Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

Thermodynamics, Kinetics and Isotherms Studies for Sorption of Direct and Disperse Dyes onto Eco-friendly Pre-treated Cellulose Acetate Fabric using Ultraviolet Irradiation

Author(s): Ali Akbar Zolriasatein*

Volume 9, Issue 2, 2022

Published on: 19 December, 2022

Page: [108 - 122] Pages: 15

DOI: 10.2174/2213346110666221117143316

Price: $65

Abstract

Introduction: Owing to the restoration of hydroxyl groups, cellulose acetate fibers can be dyed with direct dyes. There are some drawbacks in the conventional deacetylation process of cellulose acetate from environmental point of view.

Methods: This process involves high temperature, alkalinity and large volume of effluent. The goal of this work is to improve the dyeing properties of cellulose acetate fabric using an eco-friendly treatment process. In this paper, cellulose acetate fabric was treated with ultraviolet light (UVB) at an air pressure of 1 atm to improve dyeability. Then, the untreated and UV treated fabrics were dyed with direct and disperse dyes. UV treated cellulose acetate fabric showed higher dye adsorption compare to that of untreated cellulose acetate fabric. Five adsorption isotherm models including sold solution, Langmuir, Freundlich, Temkin and BET were applied to determine the adsorption behavior. At all temperatures studied, experimental data were better fitted with the Freundlich and Nernst models for direct and disperse dyes respectively. Thermodynamic parameters such as change in free energy (ΔG0), the enthalpy (ΔH0), and the entropy (ΔS0) were also evaluated.

Results: The calculated thermodynamic values showed that the adsorption of these dyes onto the cellulose acetate fabric was a physical adsorption process and endothermic in nature. These data also implied that the adsorption of direct dye onto cellulose acetate fabric was spontaneous at the experimental temperature range and adsorption of disperse dyes can be spontaneous at higher temperatures. Moreover, the ΔG0 values for the adsorption of disperse dyes onto the UV-treated fabrics were less than those for untreated fabrics suggesting that UV treated fabrics require less external energy.

Conclusion: Among the kinetic models studied, it was found that the pseudo second-order kinetic model was the best model to describe the dye sorption process on the UV treated and untreated cellulose acetate fabrics. The UV treatment led to an improvement in the boundary layer diffusion effect.

Next »
Graphical Abstract

[1]
Zhang, Y.; Chen, S.; Wu, J.; Chen, J. Enzymatic surface modification of cellulose acetate fibre by cutinase-CBM (carbohydrate-binding module) fusion proteins. Biocatal. Biotransform., 2012, 30(2), 184-189.
[http://dx.doi.org/10.3109/10242422.2011.638713]
[2]
Pocienė, R.; Žemaitaitienė, R.; Vitkauskas, A. Mechanical properties and a physical-chemical analysis of acetate yarns. Medziagotyra, 2004, 10(1), 75-79.
[3]
Fischer, S.; Thümmler, K.; Volkert, B.; Hettrich, K.; Schmidt, I.; Fischer, K. Properties and applications of cellulose acetate. Macromol. Symp., 2008, 262(1), 89-96.
[http://dx.doi.org/10.1002/masy.200850210]
[4]
Callegari, G.; Tyomkin, I.; Kornev, K.G.; Neimark, A.V.; Hsieh, Y.L. Absorption and transport properties of ultra-fine cellulose webs. J. Colloid Interface Sci., 2011, 353(1), 290-293.
[http://dx.doi.org/10.1016/j.jcis.2010.09.015] [PMID: 20932537]
[5]
He, X. Optimization of deacetylation process for regenerated cellulose hollow fiber membranes. Int. J. Polym. Sci., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/3125413]
[6]
Koh, J.; Kim, I.S.; Kim, S.S.; Shim, S.W.; Kim, P.J.; Kwak, Y.S.; Chun, W.S.; Kwon, K.Y. Dyeing properties of novel regenerated cellulosic fibers. J. Appl. Polym. Sci., 2004, 91(6), 3481-3488.
[http://dx.doi.org/10.1002/app.13551]
[7]
Liu, H.; Hsieh, Y.L. Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J. Polym. Sci., B, Polym. Phys., 2002, 40(18), 2119-2129.
[http://dx.doi.org/10.1002/polb.10261]
[8]
Braun, J.L.; Kadla, J.F. Diffusion and saponification inside porous cellulose triacetate fibers. Biomacromolecules, 2005, 6(1), 152-160.
[http://dx.doi.org/10.1021/bm0496413] [PMID: 15638515]
[9]
Salam, M.; Sheik, R.; Farouique, F. Effect of salts on dying into cellulose acetate with reactive, direct, basic and mordant dyes. J. Textile Apparel Technol. Manag., 2009, 6(2), 1-6.
[10]
Bhatti, I.; Adeel, S.; Abbas, M. Effect of radiation on textile dyeing. In: Textile Dyeing; Hauser, P., Ed.; IntechOpen: London, 2011; pp. 2-15.
[11]
Micheal, M.N.; El-Zaher, N.A. Efficiency of ultraviolet/ozone treatments in the improvement of the dyeability and light fastness of wool. J. Appl. Polym. Sci., 2003, 90(13), 3668-3675.
[http://dx.doi.org/10.1002/app.12941]
[12]
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A. Effects of alkali and ultraviolet treatment on colour strength and mechanical properties of jute yarn. Color. Technol., 2012, 128(5), 395-402.
[http://dx.doi.org/10.1111/j.1478-4408.2012.00393.x]
[13]
Gassan, J.; Gutowski, V.S. Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Compos. Sci. Technol., 2000, 60(15), 2857-2863.
[http://dx.doi.org/10.1016/S0266-3538(00)00168-8]
[14]
Elnagar, K.; Abou Elmaaty, T.; Raouf, S. Dyeing of polyester and polyamide synthetic fabrics with natural dyes using ecofriendly technique. J. Textiles, 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/363079]
[15]
Hon, D. Degradative effects of ultraviolet light and acid rain on wood surface quality. Wood Fiber Sci., 1994, 26(2), 185-191.
[16]
Bozaci, E.; Sever, K.; Demir, A.; Seki, Y.; Sarikanat, M.; Ozdogan, E. Effect of the atmospheric plasma treatment parameters on surface and mechanical properties of jute fabric. Fibers Polym., 2009, 10(6), 781-786.
[http://dx.doi.org/10.1007/s12221-009-0781-6]
[17]
Kowalonek, J.; Kaczmarek, H.; Dąbrowska, A. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends. Appl. Surf. Sci., 2010, 257(1), 325-331.
[http://dx.doi.org/10.1016/j.apsusc.2010.07.005]
[18]
Zhang, D.; Dougal, S.M.; Yeganeh, M.S. Effects of UV irradiation and plasma treatment on a polystyrene surface studied by IR-visible sum frequency generation spectroscopy. Langmuir, 2000, 16(10), 4528-4532.
[http://dx.doi.org/10.1021/la991353i]
[19]
Kaczmarek, H.; Kowalonek, J.; Szalla, A.; Sionkowska, A. Surface modification of thin polymeric films by air-plasma or UV-irradiation. Surf. Sci., 2002, 507-510, 883-888.
[http://dx.doi.org/10.1016/S0039-6028(02)01367-5]
[20]
Kolská, Z.; Polanský, R.; Prosr, P.; Zemanová, M.; Ryšánek, P.; Slepička, P.; Švorčík, V. Properties of polyamide nanofibers treated by UV-A radiation. Mater. Lett., 2018, 214, 264-267.
[http://dx.doi.org/10.1016/j.matlet.2017.12.029]
[21]
Adeel, S.; Shahid, S.; Khan, S.; Rehman, F.; Muneer, M.; Zuber, M.; Akhtar, N. Eco-Friendly disperse dyeing of ultraviolet-treated polyester fabric using disperse yellow 211. Pol. J. Environ. Stud., 2018, 27(5), 1935-1939.
[http://dx.doi.org/10.15244/pjoes/76033]
[22]
Zolriasatein, A.A. Effects of ultraviolet pretreatment on pigment printing of cotton/polyester blend fabric. Curr. Mater. Sci., 2020, 12(2), 161-169.
[http://dx.doi.org/10.2174/1874464812666190722121702]
[23]
Kamel, M.M.; Raslan, W.M.; Helmy, H.M.; Al-Ashkar, E. Improving properties of polyester and cellulose acetate fabrics using laser irradiation. J. Text. Sci. Eng., 2012, 02(05), 117.
[24]
Widjajanti Laksono Fx, E.; Marfuatun, M.; Marwati, S. Adsorption mechanism of direct red on cellulose acetate from ananas comous leaves. Orient. J. Chem., 2017, 33(6), 3144-3149.
[http://dx.doi.org/10.13005/ojc/330657]
[25]
Balmforth, D.; Bird, C.L. The dyeing of cellulose acetate with water soluble (solacet) dyes. J. Soc. Dyers Colour., 1964, 80(10), 534-542.
[http://dx.doi.org/10.1111/j.1478-4408.1964.tb02568.x]
[26]
Khalifa, R.E.; Omer, A.M.; Tamer, T.M.; Salem, W.M.; Mohy Eldin, M.S. Removal of methylene blue dye from synthetic aqueous solutions using novel phosphonate cellulose acetate membranes: adsorption kinetic, equilibrium, and thermodynamic studies. Desalin. Water Treat., 2019, 144, 272-285.
[http://dx.doi.org/10.5004/dwt.2019.23323]
[27]
Zolriasatein, A.A. Effect of lipase treatment on physical and dyeing properties of cellulose acetate fabric. Recent Innov. Chem. Eng., 2021, 13(5), 344-352.
[http://dx.doi.org/10.2174/2405520413666200207114627]
[28]
Zolriasatein, A.A. Improving dyeing properties of jute yarn to metal complex dyes via grafting with methyl methacrylate and using nano silver. Nanosci. Nanotechnol. Asia, 2020, 10(5), 664-672.
[http://dx.doi.org/10.2174/2210681209666190618112723]
[29]
Zolriasatein, A.A. Thermodynamics, kinetics and isotherms studies for sorption of direct dye onto the pectinase pre-treated jute Yarn. Recent Innov. Chem. Eng., 2019, 12(2), 160-171.
[http://dx.doi.org/10.2174/2405520412666190618144005]
[30]
Zolriasatein, A.A. A review on the application of poly(amidoamine) dendritic nano-polymers for modification of cellulosic fabrics. Recent Innov. Chem. Eng., 2020, 13(2), 110-122.
[http://dx.doi.org/10.2174/2405520412666191019101828]
[31]
Limousin, G.; Gaudet, J.P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem., 2007, 22(2), 249-275.
[http://dx.doi.org/10.1016/j.apgeochem.2006.09.010]
[32]
Demir, H.; Top, A.; Balköse, D.; Ülkü, S. Dye adsorption behavior of Luffa cylindrica fibers. J. Hazard. Mater., 2008, 153(1-2), 389-394.
[http://dx.doi.org/10.1016/j.jhazmat.2007.08.070] [PMID: 17919814]
[33]
Zolriasatein, A.A. Sorption isotherms and thermodynamics of direct dye onto the nano poly(amidoamine) dendrimer treated jute yarn. Nanosci. Nanotechnol. Asia, 2020, 10(5), 673-681.
[http://dx.doi.org/10.2174/2210681209666190412141442]
[34]
Wu, C.H. Adsorption of reactive dye onto carbon nanotubes: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater., 2007, 144(1-2), 93-100.
[http://dx.doi.org/10.1016/j.jhazmat.2006.09.083] [PMID: 17081687]
[35]
Özcan, A.S.; Erdem, B.; Özcan, A. Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. J. Colloid Interface Sci., 2004, 280(1), 44-54.
[http://dx.doi.org/10.1016/j.jcis.2004.07.035] [PMID: 15476772]
[36]
Alamillo-López, V.M.; Sánchez-Mendieta, V.; Olea-Mejía, O.F.; González-Pedroza, M.G.; Morales-Luckie, R.A. Efficient removal of heavy metals from aqueous solutions using a bionanocomposite of eggshell/Ag-Fe. Catalysts, 2020, 10(7), 727.
[http://dx.doi.org/10.3390/catal10070727]
[37]
Liu, Y.; Liu, Y.J. Biosorption isotherms, kinetics and thermodynamics. Separ. Purif. Tech., 2008, 61(3), 229-242.
[http://dx.doi.org/10.1016/j.seppur.2007.10.002]
[38]
Namasivayam, C.; Kavitha, D. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments, 2002, 54(1), 47-58.
[http://dx.doi.org/10.1016/S0143-7208(02)00025-6]
[39]
Kuo, C.Y.; Wu, C.H.; Wu, J.Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters. J. Colloid Interface Sci., 2008, 327(2), 308-315.
[http://dx.doi.org/10.1016/j.jcis.2008.08.038] [PMID: 18786679]
[40]
Vieira, A.P.; Santana, S.A.A.; Bezerra, C.W.B.; Silva, H.A.S.; Chaves, J.A.P.; de Melo, J.C.P.; da Silva Filho, E.C.; Airoldi, C. Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J. Hazard. Mater., 2009, 166(2-3), 1272-1278.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.043] [PMID: 19150173]
[41]
Rahmati, M.; Yeganeh, G.; Esmaeili, H. Sulfate ion removal from water using activated carbon powder prepared by Ziziphus spina-christi lotus leaf. Acta Chim. Slov., 2019, 66(4), 888-898.
[http://dx.doi.org/10.17344/acsi.2019.5093] [PMID: 34057501]
[42]
Baek, M.H.; Ijagbemi, C.O. O, S.J.; Kim, D.S. Removal of Malachite Green from aqueous solution using degreased coffee bean. J. Hazard. Mater., 2010, 176(1-3), 820-828.
[http://dx.doi.org/10.1016/j.jhazmat.2009.11.110] [PMID: 20036052]
[43]
Ahmad, M.A.; Ahmad Puad, N.A.; Bello, O.S. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour. Ind., 2014, 6, 18-35.
[http://dx.doi.org/10.1016/j.wri.2014.06.002]
[44]
Borhan, A.; Yusup, S.; Lim, J.W.; Show, P.L. Characterization and modelling studies of activated carbon produced from rubber-seed shell using KOH for CO2 adsorption. Processes, 2019, 7(11), 855.
[http://dx.doi.org/10.3390/pr7110855]
[45]
Villabona-Ortíz, Á.; Figueroa-Lopez, K.J.; Ortega-Toro, R. Kinetics and adsorption equilibrium in the removal of azo-anionic dyes by modified cellulose. Sustainability, 2022, 14(6), 3640.
[http://dx.doi.org/10.3390/su14063640]
[46]
Chu, S.Y.; Xiao, J.B.; Tian, G.M.; Wong, M.H. Preparation and characterization of activated carbon from aquatic macrophyte debris and its ability to adsorb anthraquinone dyes. J. Ind. Eng. Chem., 2014, 20(5), 3461-3466.
[http://dx.doi.org/10.1016/j.jiec.2013.12.035]
[47]
Wang, S.; Nam, H.; Gebreegziabher, T.B.; Nam, H. Adsorption of acetic acid and hydrogen sulfide using NaOH impregnated activated carbon for indoor air purification. Eng. Rep., 2020, 2(1), e12083.
[http://dx.doi.org/10.1002/eng2.12083]
[48]
Santhi, T.; Manonmani, S. Malachite green removal from aqueous solution by the peel of Cucumis sativa fruit. Clean, 2011, 39(2), 162-170.
[http://dx.doi.org/10.1002/clen.201000077]
[49]
Parhizkar, M.; Zhao, Y.; Wang, X.; Lin, T. Photostability and durability properties of photochromic organosilica coating on fabric. J. Eng. Fibers Fabrics, 2014, 9(3)
[http://dx.doi.org/10.1177/155892501400900308]
[50]
Zolriasatein, A.A.; Yazdanshenas, M.E.; Khajavi, R.; Rashidi, A.; Najafi, F. The use of poly(amidoamine) dendrimer in modification of jute for improving dyeing properties of reactive dyes. J. Appl. Polym. Sci., 2013, 127(6), 4203-4210.
[http://dx.doi.org/10.1002/app.37666]
[51]
Zolriasatein, A.A.; Yazdanshenas, M.E. Changes in composition, appearance, physical, and dyeing properties of jute yarn after bio-pretreatment with laccase, xylanase, cellulase, and pectinase enzymes. J. Textil. Inst., 2014, 105(6), 609-619.
[http://dx.doi.org/10.1080/00405000.2013.842290]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy