Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Influence of Eco-friendly Pretreatment of Cellulose Acetate Fabric with Laccase Enzyme on the Textile Properties, Dye Adsorption Isotherms, and Thermodynamic Parameters

Author(s): Ali Akbar Zolriasatein*

Volume 9, Issue 2, 2022

Published on: 20 December, 2022

Page: [94 - 107] Pages: 14

DOI: 10.2174/2213346110666221201163554

Price: $65

Abstract

Introduction: Deacetylation of cellulose acetate restores hydroxyl groups on the surface of fibers and improves hydrophilicity. From an environmental point of view, the conventional deacetylation process involves alkalinity and large effluent volume. The goal of this work is to introduce a new ecofriendly bio-treatment process.

Methods: In this study, cellulose acetate fabrics were bio-treated with laccase enzyme. Then, the untreated and bio-treated fabrics were dyed with direct and disperse dyes. Laccase pretreatment improved color strength (16%) and crocking durability. After bio-treatment, the bending rigidity decreased for the warp (17.8) and weft (10.8) directions. The Freundlich model was the best model to describe the adsorption of direct dye onto the untreated fabric. In contrast, the Langmuir model better described the adsorption behavior of bio-treated fabric.

Results: Nernst model was suitable for disperse dyes adsorption. The partition coefficient was increased after laccase treatment. Thermodynamic analysis showed that the dye sorption was endothermic and nonspontaneous.

Conclusion: It was also found that bio-treated fabrics require less external energy. All performed experiments approved the efficiency of the deacetylation process, which led to an improvement in dyeing properties.

Graphical Abstract

[1]
Zhang, Y.; Chen, S.; Wu, J.; Chen, J. Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins. Biocatal. Biotransform., 2012, 30(2), 184-189.
[http://dx.doi.org/10.3109/10242422.2011.638713]
[2]
Pocienė, R.; Žemaitaitienė, R.; Vitkauskas, A. Mechanical properties and a physical-chemical analysis of acetate yarns. Medziagotyra, 2004, 10(1), 75-79.
[3]
Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. properties and applications of cellulose acetate. Macromol. Symp., 2008, 262(1), 89-96.
[http://dx.doi.org/10.1002/masy.200850210]
[4]
Callegari, G.; Tyomkin, I.; Kornev, K.G.; Neimark, A.V.; Hsieh, Y.L. Absorption and transport properties of ultra-fine cellulose webs. J. Colloid Interface Sci., 2011, 353(1), 290-293.
[http://dx.doi.org/10.1016/j.jcis.2010.09.015] [PMID: 20932537]
[5]
He, X. Optimization of deacetylation process for regenerated cellulose hollow fiber membranes. Int. J. Polym. Sci., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/3125413]
[6]
Liu, H.; Hsieh, Y.L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci., B, Polym. Phys., 2002, 40(18), 2119-2129.
[http://dx.doi.org/10.1002/polb.10261]
[7]
Braun, J.L.; Kadla, J.F. Diffusion and saponification inside porous cellulose triacetate fibers. Biomacromolecules, 2005, 6(1), 152-160.
[http://dx.doi.org/10.1021/bm0496413] [PMID: 15638515]
[8]
Koh, J.; Soo Kim, I.; Soo Kim, S.; Sub Shim, W.; Pil Kim, J.; Yeop Kwak, S.; Wook Chun, S.; Ku Kwon, Y. Dyeing properties of novel regenerated cellulosic fibers. J. Appl. Polym. Sci., 2004, 91(6), 3481-3488.
[http://dx.doi.org/10.1002/app.13551]
[9]
Bristi, U.; Pias, A.K.; Lavlu, F.H. A Sustainable process by bio- scouring for cotton knitted fabric suitable for next generation. J. Textile Engin. Fashion Technol., 2019, 5(1), 41-48.
[http://dx.doi.org/10.15406/jteft.2019.05.00179]
[10]
Matamá, T.A.; Cavaco-Paulo, A. Enzymatic modification of polyacrylonitrile and cellulose acetate fibres for textile and other applications. In: Advances in Textile Biotechnology; Woodhead Publishing Series in Textiles; Nierstrasz, V.A.; Cavaco-Paulo, A., Eds.; Woodhead Publishing: Cambridge, 2010; pp. 98-131.
[11]
Gübitz, G.M.; Paulo, A.C. New substrates for reliable enzymes: enzymatic modification of polymers. Curr. Opin. Biotechnol., 2003, 14(6), 577-582.
[http://dx.doi.org/10.1016/j.copbio.2003.09.010] [PMID: 14662385]
[12]
Guebitz, G.M.; Cavaco-Paulo, A. Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol., 2008, 26(1), 32-38.
[http://dx.doi.org/10.1016/j.tibtech.2007.10.003] [PMID: 18037176]
[13]
Kumar, A.; Pintail, C.; Lepola, M. Enzymatic treatment of man-made cellulosic fabrics. Text. Chem. Color., 1994, 26(10), 25-28.
[14]
Matamá, T.; Araújo, R.; Gübitz, G.M.; Casal, M.; Cavaco-Paulo, A. Functionalization of cellulose acetate fibers with engineered cutinases. Biotechnol. Prog., 2010, 26(3), 636-643.
[http://dx.doi.org/10.1002/btpr.364] [PMID: 20014432]
[15]
Haske-Cornelius, O.; Pellis, A.; Tegl, G.; Wurz, S.; Saake, B.; Ludwig, R.; Sebastian, A.; Nyanhongo, G.; Guebitz, G. Enzymatic systems for cellulose acetate degradation. Catalysts, 2017, 7(10), 287.
[http://dx.doi.org/10.3390/catal7100287]
[16]
Kosaka, P.M.; Kawano, Y.; El Seoud, O.A.; Petri, D.F.S. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. Langmuir, 2007, 23(24), 12167-12173.
[http://dx.doi.org/10.1021/la701913q] [PMID: 17949116]
[17]
Ishigaki, T.; Sugano, W.; Ike, M.; Fujita, M. Enzymatic degradation of cellulose acetate plastic by Novel degrading bacterium Bacillus sp. S2055. J. Biosci. Bioeng., 2000, 90(4), 400-405.
[http://dx.doi.org/10.1016/S1389-1723(01)80008-6] [PMID: 16232879]
[18]
Zolriasatein, A.A. Effect of lipase treatment on physical and dyeing properties of cellulose acetate fabric. Recent Innov. Chem. Eng., 2021, 13(5), 344-352.
[http://dx.doi.org/10.2174/2405520413666200207114627]
[19]
Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nomura, N.; Onuma, F.; Nakahara, T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol., 1999, 51(2), 134-140.
[http://dx.doi.org/10.1007/s002530051373] [PMID: 10091317]
[20]
Zolriasatein, A.A. Thermodynamics, kinetics and isotherms studies for sorption of direct dye onto the pectinase pre-treated jute yarn. Recent Innov. Chem. Eng., 2019, 12(2), 160-171.
[http://dx.doi.org/10.2174/2405520412666190618144005]
[21]
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A. Effects of commercial laccase enzyme on appearance and light fastness of lingocellulosic jute yarn. Asian J. Chem., 2011, 23(10), 4677-4680.
[22]
Prasetyo, E.N.; Semlitsch, S.; Nyanhongo, G.S.; Lemmouchi, Y.; Guebitz, G.M. Laccase functionalized cellulose acetate for the removal of toxic combustion products. React. Funct. Polym., 2015, 97, 12-18.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2015.10.004]
[23]
Zhang, X.; Eigendorf, G.; Stebbing, D.W.; Mansfield, S.D.; Saddler, J.N. Degradation of trilinolein by laccase enzymes. Arch. Biochem. Biophys., 2002, 405(1), 44-54.
[http://dx.doi.org/10.1016/S0003-9861(02)00331-4] [PMID: 12176056]
[24]
Bassanini, I.; Ferrandi, E.E.; Riva, S.; Monti, D. Biocatalysis with laccases: an updated overview. Catalysts, 2020, 11(1), 26.
[http://dx.doi.org/10.3390/catal11010026]
[25]
Puls, J.; Wilson, S.A.; Hölter, D. Degradation of cellulose acetate-based materials: a review. J. Polym. Environ., 2011, 19(1), 152-165.
[http://dx.doi.org/10.1007/s10924-010-0258-0]
[26]
Rowen, J.W.; Hunt, C.M.; Plyler, E.K. Absorption spectra in the detection of chemical changes in cellulose and cellulose derivatives. Text. Res. J., 1947, 17(9), 504-511.
[http://dx.doi.org/10.1177/004051754701700905]
[27]
Wang, K.; Tang, A. Preparation and property of oxidized cellulose acetate with C-6 carboxyl groups. Chin J Mater Res, 2012, 26(4), 408-413.
[28]
Tzanov, T.; Basto, C.; Gübitz, G.M.; Cavaco-Paulo, A. Laccases to improve the whiteness in a conventional bleaching of cotton. Macromol. Mater. Eng., 2003, 288(10), 807-810.
[http://dx.doi.org/10.1002/mame.200300100]
[29]
Kunamneni, A.; Plou, F.; Ballesteros, A.; Alcalde, M. Laccases and their applications: a patent review. Recent Pat. Biotechnol., 2008, 2(1), 10-24.
[http://dx.doi.org/10.2174/187220808783330965] [PMID: 19075849]
[30]
Kirk, O.; Borchert, T.V.; Fuglsang, C.C. Industrial enzyme applications. Curr. Opin. Biotechnol., 2002, 13(4), 345-351.
[http://dx.doi.org/10.1016/S0958-1669(02)00328-2] [PMID: 12323357]
[31]
Ishigaki, T.; Sugano, W.; Ike, M.; Taniguchi, H.; Goto, T.; Fujita, M. Effect of UV irradiation on enzymatic degradation of cellulose acetate. Polym. Degrad. Stabil., 2002, 78(3), 505-510.
[http://dx.doi.org/10.1016/S0141-3910(02)00197-0]
[32]
Zolriasatein, A.A. The use of ultrasound in bio-treatment of jute yarn with laccase enzyme. Recent Innov. Chem. Eng., 2019, 12(4), 275-286.
[http://dx.doi.org/10.2174/2405520412666190731120559]
[33]
Sharma, I.C.; Chattopadhyay, D.P.; Chatterjee, K.N.; Mukhopadhyay, A.; Kumar, A. Effect of various softeners on the performance of polyester-viscose ring and air-jet spun yarn fabrics. Indian J. Fibre Text. Res., 1998, 23(1), 44-48.
[34]
Pan, N.C.; Chattopadhyay, S.N.; Roy, A.K. Application of biotechnology in the coloration of jute fabric using bis-triazinyl type of reactive dyes. Indian J. Fibre Text. Res., 2015, 40(4), 414-418.
[35]
Tokiwa, Y.; Suzuki, T.; Takeda, K. Two types of lipases in hydrolysis of polyester. Agric. Biol. Chem., 1988, 52(8), 1937-1943.
[http://dx.doi.org/10.1080/00021369.1988.10868966]
[36]
Zolriasatein, A.A.; Yazdanshenas, M.E. Changes in composition, appearance, physical, and dyeing properties of jute yarn after bio-pretreatment with laccase, xylanase, cellulase, and pectinase enzymes. J. Textil. Inst., 2014, 105(6), 609-619.
[http://dx.doi.org/10.1080/00405000.2013.842290]
[37]
Shraddha; Shekher, R.; Sehgal, S.; Kamthania, M.; Kumar, A. Laccase: microbial sources, production, purification, and potential biotechnological applications. Enzyme Res., 2011, 2011, 1-11.
[http://dx.doi.org/10.4061/2011/217861]
[38]
Zolriasatein, A.A. A review on the application of poly(amidoamine) dendritic nano-polymers for modification of cellulosic fabrics. Recent Innov. Chem. Eng., 2020, 13(2), 110-122.
[http://dx.doi.org/10.2174/2405520412666191019101828]
[39]
Tang, W.; Li, X.; Zhao, J.; Yue, J.; Yue, H.; Qu, Y. Effect of microbial treatment on brightness and heat-induced brightness reversion of high-yield pulps. J. Chem. Technol. Biotechnol., 2009, 84(11), 1631-1641.
[http://dx.doi.org/10.1002/jctb.2221]
[40]
Gibson, P.W.; Desabrais, K.; Godfrey, T. Dynamic permeability of porous elastic fabrics. J. Eng. Fibers Fabrics, 2012, 7(S2), 1-8.
[http://dx.doi.org/10.1177/155892501200702S05]
[41]
Pei, L.; Luo, Y.; Gu, X.; Dou, H.; Wang, J. Diffusion mechanism of aqueous solutions and swelling of cellulosic fibers in silicone non-aqueous dyeing system. Polymers, 2019, 11(3), 411.
[http://dx.doi.org/10.3390/polym11030411] [PMID: 30960395]
[42]
Kalantzi, S.; Mamma, D.; Kalogeris, E.; Kekos, D. Improved properties of cotton fabrics treated with lipase and its combination with pectinase. Fibres Text. East. Eur., 2010, 18(5), 86-92.
[43]
Demir, A.; Arık, B.; Ozdogan, E.; Seventekin, N. The comparison of the effect of enzyme, peroxide, plasma and chitosan processes on wool fabrics and evaluation for antimicrobial activity. Fibers Polym., 2010, 11(7), 989-995.
[http://dx.doi.org/10.1007/s12221-010-0989-5]
[44]
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A. Effects of alkali and ultraviolet treatment on colour strength and mechanical properties of jute yarn. Color. Technol., 2012, 128(5), 395-402.
[http://dx.doi.org/10.1111/j.1478-4408.2012.00393.x]
[45]
Zolriasatein, A.A. Sorption isotherms and thermodynamics of direct dye onto the nano poly(Amidoamine) dendrimer treated jute yarn. Nanoscience &amp. Nanosci. Nanotechnol. Asia, 2020, 10(5), 673-681.
[http://dx.doi.org/10.2174/2210681209666190412141442]
[46]
Cheng, S.; Zhao, S.; Guo, H.; Xing, B.; Liu, Y.; Zhang, C.; Ma, M. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed. Bioresour. Technol., 2022, 343, 126081.
[http://dx.doi.org/10.1016/j.biortech.2021.126081] [PMID: 34610424]
[47]
Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci., 2004, 280(2), 322-333.
[http://dx.doi.org/10.1016/j.jcis.2004.08.078] [PMID: 15533404]
[48]
Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Separ. Purif. Tech., 2008, 61(3), 229-242.
[http://dx.doi.org/10.1016/j.seppur.2007.10.002]
[49]
Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 2002, 54(1), 47-58.
[http://dx.doi.org/10.1016/S0143-7208(02)00025-6]
[50]
Abdel-Galil, E.A.; Rizk, H.E.; Mostafa, A.Z. Isotherm, kinetic, and thermodynamic studies for sorption of Cu(II) and Pb(II) by activated carbon prepared from Leucaena plant wastes. Particul. Sci. Technol., 2016, 34(5), 540-551.
[http://dx.doi.org/10.1080/02726351.2015.1089962]
[51]
Kul, A.R.; Caliskan, N. Equilibrium and kinetic studies of the adsorption of Zn(II) ions onto natural and activated kaolinites. Adsorpt. Sci. Technol., 2009, 27(1), 85-105.
[http://dx.doi.org/10.1260/026361709788921632]
[52]
Widjajanti Laksono Fx, E.; Marfuatun, M.; Marwati, S. Adsorption mechanism of direct red on cellulose acetate from Ananas comous leaves. Orient. J. Chem., 2017, 33(6), 3144-3149.
[http://dx.doi.org/10.13005/ojc/330657]
[53]
Emeniru, D.C.; Neminebor, J.; Ikirigo, J.; Sogbara, F. Perspective view on sorption thermodynamics: Basic dye uptake on southern nigerian clay. Eur. Sci. J., 2017, 13(18), 355.
[http://dx.doi.org/10.19044/esj.2017.v13n18p355]
[54]
Arora, A.; Gupta, D.; Rastogi, D.; Gulrajani, M. Kinetics and thermodynamics of dye extracted from Arnebia nobilis Rech.f. on wool. Indian J. Fibre Text. Res., 2012, 37, 178-182.
[55]
Cheng, S.; Zhao, S.; Xing, B.; Shi, C.; Meng, W.; Zhang, C.; Bo, Z. Facile one-pot green synthesis of magnetic separation photocatalyst-adsorbent and its application. J. Water Process Eng., 2022, 47, 102802.
[http://dx.doi.org/10.1016/j.jwpe.2022.102802]
[56]
Özcan, A.S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. J. Colloid Interface Sci., 2004, 280(1), 44-54.
[http://dx.doi.org/10.1016/j.jcis.2004.07.035] [PMID: 15476772]
[57]
Demir, H.; Top, A.; Balköse, D.; Ülkü, S. Dye adsorption behavior of Luffa cylindrica fibers. J. Hazard. Mater., 2008, 153(1-2), 389-394.
[http://dx.doi.org/10.1016/j.jhazmat.2007.08.070] [PMID: 17919814]
[58]
Derakhshan, Z.; Baghapour, M.A.; Ranjbar, M.; Faramarzian, M. Adsorption of Methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies. Health Scope, 2013, 2(3), 136-144.
[http://dx.doi.org/10.17795/jhealthscope-12492]
[59]
Stygienė, L.; Varnaitė-Žuravliova, S.; Abraitienė, A.; Padleckienė, I.; Krauledas, S. Investigation of textile heating element in simulated wearing conditions. AUTEX Res. J., 2021, 21(3), 207-215.
[http://dx.doi.org/10.2478/aut-2019-0080]
[60]
Burkinshaw, S.M.; Salihu, G. The role of auxiliaries in the immersion dyeing of textile fibres: Part 3 theoretical model to describe the role of inorganic electrolytes used in dyeing cellulosic fibres with direct dyes. Dyes Pigments, 2019, 161, 546-564.
[http://dx.doi.org/10.1016/j.dyepig.2017.11.039]
[61]
Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem., 2007, 22(2), 249-275.
[http://dx.doi.org/10.1016/j.apgeochem.2006.09.010]
[62]
Wu, C.H. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater., 2007, 144(1-2), 93-100.
[http://dx.doi.org/10.1016/j.jhazmat.2006.09.083] [PMID: 17081687]
[63]
Xiong, X.; Venkataraman, M.; Jašíková, D.; Yang, T.; Mishra, R.; Militký, J.; Petrů, M. Thermal behavior of aerogel-embedded nonwovens in cross airflow. AUTEX Res. J., 2021, 21(1), 115-124.
[http://dx.doi.org/10.2478/aut-2019-0082]
[64]
Olczyk, J.; Sójka-Ledakowicz, J.; Kudzin, M.; Antecka, A. The Eco-modification of textiles using enzymatic pretreatment and new organic UV absorbers. AUTEX Res. J., 2021, 21(3), 242-251.
[http://dx.doi.org/10.2478/aut-2019-0081]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy