Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

PCSK9 Biomarker and Key Modulator for Cardiovascular Disorders: Heralding a New Therapeutic Era and Their Future Perspectives

Author(s): Jitendra Gupta* and Reena Gupta

Volume 16, Issue 8, 2023

Published on: 03 February, 2023

Article ID: e021222211554 Pages: 23

DOI: 10.2174/1874467216666221202144813

Price: $65

Abstract

Cardiovascular disorders (CVDs) are the leading cause of death worldwide and are accelerated via the low level of low-density lipoprotein-cholesterol (LDL-C). The proprotein convertase subtilis/kexin type9 (PCSK9), a vital regulator and a biomarker, circulates for the LDL-C and has the degradation capability of the low-density lipoprotein receptor (LDLR). PCSK9 has modulated the overall mechanism by transcription, secretion, clearance, or extracellular inactivation in the past few years.PCSK9 has specific pathophysiological roles in many cardiovascular cells. The initial data on the PCSK9 inhibitor, Evolocumab, has a specific reduction in the composite end-point, such as cardiovascular, myocardial, and stroke, while the rest of the data release is still under wait. Furthermore, it is witnessed that the U.S. and the European authorities have approved two humanized antibodies against the LDL-R binding site of PCSK9. This review highlighted the recent data findings on the PCSK9 and its regulation, focusing on cardiovascular disorders, and summarized the current clinical studies. Thus it provides a ray of hope to overcome statin intolerance and alternative approaches for PSCK9 inhibition and significantly reduce cardiovascular complications. This review plays a pivotal role for the researchers and scientists working on PCSK9 inhibitors to treat cardiovascular disorders.

Graphical Abstract

[1]
World Health Organization Top 10 causes of death., Available from: http://www.who.int/mediacentre/factsheets/fs310/en/index2.html(Accessed on: January 4 2022)
[2]
World Economic Forum and Harvard School of Public Health The global economic burden of Noncommunicable Diseases., 2011. Available from: http://www3. weforum.org/docs/WEF_Harvard_ HE_GlobalEconomicBurdenNonCommunicableDiseases_2011.pdf(Accessed on: January 5, 2022).
[3]
Benhuri, B.; Ueyama, H.; Takagi, H.; Briasoulis, A.; Kuno, T. PCSK9 inhibitors and ezetimibe monotherapy in patients not receiving statins: A meta-analysis of randomized trials. Curr. Vasc. Pharmacol., 2021, 19(4), 390-397.
[http://dx.doi.org/10.2174/1570161118666200807114559] [PMID: 32767943]
[4]
Wierzbicki, A.; Graham, C.; Young, I.; Nicholls, D. Familial combined hyperlipidaemia: under - defined and under - diagnosed? Curr. Vasc. Pharmacol., 2008, 6(1), 13-22.
[http://dx.doi.org/10.2174/157016108783331268] [PMID: 18220935]
[5]
Ali, A.H.; Younis, N.; Abdallah, R.; Shaer, F.; Dakroub, A.; Ayoub, M.A.; Iratni, R.; Yassine, H.M.; Zibara, K.; Orekhov, A.; El-Yazbi, A.F.; Eid, A.H. Lipid-lowering therapies for atherosclerosis: Statins, fibrates, ezetimibe and PCSK9 monoclonal antibodies. Curr. Med. Chem., 2021, 28(36), 7427-7445.
[http://dx.doi.org/10.2174/0929867328666210222092628] [PMID: 33655822]
[6]
Béliard, S.; Carreau, V.; Carrié, A.; Giral, P.; Duchêne, E.; Farnier, M.; Ferrières, J.; Fredenrich, A.; Krempf, M.; Luc, G.; Moulin, P.; Bruckert, E. Improvement in LDL-cholesterol levels of patients with familial hypercholesterolemia: Can we do better? Analysis of results obtained during the past two decades in 1669 French subjects. Atherosclerosis, 2014, 234(1), 136-141.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.02.021] [PMID: 24637413]
[7]
Mundal, L.; Sarancic, M.; Ose, L.; Iversen, P.O.; Borgan, J.K.; Veierød, M.B.; Leren, T.P.; Retterstøl, K. Mortality among patients with familial hypercholesterolemia: a registry-based study in Norway, 1992-2010 J. Am. Heart Assoc, 2014, 3(6), e001236.
[http://dx.doi.org/10.1161/JAHA.114.001236] [PMID: 25468658]
[8]
Vishwakarma, V.K.; Upadhyay, P.K.; Gupta, J.K.; Yadav, H.N. Pathophysiologic role of ischemia reperfusion injury: A review. J. Indian Coll. Cardiol., 2017, 7(3), 97-104.
[http://dx.doi.org/10.1016/j.jicc.2017.06.017]
[9]
Maurya, K.; Semwal, B.C.; Singh, N.; Khatoon, R.; Paswan, S.; Debjit, B. Chronopharmacology: As a therapy for cardiovascular disease. Pharma Innov., 2012, 1(3), 6-15.
[10]
Seidah, N.G.; Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov., 2012, 11(5), 367-383.
[http://dx.doi.org/10.1038/nrd3699] [PMID: 22679642]
[11]
Abifadel, M.; Varret, M.; Rabès, J.P.; Allard, D.; Ouguerram, K.; Devillers, M.; Cruaud, C.; Benjannet, S.; Wickham, L.; Erlich, D.; Derré, A.; Villéger, L.; Farnier, M.; Beucler, I.; Bruckert, E.; Chambaz, J.; Chanu, B.; Lecerf, J.M.; Luc, G.; Moulin, P.; Weissenbach, J.; Prat, A.; Krempf, M.; Junien, C.; Seidah, N.G.; Boileau, C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet., 2003, 34(2), 154-156.
[http://dx.doi.org/10.1038/ng1161] [PMID: 12730697]
[12]
Cohen, J.; Pertsemlidis, A.; Kotowski, I.K.; Graham, R.; Garcia, C.K.; Hobbs, H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet., 2005, 37(2), 161-165.
[http://dx.doi.org/10.1038/ng1509] [PMID: 15654334]
[13]
Cohen, J.C.; Boerwinkle, E.; Mosley, T.H., Jr; Hobbs, H.H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med., 2006, 354(12), 1264-1272.
[http://dx.doi.org/10.1056/NEJMoa054013] [PMID: 16554528]
[14]
Hooper, A.J.; Marais, A.D.; Tanyanyiwa, D.M.; Burnett, J.R. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a Southern African population. Atherosclerosis, 2007, 193(2), 445-448.
[http://dx.doi.org/10.1016/j.atherosclerosis.2006.08.039] [PMID: 16989838]
[15]
Fasano, T.; Cefalù, A.B.; Di Leo, E.; Noto, D.; Pollaccia, D.; Bocchi, L.; Valenti, V.; Bonardi, R.; Guardamagna, O.; Averna, M.; Tarugi, P. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler. Thromb. Vasc. Biol., 2007, 27(3), 677-681.
[http://dx.doi.org/10.1161/01.ATV.0000255311.26383.2f] [PMID: 17170371]
[16]
Zhao, Z.; Tuakli-Wosornu, Y.; Lagace, T.A.; Kinch, L.; Grishin, N.V.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am. J. Hum. Genet., 2006, 79(3), 514-523.
[http://dx.doi.org/10.1086/507488] [PMID: 16909389]
[17]
Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; Sever, P.S.; Pedersen, T.R. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med., 2017, 376(18), 1713-1722.
[http://dx.doi.org/10.1056/NEJMoa1615664] [PMID: 28304224]
[18]
Leren, T.P. Cascade genetic screening for familial hypercholesterolemia. Clin. Genet., 2004, 66(6), 483-487.
[http://dx.doi.org/10.1111/j.1399-0004.2004.00320.x] [PMID: 15521974]
[19]
Shioji, K.; Mannami, T.; Kokubo, Y.; Inamoto, N.; Takagi, S.; Goto, Y.; Nonogi, H.; Iwai, N. Genetic variants in PCSK9 affect the choles-terol level in Japanese. J. Hum. Genet., 2004, 49(2), 109-114.
[http://dx.doi.org/10.1007/s10038-003-0114-3] [PMID: 14727156]
[20]
Timms, K.M.; Wagner, S.; Samuels, M.E.; Forbey, K.; Goldfine, H.; Jammulapati, S.; Skolnick, M.H.; Hopkins, P.N.; Hunt, S.C.; Shattuck, D.M. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet., 2004, 114(4), 349-353.
[http://dx.doi.org/10.1007/s00439-003-1071-9] [PMID: 14727179]
[21]
Mayer, G.; Poirier, S.; Seidah, N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem., 2008, 283(46), 31791-31801.
[http://dx.doi.org/10.1074/jbc.M805971200] [PMID: 18799458]
[22]
Cunningham, D.; Danley, D.E.; Geoghegan, K.F.; Griffor, M.C.; Hawkins, J.L.; Subashi, T.A.; Varghese, A.H.; Ammirati, M.J.; Culp, J.S.; Hoth, L.R.; Mansour, M.N.; McGrath, K.M.; Seddon, A.P.; Shenolikar, S.; Stutzman-Engwall, K.J.; Warren, L.C.; Xia, D.; Qiu, X. Structur-al and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol., 2007, 14(5), 413-419.
[http://dx.doi.org/10.1038/nsmb1235] [PMID: 17435765]
[23]
Turpeinen, H.; Ortutay, Z.; Pesu, M. Genetics of the first seven proprotein convertase enzymes in health and disease. Curr. Genomics, 2013, 14(7), 453-467.
[http://dx.doi.org/10.2174/1389202911314050010] [PMID: 24396277]
[24]
Hampton, E.N.; Knuth, M.W.; Li, J.; Harris, J.L.; Lesley, S.A.; Spraggon, G. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14604-14609.
[http://dx.doi.org/10.1073/pnas.0703402104] [PMID: 17804797]
[25]
Piper, D.E.; Jackson, S.; Liu, Q.; Romanow, W.G.; Shetterly, S.; Thibault, S.T.; Shan, B.; Walker, N.P.C. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure, 2007, 15(5), 545-552.
[http://dx.doi.org/10.1016/j.str.2007.04.004] [PMID: 17502100]
[26]
McNutt, M.C.; Lagace, T.A.; Horton, J.D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem., 2007, 282(29), 20799-20803.
[http://dx.doi.org/10.1074/jbc.C700095200] [PMID: 17537735]
[27]
Li, J.; Tumanut, C.; Gavigan, J.A.; Huang, W.J.; Hampton, E.N.; Tumanut, R.; Suen, K.F.; Trauger, J.W.; Spraggon, G.; Lesley, S.A.; Liau, G.; Yowe, D.; Harris, J.L. Secreted PCSK9 promotes LDL receptor degradation independently of proteolytic activity. Biochem. J., 2007, 406(2), 203-207.
[http://dx.doi.org/10.1042/BJ20070664] [PMID: 17608623]
[28]
Fisher, T.S.; Surdo, P.L.; Pandit, S.; Mattu, M.; Santoro, J.C.; Wisniewski, D.; Cummings, R.T.; Calzetta, A.; Cubbon, R.M.; Fischer, P.A.; Tarachandani, A.; De Francesco, R.; Wright, S.D.; Sparrow, C.P.; Carfi, A.; Sitlani, A. Effects of pH and low density lipoprotein (LDL) on PCSK9-dependent LDL receptor regulation. J. Biol. Chem., 2007, 282(28), 20502-20512.
[http://dx.doi.org/10.1074/jbc.M701634200] [PMID: 17493938]
[29]
Pearlstein, R.A.; Hu, Q.Y.; Zhou, J.; Yowe, D.; Levell, J.; Dale, B.; Kaushik, V.K.; Daniels, D.; Hanrahan, S.; Sherman, W.; Abel, R. New hypotheses about the structure-function of proprotein convertase subtilisin/kexin type 9: Analysis of the epidermal growth factorlike repeat A docking site using WaterMap. Proteins, 2010, 78(12), n/a.
[http://dx.doi.org/10.1002/prot.22767] [PMID: 20589640]
[30]
Zhang, D.W.; Garuti, R.; Tang, W.J.; Cohen, J.C.; Hobbs, H.H.; Cohen, J.; Fau-Hobbs, H.H.; Hobbs, H.H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl. Acad. Sci. USA, 2008, 105(35), 13045-13050.
[http://dx.doi.org/10.1073/pnas.0806312105] [PMID: 18753623]
[31]
Mousavi, S.A.; Berge, K.E.; Berg, T.; Leren, T.P. Affinity and kinetics of proprotein convertase subtilisin/kexin type 9 binding to low-density lipoprotein receptors on HepG2 cells. FEBS J., 2011, 278(16), 2938-2950.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08219.x] [PMID: 21692990]
[32]
Ai, X.; Fischer, P.; Palyha, O.C.; Wisniewski, D.; Hubbard, B.; Akinsanya, K.; Strack, A.M.; Ehrhardt, A.G. Utilizing HaloTag technology to track the fate of PCSK9 from intracellular vs. extracellular sources. Curr. Chem. Genomics, 2012, 6, 38-47.
[PMID: 23115612]
[33]
Cai, G.; Yu, L.; Huang, Z.; Li, L.; Fu, X. Serum PCSK9 levels, but not PCSK9 polymorphisms, are associated with CAD risk and lipid profiles in southern Chinese Han population. Lipids Health Dis., 2018, 17(1), 213.
[http://dx.doi.org/10.1186/s12944-018-0859-5] [PMID: 30205809]
[34]
Maxwell, K.N.; Breslow, J.L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl. Acad. Sci. USA, 2004, 101(18), 7100-7105.
[http://dx.doi.org/10.1073/pnas.0402133101] [PMID: 15118091]
[35]
Moris, D.; Giaginis, C.; Tsourouflis, G.; Theocharis, S. Farnesoid-X receptor (FXR) as a promising pharmaceutical target in atherosclero-sis. Curr. Med. Chem., 2017, 24(11), 1147-1157.
[PMID: 28120707]
[36]
Holla, Ø.L.; Strøm, T.B.; Cameron, J.; Berge, K.E.; Leren, T.P. A chimeric LDL receptor containing the cytoplasmic domain of the transfer-rin receptor is degraded by PCSK9. Mol. Genet. Metab., 2010, 99(2), 149-156.
[http://dx.doi.org/10.1016/j.ymgme.2009.09.012] [PMID: 19828345]
[37]
Strøm, T.B.; Holla, Ø.L.; Tveten, K.; Cameron, J.; Berge, K.E.; Leren, T.P. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab., 2010, 101(1), 76-80.
[http://dx.doi.org/10.1016/j.ymgme.2010.05.003] [PMID: 20659812]
[38]
Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab., 2009, 94(7), 2537-2543.
[http://dx.doi.org/10.1210/jc.2009-0141] [PMID: 19351729]
[39]
Steinl, D.; Kaufmann, B. Ultrasound imaging for risk assessment in atherosclerosis. Int. J. Mol. Sci., 2015, 16(12), 9749-9769.
[http://dx.doi.org/10.3390/ijms16059749] [PMID: 25938969]
[40]
Stocker, R.; Keaney, J.F., Jr Role of oxidative modifications in atherosclerosis. Physiol. Rev., 2004, 84(4), 1381-1478.
[http://dx.doi.org/10.1152/physrev.00047.2003] [PMID: 15383655]
[41]
Kunsch, C.; Medford, R.M. Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res., 1999, 85(8), 753-766.
[http://dx.doi.org/10.1161/01.RES.85.8.753] [PMID: 10521248]
[42]
Witztum, J.L.; Steinberg, D. Role of oxidized low density lipoprotein in atherogenesis. J. Clin. Invest., 1991, 88(6), 1785-1792.
[http://dx.doi.org/10.1172/JCI115499] [PMID: 1752940]
[43]
Marui, N.; Offermann, M.K.; Swerlick, R.; Kunsch, C.; Rosen, C.A.; Ahmad, M.; Alexander, R.W.; Medford, R.M. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular en-dothelial cells. J. Clin. Invest., 1993, 92(4), 1866-1874.
[http://dx.doi.org/10.1172/JCI116778] [PMID: 7691889]
[44]
Karampetsou, N.; Tzani, A.; Doulamis, I.P.; Bletsa, E.; Minia, A.; Pliaka, V.; Tsolakos, N.; Oikonomou, E.; Tousoulis, D.; Kontzoglou, K.; Alexopoulos, L.G.; Perrea, D.N.; Patapis, P.; Chloroyiannis, I.A. Epicardial adipocyte-derived TNF-α modulates local inflammation in pa-tients with advanced coronary artery disease. Curr. Vasc. Pharmacol., 2022, 20(1), 87-93.
[http://dx.doi.org/10.2174/1570161119666211029110813] [PMID: 34719373]
[45]
Majumdar, S.; Chen, A.; Palmer-Smith, H.; Basak, A. Novel circular, cyclic and acyclic Ψ(CH2O) containing peptide inhibitors of SKI-1/S1P: synthesis, kinetic and biochemical evaluations. Curr. Med. Chem., 2011, 18(18), 2770-2782.
[http://dx.doi.org/10.2174/092986711796011265] [PMID: 21568902]
[46]
Lalou, C.; Basak, A.; Mishra, P.; Mohanta, B.C.; Banik, R.; Dinda, B.; Khatib, A.M. Inhibition of tumor cells proliferation and migration by the flavonoid furin inhibitor isolated from Oroxylum indicum. Curr. Med. Chem., 2013, 20(4), 583-591.
[PMID: 23210773]
[47]
Bevilacqua, M.P. Endothelial-leukocyte adhesion molecules. Annu. Rev. Immunol., 1993, 11(1), 767-804.
[http://dx.doi.org/10.1146/annurev.iy.11.040193.004003] [PMID: 8476577]
[48]
Huo, Y.; Hafezi-Moghadam, A.; Ley, K. Role of vascular cell adhesion molecule-1 and fibronectin connecting segment-1 in monocyte rolling and adhesion on early atherosclerotic lesions. Circ. Res., 2000, 87(2), 153-159.
[http://dx.doi.org/10.1161/01.RES.87.2.153] [PMID: 10904000]
[49]
Patriki, D.; Saravi, S.S.S.; Camici, G.G.; Liberale, L.; Beer, J.H. PCSK 9: A link between inflammation and atherosclerosis. Curr. Med. Chem., 2022, 29(2), 251-267.
[http://dx.doi.org/10.2174/0929867328666210707192625] [PMID: 34238141]
[50]
Poredos, P.; Jezovnik, M.K. The role of inflammatory biomarkers in the detection and therapy of atherosclerotic disease. Curr. Vasc. Pharmacol., 2016, 14(6), 534-546.
[http://dx.doi.org/10.2174/1570161114666160625080104] [PMID: 27357185]
[51]
Siasos, G.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Vlachopoulos, C.; Verveniotis, A.; Limperi, M.; Genimata, V.; Papavassiliou, A.; Stefanadis, C.; Tousoulis, D. Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches. Curr. Med. Chem., 2014, 21(34), 3936-3948.
[http://dx.doi.org/10.2174/092986732134141015161539] [PMID: 25174928]
[52]
Roycik, M.; Myers, J.; Newcomer, R.; Sang, Q.X. Matrix metalloproteinase inhibition in atherosclerosis and stroke. Curr. Mol. Med., 2013, 13(8), 1299-1313.
[http://dx.doi.org/10.2174/15665240113139990067] [PMID: 23865428]
[53]
Nagy, B., Jr; Miszti-Blasius, K.; Kerenyi, A.; Clemetson, K.J.; Kappelmayer, J. Potential therapeutic targeting of platelet-mediated cellular interactions in atherosclerosis and inflammation. Curr. Med. Chem., 2012, 19(4), 518-531.
[http://dx.doi.org/10.2174/092986712798918770] [PMID: 22204330]
[54]
McMaster pathophysiology review: Atherosclerosis. http://www. pathophys.org/atherosclerosis/#DefinitionOverview(Accessed on: September 15, 2021)
[55]
Stroes, E.; Colquhoun, D.; Sullivan, D.; Civeira, F.; Rosenson, R.S.; Watts, G.F.; Bruckert, E.; Cho, L.; Dent, R.; Knusel, B.; Xue, A.; Scott, R.; Wasserman, S.M.; Rocco, M. Anti-PCSK9 antibody effectively lowers cholesterol in patients with statin intolerance: the GAUSS-2 ran-domized, placebo-controlled phase 3 clinical trial of evolocumab. J. Am. Coll. Cardiol., 2014, 63(23), 2541-2548.
[http://dx.doi.org/10.1016/j.jacc.2014.03.019] [PMID: 24694531]
[56]
Moriarty, P.M.; Thompson, P.D.; Cannon, C.P.; Guyton, J.R.; Bergeron, J.; Zieve, F.J.; Bruckert, E.; Jacobson, T.A.; Kopecky, S.L.; Bacca-ra-Dinet, M.T.; Du, Y.; Pordy, R.; Gipe, D.A. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin re-challenge arm: The ODYSSEY ALTERNATIVE randomized trial. J. Clin. Lipidol., 2015, 9(6), 758-769.
[http://dx.doi.org/10.1016/j.jacl.2015.08.006] [PMID: 26687696]
[57]
George, M.; Goenka, L. Alirocumab in post ACS patients - saving lives at a premium Curr. Cardiol. Rev, 2022, 18(1), e030621193814.
[http://dx.doi.org/10.2174/1573403X17666210603111158] [PMID: 34082687]
[58]
Cannon, C.P.; Cariou, B.; Blom, D.; McKenney, J.M.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Colhoun, H.M. Efficacy and safety of aliro-cumab in high cardiovascular risk patients with inadequately controlled hypercholesterolaemia on maximally tolerated doses of statins: the ODYSSEY COMBO II randomized controlled trial. Eur. Heart J., 2015, 36(19), 1186-1194.
[http://dx.doi.org/10.1093/eurheartj/ehv028] [PMID: 25687353]
[59]
Bays, H.; Gaudet, D.; Weiss, R.; Ruiz, J.L.; Watts, G.F.; Gouni-Berthold, I.; Robinson, J.; Zhao, J.; Hanotin, C.; Donahue, S. Alirocumab as add-on to atorvastatin versus other lipid treatment strategies: ODYSSEY options I Randomized Trial. J. Clin. Endocrinol. Metab., 2015, 100(8), 3140-3148.
[http://dx.doi.org/10.1210/jc.2015-1520] [PMID: 26030325]
[60]
Farnier, M.; Jones, P.; Severance, R.; Averna, M.; Steinhagen-Thiessen, E.; Colhoun, H.M.; Du, Y.; Hanotin, C.; Donahue, S. Efficacy and safety of adding alirocumab to rosuvastatin versus adding ezetimibe or doubling the rosuvastatin dose in high cardiovascular-risk patients: The odyssey options II randomized trial. Atherosclerosis, 2016, 244, 138-146.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.11.010] [PMID: 26638010]
[61]
Mayne, J.; Dewpura, T.; Raymond, A.; Cousins, M.; Chaplin, A.; Lahey, K.A.; LaHaye, S.A.; Mbikay, M.; Ooi, T.; Chrétien, M. Plasma PCSK9 levels are significantly modified by statins and fibrates in humans. Lipids Health Dis., 2008, 7(1), 22.
[http://dx.doi.org/10.1186/1476-511X-7-22] [PMID: 18547436]
[62]
Food and Drug Administration Center for Drug Evaluation and Research The Endocrinologic and Metabolic Drugs Advisory Committee Meeting.,, 2015. Available from: https://www.fdanews. com/ext/resources/files/06-15/06-15-FDA-AdCom.pdf?15(Accessed on: December 10, 2021)
[63]
Food and Drug Administration Center for Drug Evaluation and Research The Endocrinologic and Metabolic Drugs Advisory Committee Meeting., 2015. Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM450072.pdf(Accessed on: December 10, 2021)
[64]
Swiger, K.J.; Martin, S.S. PCSK9 inhibitors and neurocognitive adverse events: exploring the FDA directive and a proposal for N-of-1 trials. Drug Saf., 2015, 38(6), 519-526.
[http://dx.doi.org/10.1007/s40264-015-0296-6] [PMID: 25989944]
[65]
EBBINGHAUS Evaluating PCSK9 binding antibody influence on cognitive health in high cardiovascular risk subjects., Available from: https://clinicaltrials.gov/ct2/show/sNCT02207634(Accessed December 12, 2021)
[66]
Ott, B.R.; Daiello, L.A.; Dahabreh, I.J.; Springate, B.A.; Bixby, K.; Murali, M.; Trikalinos, T.A. Do statins impair cognition? A systematic review and meta-analysis of randomized controlled trials. J. Gen. Intern. Med., 2015, 30(3), 348-358.
[http://dx.doi.org/10.1007/s11606-014-3115-3] [PMID: 25575908]
[67]
Robinson, J.G.; Farnier, M.; Krempf, M.; Bergeron, J.; Luc, G.; Averna, M.; Stroes, E.S.; Langslet, G.; Raal, F.J.; El Shahawy, M.; Koren, M.J.; Lepor, N.E.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Kastelein, J.J.P. Efficacy and safety of alirocumab in reducing lipids and cardi-ovascular events. N. Engl. J. Med., 2015, 372(16), 1489-1499.
[http://dx.doi.org/10.1056/NEJMoa1501031] [PMID: 25773378]
[68]
Sabatine, M.S.; Giugliano, R.P.; Wiviott, S.D.; Raal, F.J.; Blom, D.J.; Robinson, J.; Ballantyne, C.M.; Somaratne, R.; Legg, J.; Wasserman, S.M.; Scott, R.; Koren, M.J.; Stein, E.A. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N. Engl. J. Med., 2015, 372(16), 1500-1509.
[http://dx.doi.org/10.1056/NEJMoa1500858] [PMID: 25773607]
[69]
Auer, J.; Berent, R.; Primus, C. PCSK9 inhibitors and cardiovascular events. N. Engl. J. Med., 2015, 373(8), 773-775.
[http://dx.doi.org/10.1056/NEJMc1508222] [PMID: 26287855]
[70]
Charan, K.; Goyal, A.; Gupta, J.K.; Yadav, H.N. Role of atrial natriuretic peptide in ischemic preconditioning–induced cardioprotection in the diabetic rat heart. J. Surg. Res., 2016, 201(2), 272-278.
[http://dx.doi.org/10.1016/j.jss.2015.10.045] [PMID: 27020807]
[71]
Chapman, M.J.; Stock, J.K.; Ginsberg, H.N. PCSK9 inhibitors and cardiovascular disease. Curr. Opin. Lipidol., 2015, 26(6), 511-520.
[http://dx.doi.org/10.1097/MOL.0000000000000239] [PMID: 26780005]
[72]
Felekos, I.; Karamasis, G.V.; Pavlidis, A.N. PCSK9 inhibitors for the management of dyslipidemia in people with type 2 diabetes: How low is too low? Curr. Pharm. Des., 2021, 27(8), 1008-1014.
[http://dx.doi.org/10.2174/1381612826666200617170252] [PMID: 32552640]
[73]
Anthoulakis, C.; Mamopoulos, A.; Rousso, D.; Karagiannis, A.; Athanasiadis, A.; Grimbizis, G.; Athyros, V. Arterial stiffness as a cardio-vascular risk factor for the development of preeclampsia and pharmacopreventive options. Curr. Vasc. Pharmacol., 2022, 20(1), 52-61.
[http://dx.doi.org/10.2174/1570161119666211006114258] [PMID: 34615450]
[74]
Espinoza, C.; Fuenzalida, B.; Leiva, A. Increased fetal cardiovascular disease risk: Potential synergy between gestational diabetes mellitus and maternal hypercholesterolemia. Curr. Vasc. Pharmacol., 2021, 19(6), 601-623.
[http://dx.doi.org/10.2174/1570161119666210423085407] [PMID: 33902412]
[75]
Raal, F.J.; Stein, E.A.; Dufour, R.; Turner, T.; Civeira, F.; Burgess, L.; Langslet, G.; Scott, R.; Olsson, A.G.; Sullivan, D.; Hovingh, G.K.; Cariou, B.; Gouni-Berthold, I.; Somaratne, R.; Bridges, I.; Scott, R.; Wasserman, S.M.; Gaudet, D. PCSK9 inhibition with evolocumab (AMG 145) in heterozygous familial hypercholesterolaemia (RUTHERFORD-2): a randomised, double-blind, placebo-controlled trial. Lancet, 2015, 385(9965), 331-340.
[http://dx.doi.org/10.1016/S0140-6736(14)61399-4] [PMID: 25282519]
[76]
Kastelein, J.J.P.; Ginsberg, H.N.; Langslet, G.; Hovingh, G.K.; Ceska, R.; Dufour, R.; Blom, D.; Civeira, F.; Krempf, M.; Lorenzato, C.; Zhao, J.; Pordy, R.; Baccara-Dinet, M.T.; Gipe, D.A.; Geiger, M.J.; Farnier, M. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J., 2015, 36(43)ehv370
[http://dx.doi.org/10.1093/eurheartj/ehv370] [PMID: 26330422]
[77]
Ginsberg, H.N.; Rader, D.J.; Raal, F.J.; Guyton, J.; Lorenzato, C.; Pordy, R.; Baccara-Dinet, M.T.; Stroes, E. ODYSSEY high FH: Efficacy and safety of alirocumab in patients with severe heterozygous familial hypercholesterolemia. Circulation, 2014, 130(23), 2119.
[78]
Agrawal, V.; Gupta, J.K.; Qureshi, S.S.; Vishwakarma, V.K. Role of cardiac renin angiotensin system in ischemia reperfusion injury and preconditioning of heart. Indian Heart J., 2016, 68(6), 856-861.
[http://dx.doi.org/10.1016/j.ihj.2016.06.010] [PMID: 27931559]
[79]
Seidah, N.G.; Benjannet, S.; Wickham, L.; Marcinkiewicz, J.; Jasmin, S.B.; Stifani, S.; Basak, A.; Prat, A.; Chrétien, M. The secretory pro-protein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 928-933.
[http://dx.doi.org/10.1073/pnas.0335507100] [PMID: 12552133]
[80]
Costet, P.; Cariou, B.; Lambert, G.; Lalanne, F.; Lardeux, B.; Jarnoux, A.L.; Grefhorst, A.; Staels, B.; Krempf, M. Hepatic PCSK9 expres-sion is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem., 2006, 281(10), 6211-6218.
[http://dx.doi.org/10.1074/jbc.M508582200] [PMID: 16407292]
[81]
Jeong, H.J.; Lee, H.S.; Kim, K.S.; Kim, Y.K.; Yoon, D.; Park, S.W. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J. Lipid Res., 2008, 49(2), 399-409.
[http://dx.doi.org/10.1194/jlr.M700443-JLR200] [PMID: 17921436]
[82]
Rong, S.; Cortés, V.A.; Rashid, S.; Anderson, N.N.; McDonald, J.G.; Liang, G.; Moon, Y.A.; Hammer, R.E.; Horton, J.D. Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice eLife, 2017, 6e25015.
[http://dx.doi.org/10.7554/eLife.25015] [PMID: 28244871]
[83]
Li, H.; Dong, B.; Park, S.W.; Lee, H.S.; Chen, W.; Liu, J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem., 2009, 284(42), 28885-28895.
[http://dx.doi.org/10.1074/jbc.M109.052407] [PMID: 19687008]
[84]
Dong, B.; Wu, M.; Li, H.; Kraemer, F.B.; Adeli, K.; Seidah, N.G.; Park, S.W.; Liu, J. Strong induction of PCSK9 gene expression through HNF1α and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J. Lipid Res., 2010, 51(6), 1486-1495.
[http://dx.doi.org/10.1194/jlr.M003566] [PMID: 20048381]
[85]
Shende, V.R.; Wu, M.; Singh, A.B.; Dong, B.; Kan, C.F.K.; Liu, J. Reduction of circulating PCSK9 and LDL-C levels by liver-specific knockdown of HNF1α in normolipidemic mice. J. Lipid Res., 2015, 56(4), 801-809.
[http://dx.doi.org/10.1194/jlr.M052969] [PMID: 25652089]
[86]
Puri, R.; Mehta, V.; Duell, P.B.; Nair, D.; Mohan, J.C.; Yusuf, J.; Dalal, J.J.; Mishra, S.; Kasliwal, R.R.; Agarwal, R.; Mukhopadhyay, S.; Wardhan, H.; Khanna, N.N.; Pradhan, A.; Mehrotra, R.; Kumar, A.; Puri, S.; Muruganathan, A.; Sattur, G.B.; Yadav, M.; Singh, H.P.; Agarwal, R.K.; Nanda, R. Proposed low-density lipoprotein cholesterol goals for secondary prevention and familial hypercholesterolemia in India with focus on PCSK9 inhibitor monoclonal antibodies: Expert consensus statement from Lipid Association of India. J. Clin. Lipidol., 2020, 14(2), e1-e13.
[http://dx.doi.org/10.1016/j.jacl.2020.01.006] [PMID: 32089456]
[87]
Rosenson, R.S.; Hegele, R.A.; Fazio, S.; Cannon, C.P. The evolving future of PCSK9 inhibitors. J. Am. Coll. Cardiol., 2018, 72(3), 314-329.
[http://dx.doi.org/10.1016/j.jacc.2018.04.054] [PMID: 30012326]
[88]
Dubuc, G.; Chamberland, A.; Wassef, H.; Davignon, J.; Seidah, N.G.; Bernier, L.; Prat, A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol., 2004, 24(8), 1454-1459.
[http://dx.doi.org/10.1161/01.ATV.0000134621.14315.43] [PMID: 15178557]
[89]
Rashid, S.; Curtis, D.E.; Garuti, R.; Anderson, N.N.; Bashmakov, Y.; Ho, Y.K.; Hammer, R.E.; Moon, Y.A.; Horton, J.D. Decreased plas-ma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5374-5379.
[http://dx.doi.org/10.1073/pnas.0501652102] [PMID: 15805190]
[90]
Careskey, H.E.; Davis, R.A.; Alborn, W.E.; Troutt, J.S.; Cao, G.; Konrad, R.J. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J. Lipid Res., 2008, 49(2), 394-398.
[http://dx.doi.org/10.1194/jlr.M700437-JLR200] [PMID: 18033751]
[91]
Sahebkar, A. Circulating levels of proprotein convertase subtilisin kexin type 9 are elevated by fibrate therapy: a systematic review and meta-analysis of clinical trials. Cardiol. Rev., 2014, 22(6), 306-312.
[http://dx.doi.org/10.1097/CRD.0000000000000025] [PMID: 24614537]
[92]
Troutt, J.S.; Alborn, W.E.; Cao, G.; Konrad, R.J. Fenofibrate treatment increases human serum proprotein convertase subtilisin kexin type 9 levels. J. Lipid Res., 2010, 51(2), 345-351.
[http://dx.doi.org/10.1194/jlr.M000620] [PMID: 19738285]
[93]
Ma, D.; Liu, T.; Chang, L.; Rui, C.; Xiao, Y.; Li, S.; Hogenesch, J.B.; Chen, Y.E.; Lin, J.D. The liver clock controls cholesterol homeostasis through Trib1 protein-mediated regulation of PCSK9/low density lipoprotein receptor (LDL-R) axis. J. Biol. Chem., 2015, 290(52), 31003-31012.
[http://dx.doi.org/10.1074/jbc.M115.685982] [PMID: 26547624]
[94]
Ochin, C.C.; Garelnabi, M. Berberine encapsulated PLGA-PEG nanoparticles modulate PCSK-9 in HepG2 Cells. Cardiovasc. Hematol. Disord. Drug Targets, 2018, 18(1), 61-70.
[http://dx.doi.org/10.2174/1871529X18666180201130340] [PMID: 29422010]
[95]
Wang, X.; Chen, X.; Zhang, X.; Su, C.; Yang, M.; He, W.; Du, Y.; Si, S.; Wang, L.; Hong, B. A small-molecule inhibitor of PCSK9 transcription ameliorates atherosclerosis through the modulation ofFoxO1/3 and HNF1α EBioMedicine, 2020, 52, 102650.
[http://dx.doi.org/10.1016/j.ebiom.2020.102650] [PMID: 32058941]
[96]
Lin, X.L.; Xiao, L.L.; Tang, Z.H.; Jiang, Z.S.; Liu, M.H. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed. Pharmacother., 2018, 104, 36-44.
[http://dx.doi.org/10.1016/j.biopha.2018.05.024] [PMID: 29758414]
[97]
Basak, S.; Lu, C.; Basak, A. Post-translational protein modifications of rare and unconventional types: Implications in functions and dis-eases. Curr. Med. Chem., 2016, 23(7), 714-745.
[http://dx.doi.org/10.2174/0929867323666160118095620] [PMID: 26778322]
[98]
Tavridou, A.; Manolopoulos, V. Novel molecules targeting dyslipidemia and atherosclerosis. Curr. Med. Chem., 2008, 15(8), 792-802.
[http://dx.doi.org/10.2174/092986708783955482] [PMID: 18393849]
[99]
Urban, D.; Pöss, J.; Böhm, M.; Laufs, U. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J. Am. Coll. Cardiol., 2013, 62(16), 1401-1408.
[http://dx.doi.org/10.1016/j.jacc.2013.07.056] [PMID: 23973703]
[100]
Elbitar, S.; Khoury, P.E.; Ghaleb, Y.; Rabès, J.P.; Varret, M.; Seidah, N.G.; Boileau, C.; Abifadel, M. Proprotein convertase subtilisin/kexin 9 (PCSK9) inhibitors and the future of dyslipidemia therapy: an updated patent review (2011-2015). Expert Opin. Ther. Pat., 2016, 26(12), 1377-1392.
[http://dx.doi.org/10.1080/13543776.2016.1206080] [PMID: 27359211]
[101]
Catapano, A.L.; Pirillo, A.; Norata, G.D. New pharmacological approaches to target PCSK9. Curr. Atheroscler. Rep., 2020, 22(7), 24.
[http://dx.doi.org/10.1007/s11883-020-00847-7] [PMID: 32495301]
[102]
Nishikido, T.; Ray, K.K. Non-antibody approaches to proprotein convertase subtilisin kexin 9 inhibition: siRNA, antisense oligonucleo-tides, adnectins, vaccination, and new attempts at small-molecule inhibitors based on new discoveries. Front. Cardiovasc. Med., 2019, 5, 199.
[http://dx.doi.org/10.3389/fcvm.2018.00199] [PMID: 30761308]
[103]
Katzmann, J.L.; Packard, C.J.; Chapman, M.J.; Katzmann, I.; Laufs, U. Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias. J. Am. Coll. Cardiol., 2020, 76(5), 563-579.
[http://dx.doi.org/10.1016/j.jacc.2020.05.070] [PMID: 32731935]
[104]
Ference, B.A.; Yoo, W.; Alesh, I.; Mahajan, N.; Mirowska, K.K.; Mewada, A.; Kahn, J.; Afonso, L.; Williams, K.A., Sr; Flack, J.M. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendeli-an randomization analysis. J. Am. Coll. Cardiol., 2012, 60(25), 2631-2639.
[http://dx.doi.org/10.1016/j.jacc.2012.09.017] [PMID: 23083789]
[105]
Ference, B.A.; Robinson, J.G.; Brook, R.D.; Catapano, A.L.; Chapman, M.J.; Neff, D.R.; Voros, S.; Giugliano, R.P.; Davey Smith, G.; Fazio, S.; Sabatine, M.S. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med., 2016, 375(22), 2144-2153.
[http://dx.doi.org/10.1056/NEJMoa1604304] [PMID: 27959767]
[106]
Schunkert, H.; König, I.R.; Kathiresan, S.; Reilly, M.P.; Assimes, T.L.; Holm, H.; Preuss, M.; Stewart, A.F.R.; Barbalic, M.; Gieger, C.; Absher, D.; Aherrahrou, Z.; Allayee, H.; Altshuler, D.; Anand, S.S.; Andersen, K.; Anderson, J.L.; Ardissino, D.; Ball, S.G.; Balmforth, A.J.; Barnes, T.A.; Becker, D.M.; Becker, L.C.; Berger, K.; Bis, J.C.; Boekholdt, S.M.; Boerwinkle, E.; Braund, P.S.; Brown, M.J.; Burnett, M.S.; Buysschaert, I.; Carlquist, J.F.; Chen, L.; Cichon, S.; Codd, V.; Davies, R.W.; Dedoussis, G.; Dehghan, A.; Demissie, S.; Devaney, J.M.; Diemert, P.; Do, R.; Doering, A.; Eifert, S.; Mokhtari, N.E.E.; Ellis, S.G.; Elosua, R.; Engert, J.C.; Epstein, S.E.; de Faire, U.; Fischer, M.; Folsom, A.R.; Freyer, J.; Gigante, B.; Girelli, D.; Gretarsdottir, S.; Gudnason, V.; Gulcher, J.R.; Halperin, E.; Hammond, N.; Hazen, S.L.; Hofman, A.; Horne, B.D.; Illig, T.; Iribarren, C.; Jones, G.T.; Jukema, J.W.; Kaiser, M.A.; Kaplan, L.M.; Kastelein, J.J.P.; Khaw, K.T.; Knowles, J.W.; Kolovou, G.; Kong, A.; Laaksonen, R.; Lambrechts, D.; Leander, K.; Lettre, G.; Li, M.; Lieb, W.; Loley, C.; Lotery, A.J.; Mannucci, P.M.; Maouche, S.; Martinelli, N.; McKeown, P.P.; Meisinger, C.; Meitinger, T.; Melander, O.; Merlini, P.A.; Mooser, V.; Mor-gan, T.; Mühleisen, T.W.; Muhlestein, J.B.; Münzel, T.; Musunuru, K.; Nahrstaedt, J.; Nelson, C.P.; Nöthen, M.M.; Olivieri, O.; Patel, R.S.; Patterson, C.C.; Peters, A.; Peyvandi, F.; Qu, L.; Quyyumi, A.A.; Rader, D.J.; Rallidis, L.S.; Rice, C.; Rosendaal, F.R.; Rubin, D.; Salomaa, V.; Sampietro, M.L.; Sandhu, M.S.; Schadt, E.; Schäfer, A.; Schillert, A.; Schreiber, S.; Schrezenmeir, J.; Schwartz, S.M.; Siscovick, D.S.; Sivananthan, M.; Sivapalaratnam, S.; Smith, A.; Smith, T.B.; Snoep, J.D.; Soranzo, N.; Spertus, J.A.; Stark, K.; Stirrups, K.; Stoll, M.; Tang, W.H.W.; Tennstedt, S.; Thorgeirsson, G.; Thorleifsson, G.; Tomaszewski, M.; Uitterlinden, A.G.; van Rij, A.M.; Voight, B.F.; Wareham, N.J.; Wells, G.A.; Wichmann, H.E.; Wild, P.S.; Willenborg, C.; Witteman, J.C.M.; Wright, B.J.; Ye, S.; Zeller, T.; Ziegler, A.; Cambien, F.; Goodall, A.H.; Cupples, L.A.; Quertermous, T.; März, W.; Hengstenberg, C.; Blankenberg, S.; Ouwehand, W.H.; Hall, A.S.; Deloukas, P.; Thompson, J.R.; Stefansson, K.; Roberts, R.; Thorsteinsdottir, U.; O’Donnell, C.J.; McPherson, R.; Erdmann, J.; Samani, N.J.; Samani, N.J. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet., 2011, 43(4), 333-338.
[http://dx.doi.org/10.1038/ng.784] [PMID: 21378990]
[107]
Deloukas, P.; Kanoni, S.; Willenborg, C.; Farrall, M.; Assimes, T.L.; Thompson, J.R.; Ingelsson, E.; Saleheen, D.; Erdmann, J.; Goldstein, B.A.; Stirrups, K.; König, I.R.; Cazier, J.B.; Johansson, Å.; Hall, A.S.; Lee, J.Y.; Willer, C.J.; Chambers, J.C.; Esko, T.; Folkersen, L.; Goel, A.; Grundberg, E.; Havulinna, A.S.; Ho, W.K.; Hopewell, J.C.; Eriksson, N.; Kleber, M.E.; Kristiansson, K.; Lundmark, P.; Lyytikäinen, L.P.; Rafelt, S.; Shungin, D.; Strawbridge, R.J.; Thorleifsson, G.; Tikkanen, E.; Van Zuydam, N.; Voight, B.F.; Waite, L.L.; Zhang, W.; Ziegler, A.; Absher, D.; Altshuler, D.; Balmforth, A.J.; Barroso, I.; Braund, P.S.; Burgdorf, C.; Claudi-Boehm, S.; Cox, D.; Dimitriou, M.; Do, R.; Doney, A.S.F.; Mokhtari, N.E.E.; Eriksson, P.; Fischer, K.; Fontanillas, P.; Franco-Cereceda, A.; Gigante, B.; Groop, L.; Gus-tafsson, S.; Hager, J.; Hallmans, G.; Han, B.G.; Hunt, S.E.; Kang, H.M.; Illig, T.; Kessler, T.; Knowles, J.W.; Kolovou, G.; Kuusisto, J.; Langenberg, C.; Langford, C.; Leander, K.; Lokki, M.L.; Lundmark, A.; McCarthy, M.I.; Meisinger, C.; Melander, O.; Mihailov, E.; Maouche, S.; Morris, A.D.; Müller-Nurasyid, M.; Nikus, K.; Peden, J.F.; Rayner, N.W.; Rasheed, A.; Rosinger, S.; Rubin, D.; Rumpf, M.P.; Schäfer, A.; Sivananthan, M.; Song, C.; Stewart, A.F.R.; Tan, S.T.; Thorgeirsson, G.; Schoot, C.E.; Wagner, P.J.; Wells, G.A.; Wild, P.S.; Yang, T.P.; Amouyel, P.; Arveiler, D.; Basart, H.; Boehnke, M.; Boerwinkle, E.; Brambilla, P.; Cambien, F.; Cupples, A.L.; de Faire, U.; Dehghan, A.; Diemert, P.; Epstein, S.E.; Evans, A.; Ferrario, M.M.; Ferrières, J.; Gauguier, D.; Go, A.S.; Goodall, A.H.; Gudnason, V.; Ha-zen, S.L.; Holm, H.; Iribarren, C.; Jang, Y.; Kähönen, M.; Kee, F.; Kim, H.S.; Klopp, N.; Koenig, W.; Kratzer, W.; Kuulasmaa, K.; Laakso, M.; Laaksonen, R.; Lee, J.Y.; Lind, L.; Ouwehand, W.H.; Parish, S.; Park, J.E.; Pedersen, N.L.; Peters, A.; Quertermous, T.; Rader, D.J.; Salomaa, V.; Schadt, E.; Shah, S.H.; Sinisalo, J.; Stark, K.; Stefansson, K.; Trégouët, D.A.; Virtamo, J.; Wallentin, L.; Wareham, N.; Zim-mermann, M.E.; Nieminen, M.S.; Hengstenberg, C.; Sandhu, M.S.; Pastinen, T.; Syvänen, A.C.; Hovingh, G.K.; Dedoussis, G.; Franks, P.W.; Lehtimäki, T.; Metspalu, A.; Zalloua, P.A.; Siegbahn, A.; Schreiber, S.; Ripatti, S.; Blankenberg, S.S.; Perola, M.; Clarke, R.; Boehm, B.O.; O’Donnell, C.; Reilly, M.P.; März, W.; Collins, R.; Kathiresan, S.; Hamsten, A.; Kooner, J.S.; Thorsteinsdottir, U.; Danesh, J.; Palmer, C.N.A.; Roberts, R.; Watkins, H.; Schunkert, H.; Samani, N.J. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat. Genet., 2013, 45(1), 25-33.
[http://dx.doi.org/10.1038/ng.2480] [PMID: 23202125]
[108]
Chen, B.; Shi, X.; Cui, Y.; Hou, A.; Zhao, P. A review of PCSK9 inhibitors and their effects on cardiovascular diseases. Curr. Top. Med. Chem., 2019, 19(20), 1790-1817.
[http://dx.doi.org/10.2174/1568026619666190809094203] [PMID: 31400268]
[109]
Abifadel, M.; Elbitar, S.; El Khoury, P.; Ghaleb, Y.; Chémaly, M.; Moussalli, M.L.; Rabès, J.P.; Varret, M.; Boileau, C. Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr. Atheroscler. Rep., 2014, 16(9), 439.
[http://dx.doi.org/10.1007/s11883-014-0439-8] [PMID: 25052769]
[110]
Luna Saavedra, Y.G.; Dufour, R.; Davignon, J.; Baass, A. PCSK9 R46L, lower LDL, and cardiovascular disease risk in familial hypercho-lesterolemia: a cross-sectional cohort study. Arterioscler. Thromb. Vasc. Biol., 2014, 34(12), 2700-2705.
[http://dx.doi.org/10.1161/ATVBAHA.114.304406] [PMID: 25278291]
[111]
Seidah, N.G.; Awan, Z.; Chrétien, M.; Mbikay, M. PCSK9: a key modulator of cardiovascular health. Circ. Res., 2014, 114(6), 1022-1036.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.301621] [PMID: 24625727]
[112]
Ginsberg, H.N.; Rader, D.J.; Raal, F.J.; Guyton, J.R.; Baccara-Dinet, M.T.; Lorenzato, C.; Pordy, R.; Stroes, E. Efficacy and safety of aliro-cumab in patients with heterozygous familial hypercholesterolemia and LDL-C of 160 mg/dl or higher. Cardiovasc. Drugs Ther., 2016, 30(5), 473-483.
[http://dx.doi.org/10.1007/s10557-016-6685-y] [PMID: 27618825]
[113]
Wiegman, A.; Gidding, S.S.; Watts, G.F.; Chapman, M.J.; Ginsberg, H.N.; Cuchel, M.; Ose, L.; Averna, M.; Boileau, C.; Borén, J.; Bruckert, E.; Catapano, A.L.; Defesche, J.C.; Descamps, O.S.; Hegele, R.A.; Hovingh, G.K.; Humphries, S.E.; Kovanen, P.T.; Kuivenhoven, J.A.; Masana, L.; Nordestgaard, B.G.; Pajukanta, P.; Parhofer, K.G.; Raal, F.J.; Ray, K.K.; Santos, R.D.; Stalenhoef, A.F.H. Steinhagen- Thies-sen, E.; Stroes, E.S.; Taskinen, M.R.; Tybjærg-Hansen, A.; Wiklund, O. Familial hypercholesterolaemia in children and adolescents: gain-ing decades of life by optimizing detection and treatment. Eur. Heart J., 2015, 36(36), 2425-2437.
[http://dx.doi.org/10.1093/eurheartj/ehv157] [PMID: 26009596]
[114]
Clinical Trials Identifier NCT02392559. Trial assessing efficacy,safety and tolerability of PCSK9 inhibition in paediatric subjects with genetic LDL disorders (HAUSER-RCT). Available from: https://clinicaltrials.gov/ct 2/show/NCT02392559Accessed on January 5, 2022)
[115]
Stefanutti, C.; Zenti, M.G. Lipoprotein apheresis and PCSK9-inhibitors. Impact on atherogenic lipoproteins and anti-inflammatory media-tors in familial hypercholesterolaemia. Curr. Pharm. Des., 2019, 24(31), 3634-3637.
[http://dx.doi.org/10.2174/1381612824666181025115658] [PMID: 30360706]
[116]
Obradovic, M.; Zaric, B.; Sudar-Milovanovic, E.; Ilincic, B.; Stokic, E.; Perovic, M.; Isenovic, E.R. PCSK9 and hypercholesterolemia: Therapeutic approach. Curr. Drug Targets, 2018, 19(9), 1058-1067.
[http://dx.doi.org/10.2174/1389450119666171205101401] [PMID: 29210646]
[117]
Jain, K.S.; Kulkarni, R.R.; Jain, D.P. Current drug targets for antihyperlipidemic therapy. Mini Rev. Med. Chem., 2010, 10(3), 232-262.
[http://dx.doi.org/10.2174/138955710791185037] [PMID: 20105132]
[118]
Al-Ashwal, A.; Alnouri, F.; Sabbour, H.; Al-Mahfouz, A.; Al-Sayed, N.; Razzaghy-Azar, M.; Al-Allaf, F.; Al-Waili, K.; Banerjee, Y.; Gen-est, J.; Santos, R.; Al-Rasadi, K. Identification and treatment of patients with homozygous familial hypercholesterolaemia: Information and recommendations from a middle east advisory panel. Curr. Vasc. Pharmacol., 2015, 13(6), 759-770.
[http://dx.doi.org/10.2174/1570161113666150827125040] [PMID: 26311574]
[119]
Wu, Q.; Tang, Z.H.; Peng, J.; Liao, L.; Pan, L.H.; Wu, C.Y.; Jiang, Z.S.; Wang, G.X.; Liu, L.S. The dual behavior of PCSK9 in the regulation of apoptosis is crucial in Alzheimer’s disease progression. Biomed. Rep., 2014, 2(2), 167-171.
[http://dx.doi.org/10.3892/br.2013.213] [PMID: 24649090]
[120]
Geary, R.S.; Watanabe, T.A.; Truong, L.; Freier, S.; Lesnik, E.A.; Sioufi, N.B.; Sasmor, H.; Manoharan, M.; Levin, A.A. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J. Pharmacol. Exp. Ther., 2001, 296(3), 890-897.
[PMID: 11181921]
[121]
Lagace, T.A.; Curtis, D.E.; Garuti, R.; McNutt, M.C.; Park, S.W.; Prather, H.B.; Anderson, N.N.; Ho, Y.K.; Hammer, R.E.; Horton, J.D. Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and inlivers of parabiotic mice. J. Clin. Invest., 2006, 116(11), 2995-3005.
[http://dx.doi.org/10.1172/JCI29383] [PMID: 17080197]
[122]
Corjon, S.; Wortmann, A.; Engler, T.; van Rooijen, N.; Kochanek, S.; Kreppel, F. Targeting of adenovirus vectors to the LRP receptor fami-ly with the high-affinity ligand RAP via combined genetic and chemical modification of the pIX capsomere. Mol. Ther., 2008, 16(11), 1813-1824.
[http://dx.doi.org/10.1038/mt.2008.174] [PMID: 18714309]
[123]
Sander, J.D.; Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 2014, 32(4), 347-355.
[http://dx.doi.org/10.1038/nbt.2842] [PMID: 24584096]
[124]
Hamilton, A.J.; Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science, 1999, 286(5441), 950-952.
[http://dx.doi.org/10.1126/science.286.5441.950] [PMID: 10542148]
[125]
Wetterau, J.R.; Gregg, R.E.; Harrity, T.W.; Arbeeny, C.; Cap, M.; Connolly, F.; Chu, C.H.; George, R.J.; Gordon, D.A.; Jamil, H.; Jolibois, K.G.; Kunselman, L.K.; Lan, S.J.; Maccagnan, T.J.; Ricci, B.; Yan, M.; Young, D.; Chen, Y.; Fryszman, O.M.; Logan, J.V.H.; Musial, C.L.; Poss, M.A.; Robl, J.A.; Simpkins, L.M.; Slusarchyk, W.A.; Sulsky, R.; Taunk, P.; Magnin, D.R.; Tino, J.A.; Lawrence, R.M.; Dickson, J.K., Jr; Biller, S.A. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science, 1998, 282(5389), 751-754.
[http://dx.doi.org/10.1126/science.282.5389.751] [PMID: 9784135]
[126]
Cuchel, M.; Bloedon, L.T.; Szapary, P.O.; Kolansky, D.M.; Wolfe, M.L.; Sarkis, A.; Millar, J.S.; Ikewaki, K.; Siegelman, E.S.; Gregg, R.E.; Rader, D.J. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med., 2007, 356(2), 148-156.
[http://dx.doi.org/10.1056/NEJMoa061189] [PMID: 17215532]
[127]
Cuchel, M.; Meagher, E.; Marais, A.D.; Blom, D.J.; Theron, H.D.; Baer, A.L.; Bloedon, L.T.; Sasiela, W.J.; Rader, D.J. A phase III study of microsomal triglyceride transfer protein inhibitor lomitapide (AEGR-733) in patients with homozygous familial hypercholesterolemia: In-terim results at 6 months. Circulation, 2009, 120(18), S441.
[128]
Samaha, F.F.; McKenney, J.; Bloedon, L.T.; Sasiela, W.J.; Rader, D.J. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(8), 497-505.
[http://dx.doi.org/10.1038/ncpcardio1250] [PMID: 18506154]
[129]
Karpf, D.; Roberts, B.; Martin, R.; Naim, S.; Shukla, U.; Choi, Y.; Krauss, R.; Francis, B.; Farrell, K.; Helmer, E.; Wang, X. MBX- 8025, a potential novel treatment for dyslipidemia and metabolic syndrome: Results of a phase 2 proof-of-concept trial as monotherapy and in combination with atorvastatin. World Congress on Controversies to Consensus in Diabetes, Obesity and Hypertension (CODHy). 2008. Available from: http://www.codhy.com/2008/document.aspx?did=2113 (Accessed March 5, 2022).
[130]
Ito, B.R.; Zhang, B-H.; Cable, E.E.; Song, X.; Fujitaki, J.M.; MacKenna, D.A.; Wilker, C.E.; Chi, B.; van Poelje, P.D.; Linemeyer, D.L.; Erion, M.D. Thyroid hormone β receptor activation has additive cholesterol lowering activity in combination with atorvastatin in rabbits, dogs and monkeys. Br. J. Pharmacol., 2009, 156(3), 454-465.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00038.x] [PMID: 19183199]
[131]
Merki, E.; Graham, M.J.; Mullick, A.E.; Miller, E.R.; Crooke, R.M.; Pitas, R.E.; Witztum, J.L.; Tsimikas, S. Antisense oligonucleotide di-rected to human apolipoprotein B-100 reduces lipoprotein(a) levels and oxidized phospholipids on human apolipoprotein B-100 particles in lipoprotein(a) transgenic mice. Circulation, 2008, 118(7), 743-753.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.786822] [PMID: 18663084]
[132]
Kastelein, J.J.P.; Wedel, M.K.; Baker, B.F.; Su, J.; Bradley, J.D.; Yu, R.Z.; Chuang, E.; Graham, M.J.; Crooke, R.M. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation, 2006, 114(16), 1729-1735.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.606442] [PMID: 17030687]
[133]
Raal, F.J.; Santos, R.D.; Blom, D.J.; Marais, A.D.; Charng, M.J.; Cromwell, W.C.; Lachmann, R.H.; Gaudet, D.; Tan, J.L.; Chasan-Taber, S.; Tribble, D.L.; Flaim, J.D.; Crooke, S.T. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentra-tions in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 375(9719), 998-1006.
[http://dx.doi.org/10.1016/S0140-6736(10)60284-X] [PMID: 20227758]
[134]
Graham, M.J.; Lemonidis, K.M.; Whipple, C.P.; Subramaniam, A.; Monia, B.P.; Crooke, S.T.; Crooke, R.M. Antisense inhibition of pro-protein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res., 2007, 48(4), 763-767.
[http://dx.doi.org/10.1194/jlr.C600025-JLR200] [PMID: 17242417]
[135]
Berkenstam, A.; Kristensen, J.; Mellström, K.; Carlsson, B.; Malm, J.; Rehnmark, S.; Garg, N.; Andersson, C.M.; Rudling, M.; Sjöberg, F.; Angelin, B.; Baxter, J.D. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid syn-thesis without cardiac effects in humans. Proc. Natl. Acad. Sci. USA, 2008, 105(2), 663-667.
[http://dx.doi.org/10.1073/pnas.0705286104] [PMID: 18160532]
[136]
Trost, S.U.; Swanson, E.; Gloss, B.; Wang-Iverson, D.B.; Zhang, H.; Volodarsky, T.; Grover, G.J.; Baxter, J.D.; Chiellini, G.; Scanlan, T.S.; Dillmann, W.H. The thyroid hormone receptor-beta-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology, 2000, 141(9), 3057-3064.
[http://dx.doi.org/10.1210/endo.141.9.7681] [PMID: 10965874]
[137]
Grover, G.J.; Egan, D.M.; Sleph, P.G.; Beehler, B.C.; Chiellini, G.; Nguyen, N.H.; Baxter, J.D.; Scanlan, T.S. Effects of the thyroid hormone receptor agonist GC-1 on metabolic rate and cholesterol in rats and primates: selective actions relative to 3,5,3′-triiodo-L-thyronine. Endocrinology, 2004, 145(4), 1656-1661.
[http://dx.doi.org/10.1210/en.2003-0973] [PMID: 14701670]
[138]
Scanlan, T.S. Sobetirome: a case history of bench-to-clinic drug discovery and development. Heart Fail. Rev., 2010, 15(2), 177-182.
[http://dx.doi.org/10.1007/s10741-008-9122-x] [PMID: 19002578]
[139]
Ellis, J.L.; Bartolozzi, A.; Ferkany, J.; Foudoulakis, H.; Kim, E.; Kuo, J.; Ruffing, R.; Schueller, O.; Wong, E.; Yang, Y.; Sweetnam, P. SLx-4090, an enterocyte-specific microsomal triglyceride transport protein inhibitor, lowers LDL cholesterol and triglycerides while raising HDL cholesterol in Apo E -/- mice fed a high-fat diet. Arterioscler. Thromb. Vasc. Biol., 2007, 27, E64-E64.
[140]
Prince, W.T.; Tong, W.; Andersen, G.; Campbell, S.; Ferkany, J.; Sweetnam, P.; Koester, F. SLx-4090: First human experience and proof of concept for an enterocyte-specific microsomal triglyceride transfer protein inhibitor. Circulation, 2006, 114, 2427-2427.
[141]
Nissen, S.E.; Nicholls, S.J.; Wolski, K.; Howey, D.C.; McErlean, E.; Wang, M.D.; Gomez, E.V.; Russo, J.M. Effects of a potent and selec-tive PPAR-alpha agonist in patients with atherogenic dyslipidemia or hypercholesterolemia: two randomized controlled trials. JAMA, 2007, 297(12), 1362-1373.
[http://dx.doi.org/10.1001/jama.297.12.1362] [PMID: 17384435]
[142]
Millar, J.S.; Duffy, D.; Gadi, R.; Bloedon, L.T.; Dunbar, R.L.; Wolfe, M.L.; Movva, R.; Shah, A.; Fuki, I.V.; McCoy, M.; Harris, C.J.; Wang, M.D.; Howey, D.C.; Rader, D.J. Potent and selective PPAR-alpha agonist LY518674 upregulates both ApoA-I production and ca-tabolism in human subjects with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol., 2009, 29(1), 140-146.
[http://dx.doi.org/10.1161/ATVBAHA.108.171223] [PMID: 18988892]
[143]
Gupta, J.; Gupta, R.; Varun, K.; Wahi, N. Application of medicinal plants in management of endogenous bioactive molecules as potential biomarkers for cardiovascular disease and disorders. Curr. Trends Biotechnol. Pharm., 2019, 13(3), 350-365.
[144]
Xu, X.; Chai, M.; Cheng, Y.; Peng, P.; Liu, X.; Yan, Z.; Guo, Y.; Zhao, Y.; Zhou, Y. Efficacy and safety of evolocumab in reducing low-density lipoprotein cholesterol levels in chinese patients with non-ST-segment elevation acute coronary syndrome. Curr. Vasc. Pharmacol., 2021, 19(4), 429-437.
[http://dx.doi.org/10.2174/1570161118666200616144141] [PMID: 32543364]
[145]
Liang, H.; Chaparro-Riggers, J.; Strop, P.; Geng, T.; Sutton, J.E.; Tsai, D.; Bai, L.; Abdiche, Y.; Dilley, J.; Yu, J.; Wu, S.; Chin, S.M.; Lee, N.A.; Rossi, A.; Lin, J.C.; Rajpal, A.; Pons, J.; Shelton, D.L. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther., 2012, 340(2), 228-236.
[http://dx.doi.org/10.1124/jpet.111.187419] [PMID: 22019884]
[146]
Kereiakes, D.J.; Robinson, J.G.; Cannon, C.P.; Lorenzato, C.; Pordy, R.; Chaudhari, U.; Colhoun, H.M. Efficacy and safety of the propro-tein convertase subtilisin/kexin type 9 inhibitor alirocumab among high cardiovascular risk patients on maximally tolerated statin therapy: The ODYSSEY COMBO I study. Am. Heart J., 2015, 169(6), 906-915.e13.
[http://dx.doi.org/10.1016/j.ahj.2015.03.004] [PMID: 26027630]
[147]
Koren, M.J.; Giugliano, R.P.; Raal, F.J.; Sullivan, D.; Bolognese, M.; Langslet, G.; Civeira, F.; Somaratne, R.; Nelson, P.; Liu, T.; Scott, R.; Wasserman, S.M.; Sabatine, M.S. Efficacy and safety of longer-term administration of evolocumab (AMG 145) in patients with hypercho-lesterolemia: 52-week results from the Open-Label Study of Long-Term Evaluation Against LDL-C (OSLER) randomized trial. Circulation, 2014, 129(2), 234-243.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007012] [PMID: 24255061]
[148]
Blom, D.J.; Hala, T.; Bolognese, M.; Lillestol, M.J.; Toth, P.D.; Burgess, L.; Ceska, R.; Roth, E.; Koren, M.J.; Ballantyne, C.M.; Monsalvo, M.L.; Tsirtsonis, K.; Kim, J.B.; Scott, R.; Wasserman, S.M.; Stein, E.A. A 52-week placebo-controlled trial of evolocumab in hyper-lipidemia. N. Engl. J. Med., 2014, 370(19), 1809-1819.
[http://dx.doi.org/10.1056/NEJMoa1316222] [PMID: 24678979]
[149]
Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Daly, D.D., Jr; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C., Jr ACC expert consensus decision pathway on the role of non-statin therapies for LDL-Cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: A report of the American College of Cardiology task force on clinical expert consensus docu-ments. J. Am. Coll. Cardiol., 2016, 68(1), 92-125.
[http://dx.doi.org/10.1016/j.jacc.2016.03.519] [PMID: 27046161]
[150]
Robinson, J.G.; Huijgen, R.; Ray, K.; Persons, J.; Kastelein, J.J.P.; Pencina, M.J. Determining when to add nonstatin therapy: a quantitative approach. J. Am. Coll. Cardiol., 2016, 68(22), 2412-2421.
[http://dx.doi.org/10.1016/j.jacc.2016.09.928] [PMID: 27908345]
[151]
McNutt, M.C.; Kwon, H.J.; Chen, C.; Chen, J.R.; Horton, J.D.; Lagace, T.A. Antagonism of secreted PCSK9 increases low density lipopro-tein receptor expression in HepG2 cells. J. Biol. Chem., 2009, 284(16), 10561-10570.
[http://dx.doi.org/10.1074/jbc.M808802200] [PMID: 19224862]
[152]
Shan, L.; Pang, L.; Zhang, R.; Murgolo, N.J.; Lan, H.; Hedrick, J.A. PCSK9 binds to multiple receptors and can be functionally inhibited by an EGF-A peptide. Biochem. Biophys. Res. Commun., 2008, 375(1), 69-73.
[http://dx.doi.org/10.1016/j.bbrc.2008.07.106] [PMID: 18675252]
[153]
Zhang, D.W.; Lagace, T.A.; Garuti, R.; Zhao, Z.; McDonald, M.; Horton, J.D.; Cohen, J.C.; Hobbs, H.H. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and in-creases degradation. J. Biol. Chem., 2007, 282(25), 18602-18612.
[http://dx.doi.org/10.1074/jbc.M702027200] [PMID: 17452316]
[154]
Benjannet, S.; Rhainds, D.; Essalmani, R.; Mayne, J.; Wickham, L.; Jin, W.; Asselin, M.C.; Hamelin, J.; Varret, M.; Allard, D.; Trillard, M.; Abifadel, M.; Tebon, A.; Attie, A.D.; Rader, D.J.; Boileau, C.; Brissette, L.; Chrétien, M.; Prat, A.; Seidah, N.G. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem., 2004, 279(47), 48865-48875.
[http://dx.doi.org/10.1074/jbc.M409699200] [PMID: 15358785]
[155]
Palmer-Smith, H.; Basak, A. Regulatory effects of peptides from the pro and catalytic domains of proprotein convertase subtilisin/kexin 9 (PCSK9) on low-density lipoprotein receptor (LDL-R). Curr. Med. Chem., 2010, 17(20), 2168-2182.
[http://dx.doi.org/10.2174/092986710791299948] [PMID: 20423303]
[156]
Alghamdi, R.H.; O’Reilly, P.; Lu, C.; Gomes, J.; Lagace, T.A.; Basak, A. LDL-R promoting activity of peptides derived from human PCSK9 catalytic domain (153–421): Design, synthesis and biochemical evaluation. Eur. J. Med. Chem., 2015, 92, 890-907.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.022] [PMID: 25679794]
[157]
Schroeder, C.I.; Swedberg, J.E.; Withka, J.M.; Rosengren, K.J.; Akcan, M.; Clayton, D.J.; Daly, N.L.; Cheneval, O.; Borzilleri, K.A.; Grif-for, M.; Stock, I.; Colless, B.; Walsh, P.; Sunderland, P.; Reyes, A.; Dullea, R.; Ammirati, M.; Liu, S.; McClure, K.F.; Tu, M.; Bhattacharya, S.K.; Liras, S.; Price, D.A.; Craik, D.J. Design and synthesis of truncated EGF-A peptides that restore LDL-R recycling in the presence of PCSK9 in vitro. Chem. Biol., 2014, 21(2), 284-294.
[http://dx.doi.org/10.1016/j.chembiol.2013.11.014] [PMID: 24440079]
[158]
Zhang, Y.; Eigenbrot, C.; Zhou, L.; Shia, S.; Li, W.; Quan, C.; Tom, J.; Moran, P.; Di Lello, P.; Skelton, N.J.; Kong-Beltran, M.; Peterson, A.; Kirchhofer, D. Identification of a small peptide that inhibits PCSK9 protein binding to the low density lipoprotein receptor. J. Biol. Chem., 2014, 289(2), 942-955.
[http://dx.doi.org/10.1074/jbc.M113.514067] [PMID: 24225950]
[159]
Stucchi, M.; Grazioso, G.; Lammi, C.; Manara, S.; Zanoni, C.; Arnoldi, A.; Lesma, G.; Silvani, A. Disrupting the PCSK9/LDLR protein–protein interaction by an imidazole-based minimalist peptidomimetic. Org. Biomol. Chem., 2016, 14(41), 9736-9740.
[http://dx.doi.org/10.1039/C6OB01642A] [PMID: 27722650]
[160]
Akram, O.N.; Bernier, A.; Petrides, F.; Wong, G.; Lambert, G. Beyond LDL cholesterol, a new role for PCSK9. Arterioscler. Thromb. Vasc. Biol., 2010, 30(7), 1279-1281.
[http://dx.doi.org/10.1161/ATVBAHA.110.209007] [PMID: 20554949]
[161]
Frank-Kamenetsky, M.; Grefhorst, A.; Anderson, N.N.; Racie, T.S.; Bramlage, B.; Akinc, A.; Butler, D.; Charisse, K.; Dorkin, R.; Fan, Y.; Gamba-Vitalo, C.; Hadwiger, P.; Jayaraman, M.; John, M.; Jayaprakash, K.N.; Maier, M.; Nechev, L.; Rajeev, K.G.; Read, T.; Röhl, I.; Soutschek, J.; Tan, P.; Wong, J.; Wang, G.; Zimmermann, T.; de Fougerolles, A.; Vornlocher, H.P.; Langer, R.; Anderson, D.G.; Mano-haran, M.; Koteliansky, V.; Horton, J.D.; Fitzgerald, K. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11915-11920.
[http://dx.doi.org/10.1073/pnas.0805434105] [PMID: 18695239]
[162]
Fitzgerald, K.; Frank-Kamenetsky, M.; Shulga-Morskaya, S.; Liebow, A.; Bettencourt, B.R.; Sutherland, J.E.; Hutabarat, R.M.; Clausen, V.A.; Karsten, V.; Cehelsky, J.; Nochur, S.V.; Kotelianski, V.; Horton, J.; Mant, T.; Chiesa, J.; Ritter, J.; Munisamy, M.; Vaishnaw, A.K.; Gollob, J.A.; Simon, A. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet, 2014, 383(9911), 60-68.
[http://dx.doi.org/10.1016/S0140-6736(13)61914-5] [PMID: 24094767]
[163]
Fitzgerald, K.; White, S.; Borodovsky, A.; Bettencourt, B.R.; Strahs, A.; Clausen, V.; Wijngaard, P.; Horton, J.D.; Taubel, J.; Brooks, A.; Fernando, C.; Kauffman, R.S.; Kallend, D.; Vaishnaw, A.; Simon, A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med., 2017, 376(1), 41-51.
[http://dx.doi.org/10.1056/NEJMoa1609243] [PMID: 27959715]
[164]
Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.T.; Turner, T.; Visseren, F.L.J.; Wijngaard, P.; Wright, R.S.; Kastelein, J.J.P. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med., 2017, 376(15), 1430-1440.
[http://dx.doi.org/10.1056/NEJMoa1615758] [PMID: 28306389]
[165]
Chery, J. RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J., 2016, 4(7), 35-50.
[http://dx.doi.org/10.14304/SURYA.JPR.V4N7.5] [PMID: 27570789]
[166]
Lindholm, M.W.; Elmén, J.; Fisker, N.; Hansen, H.F.; Persson, R.; Møller, M.R.; Rosenbohm, C.; Ørum, H.; Straarup, E.M.; Koch, T. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther., 2012, 20(2), 376-381.
[http://dx.doi.org/10.1038/mt.2011.260] [PMID: 22108858]
[167]
Gupta, N.; Fisker, N.; Asselin, M.C.; Lindholm, M.; Rosenbohm, C.; Ørum, H.; Elmén, J.; Seidah, N.G.; Straarup, E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One, 2010, 5(5)e10682
[http://dx.doi.org/10.1371/journal.pone.0010682] [PMID: 20498851]
[168]
Galabova, G.; Brunner, S.; Winsauer, G.; Juno, C.; Wanko, B.; Mairhofer, A.; Lührs, P.; Schneeberger, A.; von Bonin, A.; Mattner, F.; Schmidt, W.; Staffler, G. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One, 2014, 9(12)e114469
[http://dx.doi.org/10.1371/journal.pone.0114469] [PMID: 25474576]
[169]
Crossey, E.; Amar, M.J.A.; Sampson, M.; Peabody, J.; Schiller, J.T.; Chackerian, B.; Remaley, A.T. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine, 2015, 33(43), 5747-5755.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.044] [PMID: 26413878]
[170]
Govea-Alonso, D.O.; Beltrán-López, J.; Salazar-González, J.A.; Vargas-Morales, J.; Rosales-Mendoza, S. Progress and future opportunities in the development of vaccines against atherosclerosis. Expert Rev. Vaccines, 2017, 16(4), 337-350.
[http://dx.doi.org/10.1080/14760584.2017.1258309] [PMID: 27817213]
[171]
Landlinger, C.; Pouwer, M.G.; Juno, C.; van der Hoorn, J.W.A.; Pieterman, E.J.; Jukema, J.W.; Staffler, G.; Princen, H.M.G.; Galabova, G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atheroscle-rosis in APOE*3Leiden.CETP mice. Eur. Heart J., 2017, 38(32), 2499-2507.
[http://dx.doi.org/10.1093/eurheartj/ehx260] [PMID: 28637178]
[172]
Stein, E.A.; Raal, F.J. Update on PCSK9 inhibitors and new therapies. US Endocrinol., 2016, 12(1), 18-21.
[http://dx.doi.org/10.17925/USE.2016.12.01.18]
[173]
Stein, E.A.; Gipe, D.; Bergeron, J.; Gaudet, D.; Weiss, R.; Dufour, R.; Wu, R.; Pordy, R. Effect of a monoclonal antibody to PCSK9, REGN727/SAR236553, to reduce low-density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on sta-ble statin dose with or without ezetimibe therapy: a phase 2 randomised controlled trial. Lancet, 2012, 380(9836), 29-36.
[http://dx.doi.org/10.1016/S0140-6736(12)60771-5] [PMID: 22633824]
[174]
McKenney, J.M.; Koren, M.J.; Kereiakes, D.J.; Hanotin, C.; Ferrand, A.C.; Stein, E.A. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia re-ceiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol., 2012, 59(25), 2344-2353.
[http://dx.doi.org/10.1016/j.jacc.2012.03.007] [PMID: 22463922]
[175]
Alirocumab Briefing Document: Endocrine & metabolic advisory committee meeting 2015. Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/EndocrinologicandMetabolicDrugsAdvisoryCommittee/UCM449865.pdf(Accessed February 2, 2022)
[176]
Chaudhary, R.; Garg, J.; Shah, N.; Sumner, A. PCSK9 inhibitors: A new era of lipid lowering therapy. World J. Cardiol., 2017, 9(2), 76-91.
[http://dx.doi.org/10.4330/wjc.v9.i2.76] [PMID: 28289523]
[177]
Kosmas, C.E.; Skavdis, A.; Sourlas, A.; Papakonstantinou, E.J.; Peña Genao, E.; Echavarria Uceta, R.; Guzman, E. Safety and tolerability of PCSK9 inhibitors: Current insights. Clin. Pharmacol., 2020, 12, 191-202.
[http://dx.doi.org/10.2147/CPAA.S288831] [PMID: 33335431]
[178]
Gürgöze, M.T.; Muller-Hansma, A.H.G.; Schreuder, M.M.; Galema-Boers, A.M.H.; Boersma, E.; Roeters van Lennep, J.E. Adverse events associated with PCSK9 inhibitors: A real-world experience. Clin. Pharmacol. Ther., 2019, 105(2), 496-504.
[http://dx.doi.org/10.1002/cpt.1193] [PMID: 30053327]
[179]
van Bruggen, F.H.; Nijhuis, G.B.J.; Zuidema, S.U.; Luijendijk, H. Serious adverse events and deaths in PCSK9 inhibitor trials reported on ClinicalTrials.gov: a systematic review. Expert Rev. Clin. Pharmacol., 2020, 13(7), 787-796.
[http://dx.doi.org/10.1080/17512433.2020.1787832] [PMID: 32597252]
[180]
Abifadel, M.; Boileau, C.; Rabes, J.P.; Seidah, N.G.; Varret, M. Method for detecting the presence of or predisposition to autosomal dominant hypercholesterolemia U.S Patent US20077300754, 2007.
[181]
Seidah, N.G.; Labonte, P. Methods of reducing a viral infection and kits therefore. U.S. Patent US20090104209, 2009.
[182]
Mintier, G.A.; Chen, J.; Feder, J.N.; Parker, R.A.; Miao, B. Polynucleotides encoding novel pcsk9 variants. U.S. Patent WO2008105797A3, 2008.
[183]
Tan, P.; Bramlage, B.; Frank-kamenetsk, M.; Fitzgerald, K.; Akinc, A.; Kotelianski, V.E. Compositions and methods for inhibiting expression of the pcsk9 gene. U.S. Patent US20080113930A1, 2008.
[184]
Mcswiggen, J.; Jadhav, V.; Vaish, N.; Guerciolini, R.; Vargeese, C. RNA interference mediated inhibition of proprotein convertase subtilisin kexin 9 (PCSK9) gene expression using short interfering nucleic acid (siNA). U.S. Patent US20070173473A1, 2007.
[185]
Khvorova, A.; Reynolds, A.; Leake, D.; Marshall, W.; Read, S.; Scaringe, S. siRNA targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). U.S. Patent US20080306015A1, 2008.
[186]
Bhanot, S.; Geary, R.S.; Mckay, R.; Monia, B.P.; Seth, P.P.; Siwkowski, A.M.; Swayze, E.E.; Wancewicz, E. Compounds and methods for modulating expression of pcsk9., European Patent EP2023939A2, 2009.
[187]
Quay, S.C.; Mcswiggen, J.; Vaish, N.K.; Ahmadian, M. Nucleic acid compounds for inhibiting pcsk9 gene exprression and uses thereof. U.S. Patent WO2008109472, 2008.
[188]
Jackson, S.M.; Walker, N.P.C.; Piper, D.E.; Shan, B.; Shen, W.; Chan, J.C.Y.; King, C.T.; Ketchem, R.R.; Mehlin, C.; Carabeo, T.A. Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9). U.S. Patent WO2009026558A1, 2009.
[189]
Hedrick, J.A.; Monsma, F.J.J.; Churakova, T.; Hollenbaugh, D. Anti-pcsk9 and methods for treating lipid and cholesterol disorders. U.S. Patent WO2009055783A2, 2009.
[190]
Abdel-Meguid, S.S.; Abou-Gharbia, M.; Blass, B.; Childers, W.; Elshourbagy, N.; Ghidu, V.; Rogelio Martinez, R.; Meyers, H.; Mousa, S.A. Anti-pcsk9 compounds and methods for the treatmentand/or prevention of cardiovascular diseases. U.S. Patent WO2014150395A1, 2014.
[191]
Briner, K.; Dechristopher, B.A.; Flyer, N.A.; Golosov, A.A.; Grosche, P.; Liu, E.Y.; Mao, J.Y.C.; Monovich, L.G.; Patel, T.J.; Sanchez, C.C.; Su, L.; Yang, L.; Zheng, R. Cyclic tetramer compounds as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors for the treatment of metabolic disorders. U.S. Patent US11026993B2,, 2021.
[192]
Mousa, S.A.; Elshourbagy, N.A.; Meyers, H.V.; Abdel-Meguid, S.S. Anti-proprotein convertase subtilisin kexin type 9 (anti-pcsk9) nano-formulation of compounds and methods of using the same. U.S. Patent US20220031665A1, 2022.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy