Britigan, B.E. Pseudomonas pyocyanin increases interleukin-8 expression by human airway epithelial cells. Infect. Immun., 1998, 66(12), 5777-5784.
[http://dx.doi.org/10.1128/IAI.66.12.5777-5784.1998] [PMID: 9826354]
[21]
McDermott, C.; Chess-Williams, R.; Grant, G.D.; Perkins, A.V.; McFarland, A.J.; Davey, A.K.; Anoopkumar-Dukie, S. Effects of Pseudomonas aeruginosa virulence factor pyocyanin on human urothelial cell function and viability. J. Urol., 2012, 187(3), 1087-1093.
[http://dx.doi.org/10.1016/j.juro.2011.10.129] [PMID: 22266010]
[22]
Hempenstall, A.; Grant, G.D.; Anoopkumar-Dukie, S.; Johnson, P.J. Pyocyanin inhibits both nitric oxide-dependent and -independent relaxation in porcine coronary arteries. Clin. Exp. Pharmacol. Physiol., 2015, 42(2), 186-191.
[http://dx.doi.org/10.1111/1440-1681.12340] [PMID: 25399964]
[23]
McFarland, A.J.; Anoopkumar-Dukie, S.; Perkins, A.V.; Davey, A.K.; Grant, G.D. Inhibition of autophagy by 3-methyladenine protects 1321N1 astrocytoma cells against pyocyanin- and 1-hydroxyphenazine-induced toxicity. Arch. Toxicol., 2012, 86(2), 275-284.
[http://dx.doi.org/10.1007/s00204-011-0755-5] [PMID: 21964636]
[24]
Campodónico, V.L.; Gadjeva, M.; Paradis-Bleau, C.; Uluer, A.; Pier, G.B. Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis. Trends Mol. Med., 2008, 14(3), 120-133.
[http://dx.doi.org/10.1016/j.molmed.2008.01.002] [PMID: 18262467]
[25]
Silby, M.W.; Winstanley, C.; Godfrey, S.A.C.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: Diverse and adaptable. FEMS Microbiol. Rev., 2011, 35(4), 652-680.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00269.x] [PMID: 21361996]
[26]
Young, G. Pigment production and antibiotic activity in cultures of Pseudomonas aeruginosa. J. Bacteriol., 1947, 54(2), 109-117.
[http://dx.doi.org/10.1128/jb.54.2.109-117.1947] [PMID: 16561338]
[27]
Kurashi, M. Studies on the biosynthesis of pyocyanine (I): On the cultural condition for pyocyanine formation. Bull. Inst. Chem. Res. Kyoto Univ., 1958, 36, 163-173.
[28]
Moayedi, A.; Nowroozi, J.; Akhavan, S.A. Effect of fetal and adult bovine serum on development of pyocyanin production in clinical and soil isolates of Pseudomonas aeruginosa. Iran. J. Basic Med. Sci., 2017, 20, 1331-1338.
[PMID: 29238468]
[29]
Muller, M. Glutathione modulates the toxicity of, but is not a biologically relevant reductant for, the Pseudomonas aeruginosa redox toxin pyocyanin. Free Radic. Biol. Med., 2011, 50(8), 971-977.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.012] [PMID: 21255639]
[30]
Stanley, M.M. Bacillus pyocyaneus infections. Am. J. Med., 1947, 2(4), 347-367.
[http://dx.doi.org/10.1016/0002-9343(47)90034-X] [PMID: 20289614]
[31]
Gaby, W.L. A study of the dissociative behaviour of Pseudomonas aeruginosa. J. Bacteriol., 1946, 51(2), 217-234.
[http://dx.doi.org/10.1128/jb.51.2.217-234.1946]
[32]
Schoental, R. The nature of the antibacterial agents presents in Pseudomonas pyocyanea cultures. Br. J. Exp. Pathol., 1941, 22, 137-147.
[33]
Waksman, S.A.; Woodruff, H.B. Selective antibiotic action of various substances of microbial origin. J. Bacteriol., 1942, 44(3), 373-384.
[http://dx.doi.org/10.1128/jb.44.3.373-384.1942] [PMID: 16560575]
[34]
Tavares, W. Antibióticos e Quimioterápicos para, 2014.
[35]
Burkholder, P.R. Cooperation and conflict among primitive organisms. Am. Sci., 1952, 40, 601-631.
[36]
Gould, K. Antibiotics: from prehistory to the present day. J. Antimicrob. Chemother., 2016, 71(3), 572-575.
[http://dx.doi.org/10.1093/jac/dkv484] [PMID: 26851273]
[37]
Bodey, G.P.; Bolivar, R.; Fainstein, V.; Jadeja, L. Infections caused by Pseudomonas aeruginosa. Clin. Infect. Dis., 1983, 5(2), 279-313.
[http://dx.doi.org/10.1093/clinids/5.2.279] [PMID: 6405475]
[38]
Hays, E.E.; Wells, I.C.; Katzman, P.A.; Cain, C.K.; Jacobs, F.A.; Thayer, S.A.; Doisy, E.A.; Gaby, W.L.; Roberts, E.C.; Muir, R.D.; Carroll, C.J.; Jones, L.R.; Wade, N.J. Antibiotic substances produced by Pseudomonas aeruginosa. J. Biol. Chem., 1945, 159(3), 725-750.
[http://dx.doi.org/10.1016/S0021-9258(17)41580-8]
[39]
Flood, M.E.; Herbert, R.B.; Holliman, F.G. Biosynthesis of pyocyanin, a phenazine microbial metabolite. J. Chem. Soc. D, 1970, (22), 1514-1515.
[http://dx.doi.org/10.1039/c29700001514]
[40]
Hassan, H.M.; Fridovich, I. Mechanism of the antibiotic action pyocyanine. J. Bacteriol., 1980, 141(1), 156-163.
[http://dx.doi.org/10.1128/jb.141.1.156-163.1980] [PMID: 6243619]
[41]
Tyc, O.; Song, C.; Dickschat, J.S.; Vos, M.; Garbeva, P. The ecological role of volatile and soluble secondary metabolites produced by soil bacteria. Trends Microbiol., 2017, 25(4), 280-292.
[http://dx.doi.org/10.1016/j.tim.2016.12.002] [PMID: 28038926]
[42]
Barakat, K.M.; Mattarm, M.Z.; Sabae, S.Z.; Darwesh, O.M.; Hassan, S.H. Production and characterization of bioactive pyocyanin pigment by marine Pseudomonas aeruginosa OSh1. Res. J. Pharm. Biol. Chem. Sci., 2015, 6, 933-943.
[43]
Sales-Neto, J.M.; Lima, E.A.; Cavalcante-Silva, L.H.A.; Vasconcelos, U.; Rodrigues, M.S. Anti-inflammatory potential of pyocyanin in LPS-stimulated murine macroiphages. Immunopharmacol. Immunotoxicol., 2019, 41(1), 102-108.
[44]
Dietrich, L.E.P.; Price-Whelan, A.; Petersen, A.; Whiteley, M.; Newman, D.K. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol., 2006, 61(5), 1308-1321.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05306.x] [PMID: 16879411]
[45]
Nagler, M.; Insam, H.; Pietramellara, G.; Ascher-Jenull, J. Extracellular DNA in natural environments: features, relevance and applications. Appl. Microbiol. Biotechnol., 2018, 102(15), 6343-6356.
[http://dx.doi.org/10.1007/s00253-018-9120-4] [PMID: 29858957]
[46]
Das, T.; Manefield, M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One, 2012, 7(10), e46718. Epub ahead of print
[http://dx.doi.org/10.1371/journal.pone.0046718] [PMID: 23056420]
[47]
Sismaet, H.J.; Webster, T.A.; Goluch, E.D. Up-regulating pyocyanin production by amino acid addition for early electrochemical identification of Pseudomonas aeruginosa. Analyst (Lond.), 2014, 139(17), 4241-4246.
[http://dx.doi.org/10.1039/C4AN00756E] [PMID: 24998317]
[48]
Wang, Y.; Wilks, J.C.; Danhorn, T.; Ramos, I.; Croal, L.; Newman, D.K. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol., 2011, 193(14), 3606-3617.
[http://dx.doi.org/10.1128/JB.00396-11] [PMID: 21602354]
[49]
Nowroozi, J.; Akhavan Sepahi, A.; Rashnonejad, A. Pyocyanine biosynthetic genes in clinical and environmental isolates of Pseudomonas aeruginosa and detection of pyocyanine’s antimicrobial effects with and without colloidal silver nanoparticles. Cell J., 2012, 14(1), 7-18.
[PMID: 23626932]
[50]
Kamal, M.A.; Pambuk, C.I.A.; Husein, A.S. The virulence of pigmented and non-pigmented Pseudomonas aeruginosa in mice with antibiotics susceptibility. Int. J. Vaccines Vaccin, 2016, 3(1), 00056.
[51]
Castañeda-Tamez, P.; Ramírez-Peris, J.; Pérez-Velázquez, J.; Kuttler, C.; Jalalimanesh, A.; Saucedo-Mora, M.Á.; Jiménez-Cortés, J.G.; Maeda, T.; González, Y.; Tomás, M.; Wood, T.K.; García-Contreras, R. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front. Microbiol., 2018, 9, 1348.
[http://dx.doi.org/10.3389/fmicb.2018.01348] [PMID: 29997585]
[52]
Mavrodi, D.V.; Bonsall, R.F.; Delaney, S.M.; Soule, M.J.; Phillips, G.; Thomashow, L.S. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol., 2001, 183(21), 6454-6465.
[http://dx.doi.org/10.1128/JB.183.21.6454-6465.2001] [PMID: 11591691]
[53]
Parsons, J.F.; Greenhagen, B.T.; Shi, K.; Calabrese, K.; Robinson, H.; Ladner, J.E. Structural and functional analysis of the pyocyanin biosynthetic protein PhzM from Pseudomonas aeruginosa. Biochemistry, 2007, 46(7), 1821-1828.
[http://dx.doi.org/10.1021/bi6024403] [PMID: 17253782]
[54]
Gallagher, L.A.; McKnight, S.L.; Kuznetsova, M.S.; Pesci, E.C.; Manoil, C. Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J. Bacteriol., 2002, 184(23), 6472-6480.
[http://dx.doi.org/10.1128/JB.184.23.6472-6480.2002] [PMID: 12426334]
[55]
McKnight, S.L.; Iglewski, B.H.; Pesci, E.C. The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol., 2000, 182(10), 2702-2708.
[http://dx.doi.org/10.1128/JB.182.10.2702-2708.2000] [PMID: 10781536]
[56]
Fuqua, C.; Parsek, M.R.; Greenberg, E.P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet., 2001, 35(1), 439-468.
[http://dx.doi.org/10.1146/annurev.genet.35.102401.090913] [PMID: 11700290]
[57]
Rahme, L.G.; Ausubel, F.M.; Cao, H.; Drenkard, E.; Goumnerov, B.C.; Lau, G.W.; Mahajan-Miklos, S.; Plotnikova, J.; Tan, M.W.; Tsongalis, J.; Walendziewicz, C.L.; Tompkins, R.G. Plants and animals share functionally common bacterial virulence factors. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 8815-8821.
[http://dx.doi.org/10.1073/pnas.97.16.8815] [PMID: 10922040]
[58]
Mahajan-Miklos, S.; Tan, M.W.; Rahme, L.G.; Ausubel, F.M. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell, 1999, 96(1), 47-56.
[http://dx.doi.org/10.1016/S0092-8674(00)80958-7] [PMID: 9989496]
[59]
Cao, H.; Krishnan, G.; Goumnerov, B.; Tsongalis, J.; Tompkins, R.; Rahme, L.G. A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc. Natl. Acad. Sci. USA, 2001, 98(25), 14613-14618.
[http://dx.doi.org/10.1073/pnas.251465298] [PMID: 11724939]
[60]
Lau, G.W.; Goumnerov, B.C.; Walendziewicz, C.L.; Hewitson, J.; Xiao, W.; Mahajan-Miklos, S.; Tompkins, R.G.; Perkins, L.A.; Rahme, L.G. The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect. Immun., 2003, 71(7), 4059-4066.
[http://dx.doi.org/10.1128/IAI.71.7.4059-4066.2003] [PMID: 12819096]
[61]
Pierson, L.S., III; Pierson, E.A. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol., 2010, 86(6), 1659-1670.
[http://dx.doi.org/10.1007/s00253-010-2509-3] [PMID: 20352425]
[62]
Rada, B.; Gardina, P.; Myers, T.G.; Leto, T.L. Reactive oxygen species mediate inflammatory cytokine release and EGFR-dependent mucin secretion in airway epithelial cells exposed to Pseudomonas pyocyanin. Mucosal Immunol., 2011, 4(2), 158-171.
[http://dx.doi.org/10.1038/mi.2010.62] [PMID: 20962773]
[63]
Gardner, P.R. Superoxide production by the mycobacterial and pseudomonad quinoid pigments phthiocol and pyocyanine in human lung cells. Arch. Biochem. Biophys., 1996, 333(1), 267-274.
[http://dx.doi.org/10.1006/abbi.1996.0390] [PMID: 8806780]
[64]
Britigan, B.E.; Roeder, T.L.; Rasmussen, G.T.; Shasby, D.M.; McCormick, M.L.; Cox, C.D. Interaction of the Pseudomonas aeruginosa secretory products pyocyanin and pyochelin generates hydroxyl radical and causes synergistic damage to endothelial cells. Implications for Pseudomonas-associated tissue injury. J. Clin. Invest., 1992, 90(6), 2187-2196.
[http://dx.doi.org/10.1172/JCI116104] [PMID: 1469082]
[65]
Suntres, Z.E.; Omri, A.; Shek, P.N. Pseudomonas aeruginosa-induced lung injury: role of oxidative stress. Microb. Pathog., 2002, 32(1), 27-34.
[http://dx.doi.org/10.1006/mpat.2001.0475] [PMID: 11782118]
[66]
O’Malley, Y.Q.; Abdalla, M.Y.; McCormick, M.L.; Reszka, K.J.; Denning, G.M.; Britigan, B.E. Subcellular localization of Pseudomonas pyocyanin cytotoxicity in human lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 284(2), L420-L430.
[http://dx.doi.org/10.1152/ajplung.00316.2002] [PMID: 12414438]
[67]
Bannister, J.V.; Bannister, W.H.; Rotilio, G. Aspects of the structure, function, and applications of superoxide dismutase. Crit. Rev. Biochem., 1987, 22(2), 111-180.
[http://dx.doi.org/10.3109/10409238709083738] [PMID: 3315461]
[68]
Heffner, J.E.; Repine, J.E. Pulmonary strategies of antioxidant defense. Am. Rev. Respir. Dis., 1989, 140(2), 531-554.
[http://dx.doi.org/10.1164/ajrccm/140.2.531] [PMID: 2669581]
[69]
Powis, G.; Montfort, W.R. Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct., 2001, 30(1), 421-455.
[http://dx.doi.org/10.1146/annurev.biophys.30.1.421] [PMID: 11441809]
[70]
Aquilano, K.; Baldelli, S.; Ciriolo, M.R. Glutathione: New roles in redox signaling for an old antioxidant. Front. Pharmacol., 2014, 5, 196.
[http://dx.doi.org/10.3389/fphar.2014.00196] [PMID: 25206336]
[71]
O’Malley, Y.Q.; Reszka, K.J.; Spitz, D.R.; Denning, G.M.; Britigan, B.E. Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 287(1), L94-L103.
[http://dx.doi.org/10.1152/ajplung.00025.2004] [PMID: 15020296]
[72]
Gloyne, L.S.; Grant, G.D.; Perkins, A.V.; Powell, K.L.; McDermott, C.M.; Johnson, P.V.; Anderson, G.J.; Kiefel, M.; Anoopkumar-Dukie, S. Pyocyanin-induced toxicity in A549 respiratory cells is causally linked to oxidative stress. Toxicol. In Vitro, 2011, 25(7), 1353-1358.
[http://dx.doi.org/10.1016/j.tiv.2011.05.004] [PMID: 21596130]
[73]
McDermott, C.; Chess-Williams, R.; Mills, K.A.; Kang, S.H.; Farr, S.E.; Grant, G.D.; Perkins, A.V.; Davey, A.K.; Anoopkumar-Dukie, S. Alterations in acetylcholine, PGE2 and IL6 release from urothelial cells following treatment with pyocyanin and lipopolysaccharide. Toxicol. In Vitro, 2013, 27(6), 1693-1698.
[http://dx.doi.org/10.1016/j.tiv.2013.04.015] [PMID: 23665401]
[74]
Lauredo, I.T.; Sabater, J.R.; Ahmed, A.; Botvinnikova, Y.; Abraham, W.M. Mechanism of pyocyanin- and 1-hydroxyphenazine-induced lung neutrophilia in sheep airways. J. Appl. Physiol., 1998, 85(6), 2298-2304.
[http://dx.doi.org/10.1152/jappl.1998.85.6.2298] [PMID: 9843556]
[75]
Cheluvappa, R.; Jamieson, H.A.; Hilmer, S.N.; Muller, M.; Le Couteur, D.G. The effect of Pseudomonas aeruginosa virulence factor, pyocyanin, on the liver sinusoidal endothelial cell. J. Gastroenterol. Hepatol., 2007, 22(8), 1350-1351.
[http://dx.doi.org/10.1111/j.1440-1746.2007.05016.x] [PMID: 17688676]
[76]
Reszka, K.J.; O’Malley, Y.; McCormick, M.L.; Denning, G.M.; Britigan, B.E. Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radic. Biol. Med., 2004, 36(11), 1448-1459.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.03.011] [PMID: 15135182]
[77]
Koley, D.; Ramsey, M.M.; Bard, A.J.; Whiteley, M. Discovery of a biofilm electrocline using real-time 3D metabolite analysis. Proc. Natl. Acad. Sci. USA, 2011, 108(50), 19996-20001.
[http://dx.doi.org/10.1073/pnas.1117298108] [PMID: 22123963]
[78]
Wilson, R.; Sykes, D.A.; Watson, D.; Rutman, A.; Taylor, G.W.; Cole, P.J. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect. Immun., 1988, 56(9), 2515-2517.
[http://dx.doi.org/10.1128/iai.56.9.2515-2517.1988] [PMID: 3137173]
[79]
Look, D.C.; Stoll, L.L.; Romig, S.A.; Humlicek, A.; Britigan, B.E.; Denning, G.M. Pyocyanin and its precursor phenazine-1-carboxylic acid increase IL-8 and intercellular adhesion molecule-1 expression in human airway epithelial cells by oxidant-dependent mechanisms. J. Immunol., 2005, 175(6), 4017-4023.
[http://dx.doi.org/10.4049/jimmunol.175.6.4017] [PMID: 16148150]
[80]
Hao, Y.; Kuang, Z.; Walling, B.E.; Bhatia, S.; Sivaguru, M.; Chen, Y.; Gaskins, H.R.; Lau, G.W. Pseudomonas aeruginosa pyocyanin causes airway goblet cell hyperplasia and metaplasia and mucus hypersecretion by inactivating the transcriptional factor FoxA2. Cell. Microbiol., 2012, 14(3), 401-415.
[http://dx.doi.org/10.1111/j.1462-5822.2011.01727.x] [PMID: 22103442]
[81]
Munro, N.C.; Barker, A.; Rutman, A.; Taylor, G.; Watson, D.; McDonald-Gibson, W.J.; Towart, R.; Taylor, W.A.; Wilson, R.; Cole, P.J. Effect of pyocyanin and 1-hydroxyphenazine on in vivo tracheal mucus velocity. J. Appl. Physiol., 1989, 67(1), 316-323.
[http://dx.doi.org/10.1152/jappl.1989.67.1.316] [PMID: 2759959]
[82]
O’Malley, Y.Q.; Reszka, K.J.; Rasmussen, G.T.; Abdalla, M.Y.; Denning, G.M.; Britigan, B.E. The Pseudomonas secretory product pyocyanin inhibits catalase activity in human lung epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(5), L1077-L1086.
[http://dx.doi.org/10.1152/ajplung.00198.2003] [PMID: 12871859]
[83]
Muller, M. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic. Biol. Med., 2006, 41(11), 1670-1677.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.09.004] [PMID: 17145555]
[84]
Rada, B.; Leto, T.L. Pyocyanin effects on respiratory epithelium: Relevance in Pseudomonas aeruginosa airway infections. Trends Microbiol., 2013, 21(2), 73-81.
[http://dx.doi.org/10.1016/j.tim.2012.10.004] [PMID: 23140890]
[85]
Mittal, R.; Aggarwal, S.; Sharma, S.; Chhibber, S.; Harjai, K. Urinary tract infections caused by Pseudomonas aeruginosa: A minireview. J. Infect. Public Health, 2009, 2(3), 101-111.
[http://dx.doi.org/10.1016/j.jiph.2009.08.003] [PMID: 20701869]
[86]
Al-Ani, F.Y.; Al-Shibib, A.S.; Khammas, K.M.; Taher, R. Pyocyanin preparation from Pseudomonas aeruginosa isolated from heterogeneous clinical materials. Folia Microbiol. (Praha), 1986, 31(3), 215-219.
[http://dx.doi.org/10.1007/BF02928003] [PMID: 3093341]
[87]
Muller, M.; Li, Z.; Maitz, P.K.M. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns, 2009, 35(4), 500-508.
[http://dx.doi.org/10.1016/j.burns.2008.11.010] [PMID: 19286324]
[88]
McFarland, A.J.; Grant, G.D.; Perkins, A.V.; Flegg, C.; Davey, A.K.; Allsopp, T.J.; Renshaw, G.; Kavanagh, J.; McDermott, C.M.; Anoopkumar-Dukie, S. Paradoxical role of 3-methyladenine in pyocyanin-induced toxicity in 1321N1 astrocytoma and SH-SY5Y neuroblastoma cells. Int. J. Toxicol., 2013, 32(3), 209-218.
[http://dx.doi.org/10.1177/1091581813482146] [PMID: 23525265]
[89]
Polovina, M.; Potpara, T.; Milošević, I.; Stepanović, J.; Jovanović, M.; Pavlović, M. Mitral valve endocarditis caused by Pseudomonas aeruginosa: A case report. J. Infect. Dev. Ctries., 2014, 8(5), 676-679.
[http://dx.doi.org/10.3855/jidc.3816] [PMID: 24820475]
[90]
Huang, Y.C.; Lin, T.Y.; Wang, C.H. Community-acquired Pseudomonas aeruginosa sepsis in previously healthy infants and children: Analysis of forty-three episodes. Pediatr. Infect. Dis. J., 2002, 21(11), 1049-1052.
[http://dx.doi.org/10.1097/00006454-200211000-00015] [PMID: 12442028]
[91]
Cheluvappa, R.; Cogger, V.C.; Kwun, S.Y.; O’Reilly, J.N.; Le Couteur, D.G.; Hilmer, S.N. Liver sinusoidal endothelial cells and acute non-oxidative hepatic injury induced by Pseudomonas aeruginosa pyocyanin. Int. J. Exp. Pathol., 2008, 89(6), 410-418.
[http://dx.doi.org/10.1111/j.1365-2613.2008.00602.x] [PMID: 19134050]
[92]
Burton, M.O.; Campbell, J.J.R.; Eagles, B.A. The mineral requirements for pyocyanin production. Can. J. Res., 1948, 26c(1), 15-22.
[http://dx.doi.org/10.1139/cjr48c-002] [PMID: 18909153]
[93]
Karpagam, S.; Sudhakar, T.; Lakshmipathy, M. Microbicidal response of pyocyanin produced by P. aeruginosa toward clinical isolates of fungi. Int. J. Pharm. Pharm. Sci., 2013, 5, 870-873.
[94]
Brown, V.I.; Lowbury, E.J.L. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. J. Clin. Pathol., 1965, 18(6), 752-756.
[http://dx.doi.org/10.1136/jcp.18.6.752] [PMID: 4954265]
[95]
Lilly, H.A.; Lowbury, E.J.L. Cetrimide-nalidixic acid agar as a selective medium for Speudomonas aeruginosa. J. Med. Microbiol., 1972, 5(1), 151-153.
[http://dx.doi.org/10.1099/00222615-5-1-151] [PMID: 4623347]
[96]
Ingledew, W.M.; Campbell, J.J.R. A new resuspension medium for pyocyanine production. Can. J. Microbiol., 1969, 15(6), 595-598.
[http://dx.doi.org/10.1139/m69-101] [PMID: 4978988]
[97]
Byng, G.S.; Eustice, D.C.; Jensen, R.A. Biosynthesis of phenazine pigments in mutant and wild-type cultures of Pseudomonas aeruginosa. J. Bacteriol., 1979, 138(3), 846-852.
[http://dx.doi.org/10.1128/jb.138.3.846-852.1979] [PMID: 110770]
[98]
Chang, P.C.; Blackwood, A.C. Simultaneous production of three phenazine pigments by Pseudomonas aeruginosa Mac 436. Can. J. Microbiol., 1969, 15(5), 439-444.
[http://dx.doi.org/10.1139/m69-077] [PMID: 4977719]
[99]
Reyes, E.A.; Bale, M.J.; Cannon, W.H.; Matsen, J.M. Identification of Pseudomonas aeruginosa by pyocyanin production on Tech agar. J. Clin. Microbiol., 1981, 13(3), 456-458.
[http://dx.doi.org/10.1128/jcm.13.3.456-458.1981] [PMID: 6787067]
[100]
El-Samerraie, F.T.; Mohammed, A.R.; Al-Mosawi, M.A.; Matloob, S.E.A. Treatment of Pseudomonas life threatening chronic suppurative otitis media by new conservative therapy: A prospective study. J Islam Acad Sci, 1997, 10, 109-112.
[101]
Fontoura, R.; Spada, J.C.; Silveira, S.T.; Tsai, S.M.; Brandelli, A. Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J. Microbiol. Biotechnol., 2009, 25(2), 205-213.
[http://dx.doi.org/10.1007/s11274-008-9882-4]
[102]
Hassanein, W.A.; Awny, N.M.; El-Mougith, A.A.; Salah El-Dein, S.H. Characterization and antagonistic activities of metabolite produced by Pseudomonas aeruginosa Sha8. J. Appl. Sci. Res., 2009, 5, 392-403.
[103]
Saosoong, K.; Wongphathanakul, W.; Paorsiri, C.; Ruangviriyachi, C. Isolation and analysis of antibacterial substance produced from Pseudomonas aeruginosa TISTR 781. KKU Sci. J., 2009, 37, 163-172.
[104]
Susan, H.; Catherine, M.D.; Shailendra, A.; Amelia, J.; Amanda, F.; Anthony, P.; Russ, W.; Milton, J.K.; Devinder, A.; Gary, D.G. Cellular effects of pyocyanin, a secreted virulence factor of Pseudoonas aeruginosa. Toxins (Basel), 2016, 8(236), 1-14.
[105]
Denning, G.M.; Iyer, S.S.; Reszka, K.J.; O’Malley, Y.; Rasmussen, G.T.; Britigan, B.E. Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol., 2003, 285(3), L584-L592.
[http://dx.doi.org/10.1152/ajplung.00086.2003] [PMID: 12765878]
[106]
Kerr, J.R.; Taylor, G.W.; Rutman, A.; Høiby, N.; Cole, P.J.; Wilson, R. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol., 1999, 52(5), 385-387.
[http://dx.doi.org/10.1136/jcp.52.5.385] [PMID: 10560362]
[107]
Pittard, J.; Yang, J. Biosynthesis of the aromatic amino acids In: EcoSal Plus; , 2008. 3
[http://dx.doi.org/10.1128/ecosalplus.3.6.1.8]
[108]
Smith, R.; Iglewski, B.H.P.P. aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol., 2003, 6(1), 56-60.
[http://dx.doi.org/10.1016/S1369-5274(03)00008-0] [PMID: 12615220]
[109]
Aonofriesei, F.; Crâsmaru, M. Antibacterial activity of pyocyanin produced by some Pseudomonas strains isolated from seawater. In: Annals of the University of Craiova; , 2004; pp. 121-126.
[110]
Kunzelmann, K.; Schreiber, R. CFTR, a regulator of channels. J. Membr. Biol., 1999, 168(1), 1-8.
[http://dx.doi.org/10.1007/s002329900492] [PMID: 10051684]
[111]
Kennedy, M.J. Current status of gene therapy for cystic fibrosis pulmonary disease. Am. J. Respir. Med., 2002, 1(5), 349-360.
[http://dx.doi.org/10.1007/BF03256628] [PMID: 14720037]
[112]
Waksman, S.A.; Woodruff, H.B. The soil as a source of microorganisms antagonistic to disease producing bacteria. J. Bacteriol., 1940, 40(4), 581-600.
[http://dx.doi.org/10.1128/jb.40.4.581-600.1940] [PMID: 16560371]
[113]
Baron, S.S.; Terranova, G.; Rowe, J.J. Molecular mechanism of the antimicrobial action of pyocyanin. Curr. Microbiol., 1989, 18(4), 223-230.
[http://dx.doi.org/10.1007/BF01570296]
[114]
Machan, Z.A.; Pitt, T.L.; White, W.; Watson, D.; Taylor, G.W.; Cole, P.J.; Wilson, R. Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an antistaphylococcal substance. J. Med. Microbiol., 1991, 34(4), 213-217.
[http://dx.doi.org/10.1099/00222615-34-4-213] [PMID: 1902262]
[115]
Anjaiah, V.; Cornelis, P.; Koedam, N. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can. J. Microbiol., 2003, 49(2), 85-91.
[http://dx.doi.org/10.1139/w03-011] [PMID: 12718396]
[116]
Samanta, S.; Thavasi, R.; Jayalakshmi, S. Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res. J. Microbiol., 2008, 3, 122-128.
[http://dx.doi.org/10.3923/jm.2008.122.128]
[117]
Sweedan, E.G. Study the effect of antibiotics on pyocyanin production from Pseudomonas aeruginosa and pyocyanin as antibiotic against different pathogenic bacteria. J. Univ. Anbar. Pure. Sci., 2010, 4, 15-18.
[118]
Robertson, D.M.; Petroll, W.M.; Jester, J.V. Contact lens related Pseudomonas keratitis: Contact lens anterior eye. Curr. Concepts, 2007, 30, 94-107.
[119]
Ramphal, R.; McNiece, M.T.; Polack, F.M. Adherence of Pseudomonas aeruginosa to the injured cornea: A step in the pathogenesis of corneal infections. Ann. Ophthalmol., 1981, 13(4), 421-425.
[PMID: 6787968]
[120]
Stern, G.A.; Lubniewski, A.; Allen, C. The interaction between Pseudomonas aeruginosa and the corneal epithelium. An electron microscopic study. Arch. Ophthalmol., 1985, 103(8), 1221-1225.
[http://dx.doi.org/10.1001/archopht.1985.01050080133033] [PMID: 3927878]
[121]
Kerr, J.R. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J. Clin. Microbiol., 1994, 32(2), 525-527.
[http://dx.doi.org/10.1128/jcm.32.2.525-527.1994] [PMID: 8150966]
[122]
Pal, R.; Revathi, R. Susceptibility of yeasts to Pseudomonas aeruginosa. Indian J. Med. Microbiol., 1998, 16, 72-74.
[123]
Hogan, D.A.; Kolter, R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science, 2002, 296(5576), 2229-2232.
[http://dx.doi.org/10.1126/science.1070784] [PMID: 12077418]
[124]
McAlester, G.; O’Gara, F.; Morrissey, J.P. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J. Med. Microbiol., 2008, 57(5), 563-569.
[http://dx.doi.org/10.1099/jmm.0.47705-0] [PMID: 18436588]
[125]
Gibson, J.; Sood, A.; Hogan, D.A. Pseudomonas aeruginosa-Candida albicans interactions: Localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol., 2009, 75(2), 504-513.
[http://dx.doi.org/10.1128/AEM.01037-08] [PMID: 19011064]
[126]
Sudhakar, T.; Karpagam, S.; Shiyama, S. Antifungal efficacy of pyocyanin produced from bioindicators of nosocomial hazards. Int. J. Chemtech Res., 2003, 5, 1101-1106.
[127]
Wang, M.C.; Liu, C.Y.; Shiao, A.S.; Wang, T. Ear problems in swimmers. J. Chin. Med. Assoc., 2005, 68(8), 347-352.
[http://dx.doi.org/10.1016/S1726-4901(09)70174-1] [PMID: 16138712]
[128]
Ninkovic, G.; Dullo, V.; Saunders, N.C. Microbiology of otitis externa in the secondary care in United Kingdom and antimicrobial sensitivity. Auris Nasus Larynx, 2008, 35(4), 480-484.
[http://dx.doi.org/10.1016/j.anl.2007.09.013] [PMID: 18314283]
[129]
Cook, R.J. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol., 1993, 31(1), 53-80.
[http://dx.doi.org/10.1146/annurev.py.31.090193.000413] [PMID: 18643761]
[130]
Cook, R.J. Biological control and holistic plant-health care in agriculture. Am. J. Altern. Agric., 1988, 3(2-3), 51-62.
[http://dx.doi.org/10.1017/S0889189300002186]
[131]
Glick, B.R. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 1995, 41(2), 109-117.
[http://dx.doi.org/10.1139/m95-015]
[132]
Ali Siddiqui, I.; Ehetshamul-Haque, S.; Shahid Shaukat, S. Use of rhizobacteria in the control of root rot-root knot disease complex of mungbean. J. Phytopathol., 2001, 149(6), 337-346.
[http://dx.doi.org/10.1046/j.1439-0434.2001.00630.x]
[133]
Audenaert, K.; Pattery, T.; Cornelis, P.; Höfte, M. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact., 2002, 15(11), 1147-1156.
[http://dx.doi.org/10.1094/MPMI.2002.15.11.1147] [PMID: 12423020]
[134]
Kumar, R.S.; Ayyadurai, N.; Pandiaraja, P.; Reddy, A.V.; Venkateswarlu, Y.; Prakash, O.; Sakthivel, N. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol., 2005, 98(1), 145-154.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02435.x] [PMID: 15610427]
[135]
Rane, M.R.; Sarode, P.D.; Chaudhari, B.L.; Chincholkar, S.B. Detection, isolation and identification of phenazine-1-carboxylic acid produced by biocontrol strains of Pseudomonas aeruginosa. J. Sci. Ind. Res. (India), 2007, 66, 627-631.
[136]
Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem., 2005, 37(5), 955-964.
[http://dx.doi.org/10.1016/j.soilbio.2004.10.021]
[137]
De Vleesschauwer, D.; Cornelis, P.; Höfte, M. Redox-active pyocyanin secreted by Pseudomonas aeruginosa 7NSK2 triggers systemic resistance to Magnaporthe grisea but enhances Rhizoctonia solani susceptibility in rice. Mol. Plant Microbe Interact., 2006, 19(12), 1406-1419.
[http://dx.doi.org/10.1094/MPMI-19-1406] [PMID: 17153925]
[138]
Onbasli, D.; Aslim, B. Determination of antimicrobial activity and production of some metabolites by Pseudomonas aeruginosa B1 and B2 in sugar beet molasses. Afr. J. Biotechnol., 2008, 7, 4614-4619.
[139]
Mallesh, S.B. Plant growth promoting rhizobactaria their characterization and mechanism in the suppression of soil borne pathogens of coleus and ashwaghandha., Ph.D. thesis, University of Agricultural Sciences.: Dharwad.; India, 2008.
[140]
Al-Hinai, A.H.; Al-Sadi, A.M.; Al-Bahry, S.N.; Mothershaw, A.S.; Al-Said, F.A.; Al-Harthi, S.A.; Deadman, M.L. Isolation and characterization of Pseudomonas aeruginosa with antagonistic activity against Pythium aphani dermaturm. J. Plant Pathol., 2010, 92, 653-660.
[141]
Khare, E.; Arora, N.K. Dual activity of pyocyanin from Pseudomonas aeruginosa -antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can. J. Microbiol., 2011, 57(9), 708-713.
[http://dx.doi.org/10.1139/w11-055] [PMID: 21851321]
[142]
Bakthavatchalu, S.; Shivakumar, S.; Sullia, S.B. Molecular detection of antibiotic related genes from Pseudomonas aeruginosa FP6, an antagonist towards Rhizoctonia solani and Colletotrichum gloeosporioides. Turk. J. Biol., 2013, 37, 289-295.
[http://dx.doi.org/10.3906/biy-1207-56]
[143]
Khamdan, K.; Suprapta, D.N. Induction of plant resistance against soyabean stunt virus using some formulations of Pseudomonas aeruginosa. J ASSAAS, 2011, 17, 98-105.
[144]
Angell, S.; Bench, B.J.; Williams, H.; Watanabe, C.M.H. Pyocyanin isolated from a marine microbial population: synergistic production between two distinct bacterial species and mode of action. Chem. Biol., 2006, 13(12), 1349-1359.
[http://dx.doi.org/10.1016/j.chembiol.2006.10.012] [PMID: 17185230]
[145]
Gao, L.; Kim, K.J.; Yankaskas, J.R.; Forman, H.J. Abnormal glutathione transport in cystic fibrosis airway epithelia. Am. J. Physiol., 1999, 277(1), L113-L118.
[PMID: 10409237]
[146]
Kogan, I.; Ramjeesingh, M.; Li, C.; Kidd, J.F.; Wang, Y.; Leslie, E.M.; Cole, S.P.; Bear, C.E. CFTR directly mediates nucleotide-regulated glutathione flux. EMBO J., 2003, 22(9), 1981-1989.
[http://dx.doi.org/10.1093/emboj/cdg194] [PMID: 12727866]
[147]
Griese, M.; Ramakers, J.; Krasselt, A.; Starosta, V.; van Koningsbruggen, S.; Fischer, R.; Ratjen, F.; Müllinger, B.; Huber, R.M.; Maier, K.; Rietschel, E.; Scheuch, G. Improvement of alveolar glutathione and lung function but not oxidative state in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2004, 169(7), 822-828.
[http://dx.doi.org/10.1164/rccm.200308-1104OC] [PMID: 14726422]
[148]
Wood, L.G.; Fitzgerald, D.A.; Lee, A.K.; Garg, M.L. Improved antioxidant and fatty acid status of patients with cystic fibrosis after antioxidant supplementation is linked to improved lung function1–3. Am. J. Clin. Nutr., 2003, 77(1), 150-159.
[http://dx.doi.org/10.1093/ajcn/77.1.150] [PMID: 12499335]
[149]
Rancourt, R.C.; Tai, S.; King, M.; Heltshe, S.L.; Penvari, C.; Accurso, F.J.; White, C.W. Thioredoxin liquefies and decreases the viscoelasticity of cystic fibrosis sputum. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 286(5), L931-L938.
[http://dx.doi.org/10.1152/ajplung.00352.2003] [PMID: 14695120]
[150]
Muller, M.; Merrett, N.D. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob. Agents Chemother., 2014, 58(9), 5492-5499.
[http://dx.doi.org/10.1128/AAC.03069-14] [PMID: 25001302]
[151]
Chen, J.; Xiao-Chang, C. Organic Light-Emitting Device Having Phenanthroline-Fused Phenazine. U.S. Patent 6,713,781, 2004.
[152]
Jayaseelan, S.; Ramaswamy, D.; Dharmaraj, S. Pyocyanin: production, applications, challenges and new insights. World J. Microbiol. Biotechnol., 2014, 30(4), 1159-1168.
[http://dx.doi.org/10.1007/s11274-013-1552-5] [PMID: 24214679]
[153]
Yu, D.; Yong, Y.C.; Liu, C.; Fang, Y.; Bai, L.; Dong, S. New applications of genetically modified Pseudomonas aeruginosa for toxicity detection in water. Chemosphere, 2017, 184, 106-111.
[http://dx.doi.org/10.1016/j.chemosphere.2017.05.154] [PMID: 28582765]
[154]
DeBritto, S.; Gajbar, T.D.; Satapute, P.; Sundaram, L.; Lakshmikantha, R.Y.; Jogaiah, S.; Ito, S. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Sci. Rep., 2020, 10(1), 1542.
[http://dx.doi.org/10.1038/s41598-020-58335-6] [PMID: 32005900]
[155]
Rabaey, K.; Verstraete, W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol., 2005, 23(6), 291-298.
[http://dx.doi.org/10.1016/j.tibtech.2005.04.008] [PMID: 15922081]
[156]
Dantas, P.V.; Peres, S.; Campos-Takaki, G.M.; La Rotta, C.E. Utilization of raw glycerol for pyocyanin production from Pseudomonas aeruginosa in half-microbial fuel cells: Evaluation of two electrochemical approaches. J. Electrochem. Soc., 2013, 160(10), G142-G148.
[http://dx.doi.org/10.1149/2.035310jes]
[157]
Viana, A.A.G.; Oliveira, B.T.M.; Cavalcanti, T.G.; Sousa, K.A.; Mendonça, E.A.M.; Amaral, I.P.G.; Vasconcelos, U. Correlation between pyocyanin production and hydrocarbonoclastic activity in nine strains of Pseudomonas aeruginosa. Int. J. Adv. Eng. Res. Sci., 2018, 5(7), 212-223.
[http://dx.doi.org/10.22161/ijaers.5.7.28]
[158]
Gharieb, M.M.; El-Sheekh, M.M.; El-Sabbagh, S.; Hamza, W.T. Efficacy of pyocyanin produced by Pseudomonas aeruginosa as a topical treatment of infected skin of rabbits. Biotechnol. Indian J., 2013, 7, 184-193.
[159]
Priyaja, P.; Jayesh, P.; Philip, R.; Bright Singh, I.S. Pyocyanin induced in vitro oxidative damage and its toxicity level in human, fish and insect cell lines for its selective biological applications. Cytotechnology, 2016, 68(1), 143-155.
[http://dx.doi.org/10.1007/s10616-014-9765-5] [PMID: 25091858]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy